CX3CL1 in the red bone marrow promotes renal cell carcinoma to metastasize to the spine by involving the Src-related pathway

Neoplasma. 2022 May;69(3):670-679. doi: 10.4149/neo_2022_211205N1728. Epub 2022 Mar 24.

Abstract

Spinal metastasis (SM) frequently occurs in renal cell carcinoma (RCC) patients. Our preliminary work showed that CX3CL1 plays a positive role in SM. The objective of the present study was to verify whether CX3CL1 activates the downstream pathway by binding to CX3CR1 in RCC cells, ultimately promoting RCC to metastasize to the spine. The expression of CX3CL1 and CX3CR1 in tissue samples was detected by immunohistochemistry and western blotting. ELISA was used to quantify the concentration of CX3CL1 in the serum. The expression level of CX3CR1 in RCC cell lines was also detected. The CellTiter-Glo assay and flow cytometry were used to analyze cell viability and apoptosis of RCC cells. Transwell and wound healing assay were used to analyze the effect of CX3CL1 on the invasion and migration ability of RCC cells. Specific inhibitors were used to interfere with key molecules in the signaling pathway to further explore the signal transduction in RCC cells after CX3CL1 stimulation. The expression of CX3CR1 in SM from RCC was higher than that in limb bone metastases. Among the five RCC cell lines, 786O cells expressed the highest level of CX3CR1. CX3CL1 neither inhibited the proliferation of 786O cells nor promoted the apoptosis of 786O cells. However, it promoted the migration and invasion of RCC cells. After CX3CL1 stimulation, Src and Focal adhesion kinase (FAK) phosphorylation levels increased in RCC cells. Bosutinib and PF-00562271 inhibited Src/FAK phosphorylation and cell motility and invasion triggered by CX3CL1 stimulation. CX3CL1 in the red bone marrow of spinal cancellous bone enhances migration and invasion abilities of RCC cells, thereby promoting RCC metastasize to the spine. The migration and invasion of RCC cells activated by CX3CL1 are at least partially dependent on Src/FAK activation.

MeSH terms

  • Bone Marrow
  • Carcinoma, Renal Cell* / pathology
  • Cell Line, Tumor
  • Cell Movement
  • Chemokine CX3CL1* / genetics
  • Humans
  • Kidney Neoplasms* / pathology
  • Signal Transduction
  • Spinal Neoplasms* / secondary

Substances

  • CX3CL1 protein, human
  • Chemokine CX3CL1