dbSNP Short Genetic Variations
Welcome to the Reference SNP (rs) Report
All alleles are reported in the Forward orientation. Click on the Variant Details tab for details on Genomic Placement, Gene, and Amino Acid changes. HGVS names are in the HGVS tab.
Reference SNP (rs) Report
This page reports data for a single dbSNP Reference SNP variation (RefSNP or rs) from the new redesigned dbSNP build.
Top of the page reports a concise summary for the rs, with more specific details included in the corresponding tabs below.
All alleles are reported in the Forward orientation. Use the Genomic View to inspect the nucleotides flanking the variant, and its neighbors.
For more information see Help documentation.
rs2228479
Current Build 156
Released September 21, 2022
- Organism
- Homo sapiens
- Position
-
chr16:89919532 (GRCh38.p14) Help
The anchor position for this RefSNP. Includes all nucleotides potentially affected by this change, thus it can differ from HGVS, which is right-shifted. See here for details.
- Alleles
- G>A / G>C
- Variation Type
- SNV Single Nucleotide Variation
- Frequency
-
A=0.064287 (17016/264690, TOPMED)A=0.084032 (19678/234174, ALFA)A=0.065204 (9145/140252, GnomAD) (+ 21 more)
- Clinical Significance
- Reported in ClinVar
- Gene : Consequence
- MC1R : Missense Variant
- Publications
- 28 citations
- Genomic View
- See rs on genome
ALFA Allele Frequency
The ALFA project provide aggregate allele frequency from dbGaP. More information is available on the project page including descriptions, data access, and terms of use.
Population | Group | Sample Size | Ref Allele | Alt Allele | Ref HMOZ | Alt HMOZ | HTRZ | HWEP |
---|---|---|---|---|---|---|---|---|
Total | Global | 250634 | G=0.917094 | A=0.082906 | 0.842671 | 0.008482 | 0.148847 | 30 |
European | Sub | 206852 | G=0.915742 | A=0.084258 | 0.839296 | 0.007812 | 0.152892 | 5 |
African | Sub | 15296 | G=0.98411 | A=0.01589 | 0.968488 | 0.000262 | 0.03125 | 0 |
African Others | Sub | 520 | G=0.998 | A=0.002 | 0.996154 | 0.0 | 0.003846 | 0 |
African American | Sub | 14776 | G=0.98362 | A=0.01638 | 0.967515 | 0.000271 | 0.032214 | 0 |
Asian | Sub | 3688 | G=0.7495 | A=0.2505 | 0.562907 | 0.063991 | 0.373102 | 0 |
East Asian | Sub | 2340 | G=0.7530 | A=0.2470 | 0.567521 | 0.061538 | 0.37094 | 0 |
Other Asian | Sub | 1348 | G=0.7433 | A=0.2567 | 0.554896 | 0.068249 | 0.376855 | 0 |
Latin American 1 | Sub | 1034 | G=0.9642 | A=0.0358 | 0.928433 | 0.0 | 0.071567 | 0 |
Latin American 2 | Sub | 2276 | G=0.9495 | A=0.0505 | 0.898946 | 0.0 | 0.101054 | 2 |
South Asian | Sub | 190 | G=0.979 | A=0.021 | 0.957895 | 0.0 | 0.042105 | 0 |
Other | Sub | 21298 | G=0.90483 | A=0.09517 | 0.822331 | 0.012677 | 0.164992 | 11 |
Frequency tab displays a table of the reference and alternate allele frequencies reported by various studies and populations. Table lines, where Population="Global" refer to the entire study population, whereas lines, where Group="Sub", refer to a study-specific population subgroupings (i.e. AFR, CAU, etc.), if available. Frequency for the alternate allele (Alt Allele) is a ratio of samples observed-to-total, where the numerator (observed samples) is the number of chromosomes in the study with the minor allele present (found in "Sample size", where Group="Sub"), and the denominator (total samples) is the total number of all chromosomes in the study for the variant (found in "Sample size", where Group="Study-wide" and Population="Global").
