Long non-coding RNA prostate cancer-associated transcript 6 inhibited gefitinib sensitivity of non-small cell lung cancer by serving as a competing endogenous RNA of miR-326 to up-regulate interferon-alpha receptor 2

Bioengineered. 2022 Feb;13(2):3785-3796. doi: 10.1080/21655979.2022.2031416.

Abstract

The critical roles of lncRNAs in drug resistance of malignancies have been widely recognized. This investigation aims to study the function of lncRNA PCAT6 in the resistance of non-small cell lung cancer (NSCLC) to gefitinib. In our study, we demonstrated that prostate cancer-associated transcript 6 (PCAT6) was upregulated in gefitinib-resistant NSCLC. PCAT6 knockdown inhibited gefitinib resistance of NSCLC, as indicated by decreased IC50 value, proliferation, and metastasis, and increased cell apoptosis. Besides, PCAT6 could directly target miR-326 in gefitinib-resistant NSCLC cells and augment NSCLC resistance to gefitinib by serving as ceRNA of miR-326. Furthermore, interferon-alpha receptor 2 (IFNAR2) was validated as a downstream target of miR-326 and miR-326 reduced resistance to gefitinib by inhibiting IFNAR2 expression. Our investigation identified that PCAT6 enhanced gefitinib resistance of NSCLC via miR-326/IFNAR2 axis, which might offer a new therapeutic strategy against gefitinib resistance of NSCLC patients.

Keywords: IFNAR2; NSCLC; PCAT6; gefitinib resistance; miR-326.

Publication types

  • Video-Audio Media

MeSH terms

  • Carcinoma, Non-Small-Cell Lung / drug therapy
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / metabolism*
  • Cell Line, Tumor
  • Gefitinib / pharmacology*
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Humans
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism*
  • MicroRNAs / biosynthesis*
  • MicroRNAs / genetics
  • Neoplasm Proteins / biosynthesis*
  • Neoplasm Proteins / genetics
  • RNA, Long Noncoding / biosynthesis*
  • RNA, Long Noncoding / genetics
  • RNA, Neoplasm / biosynthesis*
  • RNA, Neoplasm / genetics
  • Receptor, Interferon alpha-beta / biosynthesis*
  • Receptor, Interferon alpha-beta / genetics
  • Up-Regulation / drug effects*

Substances

  • IFNAR2 protein, human
  • MIRN326 microRNA, human
  • MicroRNAs
  • Neoplasm Proteins
  • RNA, Long Noncoding
  • RNA, Neoplasm
  • Receptor, Interferon alpha-beta
  • Gefitinib

Grants and funding

The author(s) reported there is no funding associated with the work featured in this article.