Concerted actions of NHERF2 and WNK4 in regulating TRPV5

Biochem Biophys Res Commun. 2011 Jan 28;404(4):979-84. doi: 10.1016/j.bbrc.2010.12.095. Epub 2010 Dec 25.

Abstract

With-no-lysine (K) kinase 4 (WNK4) is a protein serine/threonine kinase associated with a Mendelian form of hypertension. WNK4 is an integrative regulator of renal transport of Na(+), K(+), and Cl(-) as shown in Xenopus oocyte system. In addition, WNK4 enhances the surface expression of epithelial Ca(2+) channel TRPV5, which plays a key role in the fine tuning of renal Ca(2+) reabsorption. Variations in the magnitude of WNK4-mediated regulation on TRPV5 in Xenopus oocytes suggest additional cellular components with limited expression are required for the regulation. In this study, we identified the Na(+)/H(+) exchanger regulating factor 2 (NHERF2) as a critical component for the positive regulation of TRPV5 by WNK4. NHERF2 augmented the positive effect of WNK4 on TRPV5, whereas its homolog NHERF1 had no effect when tested in the Xenopus oocyte system. The C-terminal PDZ binding motif of TRPV5 was required for the regulation by NHERF2. While NHERF2 interacted with TRPV5, no association between NHERF2 and WNK4 was detected using a GST pull-down assay. WNK4 increased the forward trafficking of TRPV5; however, it also caused an accelerated decline of the functional TRPV5 channels at later stage of co-expression. NHERF2 stabilized TRPV5 at the plasma membrane without interrupting the forward trafficking of TRPV5, thus prevented the decline of functional TRPV5 channel caused by WNK4 at later stage. The complementary and orderly regulations of WNK4 and NHERF2 allow TRPV5 functions at higher level for a longer period to maximize Ca(2+) influx.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Membrane / metabolism
  • Cell Membrane / microbiology*
  • Humans
  • Oocytes
  • Phosphoproteins / genetics
  • Phosphoproteins / metabolism*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Protein Stability
  • Protein Transport
  • Sodium-Hydrogen Exchangers / genetics
  • Sodium-Hydrogen Exchangers / metabolism*
  • TRPV Cation Channels / genetics
  • TRPV Cation Channels / metabolism*
  • Xenopus laevis

Substances

  • Phosphoproteins
  • Sodium-Hydrogen Exchangers
  • TRPV Cation Channels
  • TRPV5 protein, human
  • sodium-hydrogen exchanger regulatory factor
  • Protein Serine-Threonine Kinases
  • WNK4 protein, human