DownloadStudy | Population | Group | Sample Size | Ref Allele | Alt Allele |
---|---|---|---|---|---|
TopMed | Global | Study-wide | 264690 | G=0.935713 | A=0.064287 |
Allele Frequency Aggregator | Total | Global | 234174 | G=0.915968 | A=0.084032 |
Allele Frequency Aggregator | European | Sub | 196680 | G=0.916031 | A=0.083969 |
Allele Frequency Aggregator | Other | Sub | 19846 | G=0.90346 | A=0.09654 |
Allele Frequency Aggregator | African | Sub | 10460 | G=0.98403 | A=0.01597 |
Allele Frequency Aggregator | Asian | Sub | 3688 | G=0.7495 | A=0.2505 |
Allele Frequency Aggregator | Latin American 2 | Sub | 2276 | G=0.9495 | A=0.0505 |
Allele Frequency Aggregator | Latin American 1 | Sub | 1034 | G=0.9642 | A=0.0358 |
Allele Frequency Aggregator | South Asian | Sub | 190 | G=0.979 | A=0.021 |
gnomAD - Genomes | Global | Study-wide | 140252 | G=0.934796 | A=0.065204 |
gnomAD - Genomes | European | Sub | 75944 | G=0.91324 | A=0.08676 |
gnomAD - Genomes | African | Sub | 42048 | G=0.98385 | A=0.01615 |
gnomAD - Genomes | American | Sub | 13664 | G=0.95528 | A=0.04472 |
gnomAD - Genomes | Ashkenazi Jewish | Sub | 3324 | G=0.9374 | A=0.0626 |
gnomAD - Genomes | East Asian | Sub | 3120 | G=0.7090 | A=0.2910 |
gnomAD - Genomes | Other | Sub | 2152 | G=0.9303 | A=0.0697 |
The PAGE Study | Global | Study-wide | 78690 | G=0.93300 | A=0.06700 |
The PAGE Study | AfricanAmerican | Sub | 32512 | G=0.98053 | A=0.01947 |
The PAGE Study | Mexican | Sub | 10810 | G=0.95291 | A=0.04709 |
The PAGE Study | Asian | Sub | 8314 | G=0.8559 | A=0.1441 |
The PAGE Study | PuertoRican | Sub | 7918 | G=0.9588 | A=0.0412 |
The PAGE Study | NativeHawaiian | Sub | 4532 | G=0.5351 | A=0.4649 |
The PAGE Study | Cuban | Sub | 4228 | G=0.9544 | A=0.0456 |
The PAGE Study | Dominican | Sub | 3828 | G=0.9768 | A=0.0232 |
The PAGE Study | CentralAmerican | Sub | 2450 | G=0.9743 | A=0.0257 |
The PAGE Study | SouthAmerican | Sub | 1982 | G=0.9763 | A=0.0237 |
The PAGE Study | NativeAmerican | Sub | 1260 | G=0.9310 | A=0.0690 |
The PAGE Study | SouthAsian | Sub | 856 | G=0.977 | A=0.023 |
14KJPN | JAPANESE | Study-wide | 28254 | G=0.90780 | A=0.09220 |
8.3KJPN | JAPANESE | Study-wide | 16756 | G=0.90475 | A=0.09525 |
1000Genomes_30x | Global | Study-wide | 6404 | G=0.9233 | A=0.0765, C=0.0002 |
1000Genomes_30x | African | Sub | 1786 | G=0.9961 | A=0.0039, C=0.0000 |
1000Genomes_30x | Europe | Sub | 1266 | G=0.9336 | A=0.0656, C=0.0008 |
1000Genomes_30x | South Asian | Sub | 1202 | G=0.9792 | A=0.0208, C=0.0000 |
1000Genomes_30x | East Asian | Sub | 1170 | G=0.7017 | A=0.2983, C=0.0000 |
1000Genomes_30x | American | Sub | 980 | G=0.973 | A=0.027, C=0.000 |
1000Genomes | Global | Study-wide | 5008 | G=0.9203 | A=0.0797 |
1000Genomes | African | Sub | 1322 | G=0.9962 | A=0.0038 |
1000Genomes | East Asian | Sub | 1008 | G=0.7113 | A=0.2887 |
1000Genomes | Europe | Sub | 1006 | G=0.9314 | A=0.0686 |
1000Genomes | South Asian | Sub | 978 | G=0.982 | A=0.018 |
1000Genomes | American | Sub | 694 | G=0.977 | A=0.023 |
Genetic variation in the Estonian population | Estonian | Study-wide | 4480 | G=0.8958 | A=0.1042 |
The Avon Longitudinal Study of Parents and Children | PARENT AND CHILD COHORT | Study-wide | 3854 | G=0.9087 | A=0.0913 |
