The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years

Biochim Biophys Acta. 2014 Jun;1838(6):1451-66. doi: 10.1016/j.bbamem.2013.10.019. Epub 2013 Nov 1.

Abstract

In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

Keywords: Membrane domains; Membrane dynamics; Membrane lipids; Membrane model; Membrane proteins; Membrane thermodynamics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Cell Membrane Structures / chemistry*
  • Cell Physiological Phenomena*
  • Humans
  • Membrane Fluidity / physiology*
  • Membrane Lipids / chemistry*
  • Membrane Lipids / metabolism
  • Membrane Microdomains / chemistry
  • Membrane Microdomains / metabolism
  • Membrane Proteins / chemistry*
  • Membrane Proteins / metabolism
  • Models, Biological*

Substances

  • Membrane Lipids
  • Membrane Proteins