RipA, a cytoplasmic membrane protein conserved among Francisella species, is required for intracellular survival

Infect Immun. 2008 Nov;76(11):4934-43. doi: 10.1128/IAI.00475-08. Epub 2008 Sep 2.

Abstract

Francisella tularensis is a highly virulent bacterial pathogen that invades and replicates within numerous host cell types, including macrophages and epithelial cells. In an effort to better understand this process, we screened a transposon insertion library of the F. tularensis live vaccine strain (LVS) for mutant strains that invaded but failed to replicate within alveolar epithelial cell lines. One such strain isolated from this screen contained an insertion in the gene FTL_1914, which is conserved among all sequenced Francisella species yet lacks significant homology to any gene with known function. A deletion strain lacking FTL_1914 was constructed. This strain did not replicate in either epithelial or macrophage-like cells, and intracellular replication was restored by the wild-type allele in trans. Based on the deletion mutant phenotype, FTL_1914 was termed ripA (required for intracellular proliferation, factor A). Following uptake by J774.A1 cells, F. tularensis LVS Delta ripA colocalized with LAMP-1 then escaped the phagosome at the same rate and frequency as wild-type LVS-infected cells. Electron micrographs of the F. tularensis LVS Delta ripA mutant demonstrated the reentry of the mutant bacteria into double membrane vacuoles characteristic of autophagosomes in a process that was not dependent on replication. The F. tularensis LVS Delta ripA mutant was significantly impaired in its ability to persist in the lung and in its capacity to disseminate and colonize the liver and spleen in a mouse model of pulmonary tularemia. The RipA protein was expressed during growth in laboratory media and localized to the cytoplasmic membrane. Thus, RipA is a cytoplasmic membrane protein conserved among Francisella species that is required for intracellular replication within the host cell cytoplasm as well as disease progression, dissemination, and virulence.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bacterial Proteins / genetics*
  • Bacterial Proteins / metabolism
  • Blotting, Western
  • Cell Proliferation
  • Electrophoresis, Polyacrylamide Gel
  • Francisella tularensis / genetics*
  • Francisella tularensis / pathogenicity*
  • Membrane Proteins / genetics*
  • Membrane Proteins / metabolism
  • Mice
  • Microscopy, Electron, Transmission
  • Microscopy, Fluorescence
  • Polymerase Chain Reaction
  • Tularemia / genetics*

Substances

  • Bacterial Proteins
  • Membrane Proteins