UK 10K study - Twins | TWIN COHORT | Study-wide | 3708 | G=0.8924 | A=0.1076 |
KOREAN population from KRGDB | KOREAN | Study-wide | 2922 | G=0.8593 | A=0.1407 |
Korean Genome Project | KOREAN | Study-wide | 1832 | G=0.8630 | A=0.1370 |
HapMap | Global | Study-wide | 1700 | G=0.9259 | A=0.0741 |
HapMap | American | Sub | 764 | G=0.898 | A=0.102 |
HapMap | African | Sub | 508 | G=0.994 | A=0.006 |
HapMap | Asian | Sub | 252 | G=0.869 | A=0.131 |
HapMap | Europe | Sub | 176 | G=0.932 | A=0.068 |
Genome of the Netherlands Release 5 | Genome of the Netherlands | Study-wide | 998 | G=0.902 | A=0.098 |
CNV burdens in cranial meningiomas | Global | Study-wide | 788 | G=0.821 | A=0.179 |
CNV burdens in cranial meningiomas | CRM | Sub | 788 | G=0.821 | A=0.179 |
A Vietnamese Genetic Variation Database | Global | Study-wide | 612 | G=0.642 | A=0.358 |
Northern Sweden | ACPOP | Study-wide | 600 | G=0.895 | A=0.105 |
FINRISK | Finnish from FINRISK project | Study-wide | 304 | G=0.928 | A=0.072 |
Qatari | Global | Study-wide | 216 | G=0.995 | A=0.005 |
SGDP_PRJ | Global | Study-wide | 80 | G=0.38 | A=0.62 |
Ancient Sardinia genome-wide 1240k capture data generation and analysis | Global | Study-wide | 76 | G=0.89 | A=0.11 |
Siberian | Global | Study-wide | 12 | G=0.50 | A=0.50 |
Variant Details tab shows known variant placements on genomic sequences: chromosomes (NC_), RefSeqGene, pseudogenes or genomic regions (NG_), and in a separate table: on transcripts (NM_) and protein sequences (NP_). The corresponding transcript and protein locations are listed in adjacent lines, along with molecular consequences from Sequence Ontology. When no protein placement is available, only the transcript is listed. Column "Codon[Amino acid]" shows the actual base change in the format of "Reference > Alternate" allele, including the nucleotide codon change in transcripts, and the amino acid change in proteins, respectively, allowing for known ribosomal slippage sites. To view nucleotides adjacent to the variant use the Genomic View at the bottom of the page - zoom into the sequence until the nucleotides around the variant become visible.
Sequence name | Change |
---|---|
GRCh38.p14 chr 16 | NC_000016.10:g.89919532G>A |
GRCh38.p14 chr 16 | NC_000016.10:g.89919532G>C |
GRCh37.p13 chr 16 | NC_000016.9:g.89985940G>A |
GRCh37.p13 chr 16 | NC_000016.9:g.89985940G>C |
TUBB3 RefSeqGene | NG_027810.1:g.2524G>A |
TUBB3 RefSeqGene | NG_027810.1:g.2524G>C |
MC1R RefSeqGene | NG_012026.1:g.6654G>A |
MC1R RefSeqGene | NG_012026.1:g.6654G>C |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
MC1R transcript | NM_002386.4:c.274G>A | V [GTG] > M [ATG] | Coding Sequence Variant |
melanocyte-stimulating hormone receptor | NP_002377.4:p.Val92Met | V (Val) > M (Met) | Missense Variant |
MC1R transcript | NM_002386.4:c.274G>C | V [GTG] > L [CTG] | Coding Sequence Variant |
melanocyte-stimulating hormone receptor | NP_002377.4:p.Val92Leu | V (Val) > L (Leu) | Missense Variant |
Clinical Significance tab shows a list of clinical significance entries from ClinVar associated with the variation, per allele. Click on the RCV accession (i.e. RCV000001615.2) or Allele ID (i.e. 12274) to access full ClinVar report.
