Coordination Compounds of Schiff-Base Ligands Derived from Diaminomaleonitrile (DMN): Mononuclear, Dinuclear, and Macrocyclic Derivatives

Inorg Chem. 1996 Sep 11;35(19):5492-5499. doi: 10.1021/ic960237p.

Abstract

Copper(II) and V(IV)O complexes of an open chain (1:2) Schiff-base ligand (H(2)L1), derived by the template condensation of diaminomaleonitrile (DMN) and salicylaldehyde, and dicopper(II) complexes of (2:2) macrocyclic Schiff-base ligands derived by template condensation of diformylphenols and diaminomaleonitrile, have been synthesized and studied. Structures have been established for the first time for mononuclear Cu(II) and V(IV)O derivatives of the open chain ligand H(2)L1 (1:2), a dinuclear macrocyclic Cu(II) complex derived from a 2:2 macrocyclic ligand (H(2)M1), and the half-condensed 1:1 salicylaldehyde ligand (H(2)L2). [Cu(L1)] (1) (L1 = C(18)H(10)N(4)O(2)) crystallized in the monoclinic system, space group P2(1)/n (No. 14), with a = 11.753(6) Å, b = 7.708(5) Å, c = 16.820(1) Å, and Z = 4. [VO(L1)(DMSO] (2) crystallized in the orthorhombic system, space group Pbca (No. 61), with a = 22.534(9) Å, b = 23.31(1) Å, c = 7.694(5) Å, and Z = 8. H(2)L2 (C(18)H(8)N(4)O) (3) crystallized in the monoclinic system, space group P2(1)/c (No. 14), with a = 13.004(6) Å, b = 11.441(7) Å, c = 7.030(4) Å, and Z = 4. [Cu(2)(M3)](CH(3)COCH(3)) (4) (M3 = C(32)H(24)N(8)O(4)) crystallized in the monoclinic system, space group C2/c (No. 15), with a = 38.33(2) Å, b = 8.059(4) Å, c = 22.67(2) Å, and Z = 8. [Cu(L3)(DMSO)] (5) (L3 = C(20)H(14)N(2)O(4)) crystallized in the triclinic system, space group P&onemacr; (No. 2), with a = 10.236(4) Å, b = 13.514(4) Å, c = 9.655(4) Å, and Z = 2. 4 results from the unique addition of two acetone molecules to two imine sites in [Cu(2)(M1)](ClO(4))(2) (M1 = 2:2 macrocyclic ligand derived from template condensation of DMN and 2,6-diformyl-4-methylphenol). 4 has extremely small Cu-OPh-Cu bridge angles (92.0, 92.8 degrees ), well below the expected lower limit for antiferromagnetic behavior, but is still antiferromagnetically coupled (-2J = 25.2 cm(-)(1)). This behavior is associated with a possible antiferromagnetic exchange term that involves the conjugated framework of the macrocyclic ligand itself. The ligand L3 in 5 results from hydrolysis of M1 on recrystallization of [Cu(2)(M1)](ClO(4))(2) from undried dimethyl sulfoxide.