Use of N-acetylcysteine in clinical toxicology

Am J Med. 1991 Sep 30;91(3C):131S-139S. doi: 10.1016/0002-9343(91)90296-a.

Abstract

The major use of N-acetylcysteine in clinical toxicology is in the treatment of acetaminophen (paracetamol) overdosage. The hepatorenal toxicity of acetaminophen is mediated by a reactive metabolite normally detoxified by reduced glutathione. If glutathione is depleted, covalent binding to macromolecules and/or oxidation of thiol enzymes can lead to cell death. Oral or intravenous N-acetylcysteine or oral D,L-methionine mitigates acetaminophen-induced hepatorenal damage if given within 10 hours, but becomes less effective thereafter. In vivo, N-acetylcysteine forms L-cysteine, cystine, L-methionine, glutathione, and mixed disulfides; L-methionine also forms cysteine, thus giving rise to glutathione and other products. Oral therapy with N-acetylcysteine or methionine for acetaminophen poisoning is contraindicated in the presence of coma or vomiting, or if activated charcoal has been given by mouth. Nausea, vomiting, and diarrhea may also occur as a result of oral N-acetylcysteine administration. Anaphylactoid reactions including angioedema, bronchospasm, flushing, hypotension, nausea/vomiting, rash, tachycardia, and respiratory distress may occur 15-60 minutes into N-acetylcysteine infusion (20 hours intravenous regimen) in up to 10% of patients. Following accidental intravenous overdosage, the adverse reactions of N-acetylcysteine are similar but more severe; fatalities have occurred. A reduction in the loading dose of N-acetylcysteine may reduce the risk of adverse reactions while maintaining efficacy. Administration of N-acetylcysteine for a longer period might provide enhanced protection for patients in whom acetaminophen absorption or elimination is delayed. N-acetylcysteine may also have a role in the treatment of toxicity from carbon tetrachloride, chloroform, 1,2-dichloropropane, and other compounds. The possible use of N-acetylcysteine and other agents in the prevention of the neuropsychiatric sequelae of acute carbon monoxide poisoning is an important area for future research.

Publication types

  • Review

MeSH terms

  • Acetaminophen / metabolism
  • Acetaminophen / poisoning*
  • Acetylcysteine* / metabolism
  • Acetylcysteine* / pharmacokinetics
  • Animals
  • Contraindications
  • Humans
  • Poisoning / drug therapy
  • Toxicology

Substances

  • Acetaminophen
  • Acetylcysteine