ClinVar Accession | Disease Names | Clinical Significance |
---|---|---|
RCV000015378.29 | Skin/hair/eye pigmentation 2, red hair/fair skin | Association |
RCV000015379.29 | Skin/hair/eye pigmentation 2, blond hair/fair skin | Association |
RCV000247471.1 | not specified | Benign |
RCV000278283.7 | Melanoma, cutaneous malignant, susceptibility to, 5 | Benign |
RCV001707509.1 | not provided | Benign |
Aliases tab displays HGVS names representing the variant placements and allele changes on genomic, transcript and protein sequences, per allele. HGVS name is an expression for reporting sequence accession and version, sequence type, position, and allele change. The column "Note" can have two values: "diff" means that there is a difference between the reference allele (variation interval) at the placement reported in HGVS name and the reference alleles reported in other HGVS names, and "rev" means that the sequence of this variation interval at the placement reported in HGVS name is in reverse orientation to the sequence(s) of this variation in other HGVS names not labeled as "rev".
Placement | G= | A | C |
---|---|---|---|
GRCh38.p14 chr 16 | NC_000016.10:g.89919532= | NC_000016.10:g.89919532G>A | NC_000016.10:g.89919532G>C |
GRCh37.p13 chr 16 | NC_000016.9:g.89985940= | NC_000016.9:g.89985940G>A | NC_000016.9:g.89985940G>C |
TUBB3 RefSeqGene | NG_027810.1:g.2524= | NG_027810.1:g.2524G>A | NG_027810.1:g.2524G>C |
MC1R RefSeqGene | NG_012026.1:g.6654= | NG_012026.1:g.6654G>A | NG_012026.1:g.6654G>C |
MC1R transcript | NM_002386.4:c.274= | NM_002386.4:c.274G>A | NM_002386.4:c.274G>C |
MC1R transcript | NM_002386.3:c.274= | NM_002386.3:c.274G>A | NM_002386.3:c.274G>C |
melanocyte-stimulating hormone receptor | NP_002377.4:p.Val92= | NP_002377.4:p.Val92Met | NP_002377.4:p.Val92Leu |
Submissions tab displays variations originally submitted to dbSNP, now supporting this RefSNP cluster (rs). We display Submitter handle, Submission identifier, Date and Build number, when the submission appeared for the first time. Direct submissions to dbSNP have Submission ID in the form of an ss-prefixed number (ss#). Other supporting variations are listed in the table without ss#.
No | Submitter | Submission ID | Date (Build) |
---|---|---|---|
1 | WIAF-CSNP | ss3173167 | Aug 15, 2001 (98) |
2 | PGA-UW-FHCRC | ss4472755 | Jul 03, 2002 (106) |
3 | CSHL-HAPMAP | ss16697812 | Feb 27, 2004 (120) |
4 | ABI | ss40647778 | Mar 13, 2006 (126) |
5 | SNP500CANCER | ss48295622 | Mar 13, 2006 (126) |
6 | RIKENSNPRC | ss49848775 | Mar 13, 2006 (126) |
7 | ILLUMINA | ss74900011 | Dec 07, 2007 (129) |
8 | ILLUMINA | ss160517278 | Dec 01, 2009 (131) |
9 | ENSEMBL | ss161821088 | Dec 01, 2009 (131) |
10 | ILLUMINA | ss173192590 | Jul 04, 2010 (132) |
11 | 1000GENOMES | ss237150928 | Jul 15, 2010 (132) |
12 | 1000GENOMES | ss243467201 | Jul 15, 2010 (132) |
13 | OMICIA | ss244239407 | May 27, 2010 (132) |
14 | OMIM-CURATED-RECORDS | ss275515487 | Nov 24, 2010 (133) |
15 | GMI | ss282656951 | May 04, 2012 (137) |
16 | ILLUMINA | ss480471838 | May 04, 2012 (137) |
