Cancer-associated fibroblast-induced lncRNA UPK1A-AS1 confers platinum resistance in pancreatic cancer via efficient double-strand break repair

Oncogene. 2022 Apr;41(16):2372-2389. doi: 10.1038/s41388-022-02253-6. Epub 2022 Mar 9.

Abstract

The tumor stroma of pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundant and heterogeneous population of cancer-associated fibroblasts (CAFs), which are critically involved in chemoresistance. However, the underlying mechanism of CAFs in chemoresistance is unclear. Here, we show that CAFR, a CAF subset derived from platinum-resistant PDAC patients, assumes an iCAF phenotype and produces more IL8 than CAFS isolated from platinum-sensitive PDAC patients. CAFR-derived IL8 promotes oxaliplatin chemoresistance in PDAC. Based on long noncoding RNA (lncRNA) profiling in tumor cells incubated with CAF-CM, we found that UPK1A-AS1, whose expression is directly induced by IL8/NF-kappa B signaling, functions as a chemoresistance-promoting lncRNA and is critical for active IL8-induced oxaliplatin resistance. Impressively, blocking the activation of UPK1A-AS1 expression increases the oxaliplatin sensitivity of tumor cells in vivo. Mechanistically, UPK1A-AS1 strengthens the interaction between Ku70 and Ku80 to facilitate nonhomologous end joining (NHEJ), thereby enhancing DNA double-strand break (DSB) repair. Clinically, UPK1A-AS1 expression is positively correlated with IL8 expression, a poor chemotherapeutic response and a shorter progression-free survival (PFS) time in advanced PDAC patients. Collectively, our study reveals a lncRNA-mediated mechanism of CAF-derived paracrine IL8-dependent oxaliplatin resistance and highlights UPK1A-AS1 as a potential therapeutic target.

MeSH terms

  • Cancer-Associated Fibroblasts* / metabolism
  • Carcinoma, Pancreatic Ductal* / drug therapy
  • Carcinoma, Pancreatic Ductal* / genetics
  • Carcinoma, Pancreatic Ductal* / metabolism
  • Cell Line, Tumor
  • Cell Proliferation
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Interleukin-8 / genetics
  • Interleukin-8 / metabolism
  • Oxaliplatin / pharmacology
  • Pancreatic Neoplasms* / drug therapy
  • Pancreatic Neoplasms* / genetics
  • Pancreatic Neoplasms* / metabolism
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism
  • Uroplakin Ia

Substances

  • Interleukin-8
  • RNA, Long Noncoding
  • UPK1A protein, human
  • Uroplakin Ia
  • Oxaliplatin