17 | ILLUMINA | ss480486170 | May 04, 2012 (137) |
18 | ILLUMINA | ss481283413 | Sep 08, 2015 (146) |
19 | ILLUMINA | ss485033394 | May 04, 2012 (137) |
20 | EXOME_CHIP | ss491513792 | May 04, 2012 (137) |
21 | CLINSEQ_SNP | ss491725585 | May 04, 2012 (137) |
22 | ILLUMINA | ss537057490 | Sep 08, 2015 (146) |
23 | SSMP | ss660892025 | Apr 25, 2013 (138) |
24 | NHLBI-ESP | ss713334828 | Apr 25, 2013 (138) |
25 | ILLUMINA | ss778699398 | Sep 08, 2015 (146) |
26 | ILLUMINA | ss780722550 | Sep 08, 2015 (146) |
27 | ILLUMINA | ss782962943 | Sep 08, 2015 (146) |
28 | ILLUMINA | ss783398378 | Sep 08, 2015 (146) |
29 | ILLUMINA | ss783924990 | Sep 08, 2015 (146) |
30 | ILLUMINA | ss832219180 | Sep 08, 2015 (146) |
31 | ILLUMINA | ss834158305 | Sep 08, 2015 (146) |
32 | EVA-GONL | ss992830727 | Aug 21, 2014 (142) |
33 | JMKIDD_LAB | ss1067565420 | Aug 21, 2014 (142) |
34 | JMKIDD_LAB | ss1080869835 | Aug 21, 2014 (142) |
35 | 1000GENOMES | ss1357561431 | Aug 21, 2014 (142) |
36 | EVA_FINRISK | ss1584102409 | Apr 01, 2015 (144) |
37 | EVA_UK10K_ALSPAC | ss1635117232 | Apr 01, 2015 (144) |
38 | EVA_UK10K_TWINSUK | ss1678111265 | Apr 01, 2015 (144) |
39 | EVA_EXAC | ss1692487434 | Apr 01, 2015 (144) |
40 | EVA_EXAC | ss1692487435 | Apr 01, 2015 (144) |
41 | EVA_DECODE | ss1696872306 | Apr 01, 2015 (144) |
42 | EVA_SVP | ss1713563807 | Apr 01, 2015 (144) |
43 | ILLUMINA | ss1752213133 | Sep 08, 2015 (146) |
44 | ILLUMINA | ss1752213134 | Sep 08, 2015 (146) |
45 | ILLUMINA | ss1917911984 | Feb 12, 2016 (147) |
46 | WEILL_CORNELL_DGM | ss1936272971 | Feb 12, 2016 (147) |
47 | ILLUMINA | ss1946424245 | Feb 12, 2016 (147) |
48 | ILLUMINA | ss1959711631 | Feb 12, 2016 (147) |
49 | AMU | ss1971464519 | Jul 19, 2016 (147) |
50 | JJLAB | ss2028926295 | Sep 14, 2016 (149) |
51 | ILLUMINA | ss2095070733 | Dec 20, 2016 (150) |
52 | USC_VALOUEV | ss2157367874 | Dec 20, 2016 (150) |
53 | HUMAN_LONGEVITY | ss2214824161 | Dec 20, 2016 (150) |
54 | SYSTEMSBIOZJU | ss2628953374 | Nov 08, 2017 (151) |
55 | ILLUMINA | ss2633363337 | Nov 08, 2017 (151) |
56 | ILLUMINA | ss2635067379 | Nov 08, 2017 (151) |
57 | GRF | ss2701904641 | Nov 08, 2017 (151) |
58 | GNOMAD | ss2742271273 | Nov 08, 2017 (151) |
59 | GNOMAD | ss2749635765 | Nov 08, 2017 (151) |
60 | GNOMAD | ss2946702198 | Nov 08, 2017 (151) |
61 | AFFY | ss2985080445 | Nov 08, 2017 (151) |
62 | AFFY | ss2985718375 | Nov 08, 2017 (151) |
63 | SWEGEN | ss3015041387 | Nov 08, 2017 (151) |
64 | ILLUMINA | ss3021742085 | Nov 08, 2017 (151) |
65 | BIOINF_KMB_FNS_UNIBA | ss3028280823 | Nov 08, 2017 (151) |
66 | CSHL | ss3351606488 | Nov 08, 2017 (151) |
67 | ILLUMINA | ss3627602938 | Oct 12, 2018 (152) |
68 | ILLUMINA | ss3627602939 | Oct 12, 2018 (152) |
69 | ILLUMINA | ss3631346731 | Oct 12, 2018 (152) |
70 | ILLUMINA | ss3633132162 | Oct 12, 2018 (152) |
71 | ILLUMINA | ss3633838990 | Oct 12, 2018 (152) |
72 | ILLUMINA | ss3634658681 | Oct 12, 2018 (152) |
73 | ILLUMINA | ss3634658682 | Oct 12, 2018 (152) |
74 | ILLUMINA | ss3635527015 | Oct 12, 2018 (152) |
75 | ILLUMINA | ss3636350093 | Oct 12, 2018 (152) |
76 | ILLUMINA | ss3637278510 | Oct 12, 2018 (152) |
77 | ILLUMINA | ss3638143981 | Oct 12, 2018 (152) |
78 | ILLUMINA | ss3640366001 | Oct 12, 2018 (152) |
79 | ILLUMINA | ss3640366002 | Oct 12, 2018 (152) |
80 | ILLUMINA | ss3643123675 | Oct 12, 2018 (152) |
81 | ILLUMINA | ss3644677326 | Oct 12, 2018 (152) |
82 | OMUKHERJEE_ADBS | ss3646500355 | Oct 12, 2018 (152) |
83 | ILLUMINA | ss3652154483 | Oct 12, 2018 (152) |
84 | ILLUMINA | ss3652154484 | Oct 12, 2018 (152) |
85 | ILLUMINA | ss3653852542 | Oct 12, 2018 (152) |
86 | EGCUT_WGS | ss3682019185 | Jul 13, 2019 (153) |
87 | EVA_DECODE | ss3699905741 | Jul 13, 2019 (153) |
88 | ILLUMINA | ss3725591483 | Jul 13, 2019 (153) |
89 | ACPOP | ss3741791956 | Jul 13, 2019 (153) |
90 | ILLUMINA | ss3744436933 | Jul 13, 2019 (153) |
91 | ILLUMINA | ss3744959044 | Jul 13, 2019 (153) |
92 | ILLUMINA | ss3744959045 | Jul 13, 2019 (153) |
93 | EVA | ss3754343116 | Jul 13, 2019 (153) |
94 | PAGE_CC | ss3771903545 | Jul 13, 2019 (153) |
95 | ILLUMINA | ss3772457150 | Jul 13, 2019 (153) |
96 | ILLUMINA | ss3772457151 | Jul 13, 2019 (153) |
97 | KHV_HUMAN_GENOMES | ss3819613402 | Jul 13, 2019 (153) |
98 | EVA | ss3825053866 | Apr 27, 2020 (154) |
99 | EVA | ss3825887450 | Apr 27, 2020 (154) |
100 | EVA | ss3834732215 | Apr 27, 2020 (154) |
101 | SGDP_PRJ | ss3885136846 | Apr 27, 2020 (154) |
102 | KRGDB | ss3934702342 | Apr 27, 2020 (154) |
103 | KOGIC | ss3978222948 | Apr 27, 2020 (154) |
104 | FSA-LAB | ss3984102668 | Apr 27, 2021 (155) |
105 | EVA | ss3984718270 | Apr 27, 2021 (155) |
106 | EVA | ss3985776302 | Apr 27, 2021 (155) |
107 | EVA | ss3986072009 | Apr 27, 2021 (155) |
108 | EVA | ss3986703905 | Apr 27, 2021 (155) |
109 | TOPMED | ss5026622668 | Apr 27, 2021 (155) |
110 | TOMMO_GENOMICS | ss5221067054 | Apr 27, 2021 (155) |
111 | EVA | ss5236937438 | Apr 27, 2021 (155) |
112 | EVA | ss5237570267 | Apr 27, 2021 (155) |
113 | EVA | ss5237667445 | Oct 16, 2022 (156) |
114 | 1000G_HIGH_COVERAGE | ss5302107346 | Oct 16, 2022 (156) |
115 | TRAN_CS_UWATERLOO | ss5314445947 | Oct 16, 2022 (156) |
116 | EVA | ss5315865843 | Oct 16, 2022 (156) |
117 | EVA | ss5425824602 | Oct 16, 2022 (156) |
118 | HUGCELL_USP | ss5495328307 | Oct 16, 2022 (156) |
119 | 1000G_HIGH_COVERAGE | ss5605329350 | Oct 16, 2022 (156) |
120 | SANFORD_IMAGENETICS | ss5624389590 | Oct 16, 2022 (156) |
121 | SANFORD_IMAGENETICS | ss5659545416 | Oct 16, 2022 (156) |
122 | TOMMO_GENOMICS | ss5776520250 | Oct 16, 2022 (156) |
123 | EVA | ss5799967744 | Oct 16, 2022 (156) |
124 | YY_MCH | ss5816253031 | Oct 16, 2022 (156) |
125 | EVA | ss5846860253 | Oct 16, 2022 (156) |
126 | EVA | ss5847783822 | Oct 16, 2022 (156) |
127 | EVA | ss5848435441 | Oct 16, 2022 (156) |
128 | EVA | ss5851702271 | Oct 16, 2022 (156) |
129 | EVA | ss5900402858 | Oct 16, 2022 (156) |
130 | EVA | ss5950960229 | Oct 16, 2022 (156) |
131 | EVA | ss5979496598 | Oct 16, 2022 (156) |
132 | 1000Genomes | NC_000016.9 - 89985940 | Oct 12, 2018 (152) |
133 | 1000Genomes_30x | NC_000016.10 - 89919532 | Oct 16, 2022 (156) |
134 | The Avon Longitudinal Study of Parents and Children | NC_000016.9 - 89985940 | Oct 12, 2018 (152) |
135 | Genetic variation in the Estonian population | NC_000016.9 - 89985940 | Oct 12, 2018 (152) |
136 |
ExAC
Submission ignored due to conflicting rows: |
- | Oct 12, 2018 (152) |
137 |
ExAC
Submission ignored due to conflicting rows: |
- | Oct 12, 2018 (152) |
138 | FINRISK | NC_000016.9 - 89985940 | Apr 27, 2020 (154) |
139 | gnomAD - Genomes | NC_000016.10 - 89919532 | Apr 27, 2021 (155) |
140 |
gnomAD - Exomes
Submission ignored due to conflicting rows: |
- | Jul 13, 2019 (153) |
141 |
gnomAD - Exomes
Submission ignored due to conflicting rows: |
- | Jul 13, 2019 (153) |
142 | Genome of the Netherlands Release 5 | NC_000016.9 - 89985940 | Apr 27, 2020 (154) |
143 | HapMap | NC_000016.10 - 89919532 | Apr 27, 2020 (154) |
144 | KOREAN population from KRGDB | NC_000016.9 - 89985940 | Apr 27, 2020 (154) |
145 | Korean Genome Project | NC_000016.10 - 89919532 | Apr 27, 2020 (154) |
146 | Northern Sweden | NC_000016.9 - 89985940 | Jul 13, 2019 (153) |
147 | The PAGE Study | NC_000016.10 - 89919532 | Jul 13, 2019 (153) |
148 | Ancient Sardinia genome-wide 1240k capture data generation and analysis | NC_000016.9 - 89985940 | Apr 27, 2021 (155) |
149 | CNV burdens in cranial meningiomas | NC_000016.9 - 89985940 | Apr 27, 2021 (155) |
150 | Qatari | NC_000016.9 - 89985940 | Apr 27, 2020 (154) |
151 | SGDP_PRJ | NC_000016.9 - 89985940 | Apr 27, 2020 (154) |
152 | Siberian | NC_000016.9 - 89985940 | Apr 27, 2020 (154) |
153 | 8.3KJPN | NC_000016.9 - 89985940 | Apr 27, 2021 (155) |
154 | 14KJPN | NC_000016.10 - 89919532 | Oct 16, 2022 (156) |
155 | TopMed | NC_000016.10 - 89919532 | Apr 27, 2021 (155) |
156 | UK 10K study - Twins | NC_000016.9 - 89985940 | Oct 12, 2018 (152) |
157 | A Vietnamese Genetic Variation Database | NC_000016.9 - 89985940 | Jul 13, 2019 (153) |
158 | ALFA | NC_000016.10 - 89919532 | Apr 27, 2021 (155) |
159 | ClinVar | RCV000015378.29 | Oct 12, 2018 (152) |
160 | ClinVar | RCV000015379.29 | Oct 12, 2018 (152) |
161 | ClinVar | RCV000247471.1 | Oct 12, 2018 (152) |
162 | ClinVar | RCV000278283.7 | Oct 16, 2022 (156) |
163 | ClinVar | RCV001707509.1 | Oct 16, 2022 (156) |
History tab displays RefSNPs (Associated ID) from previous builds (Build) that now support the current RefSNP, and the dates, when the history was updated for each Associated ID (History Updated).
Submission IDs | Observation SPDI | Canonical SPDI | Source RSIDs |
---|---|---|---|
ss282656951, ss480471838, ss491725585, ss1696872306, ss1713563807, ss2635067379, ss3643123675 | NC_000016.8:88513440:G:A | NC_000016.10:89919531:G:A | (self) |
70762794, 39253501, 27757433, 98870, 17497974, 41879736, 15076821, 1002229, 267809, 18314893, 37153826, 9884228, 79036361, 39253501, 8697220, ss237150928, ss243467201, ss480486170, ss481283413, ss485033394, ss491513792, ss537057490, ss660892025, ss713334828, ss778699398, ss780722550, ss782962943, ss783398378, ss783924990, ss832219180, ss834158305, ss992830727, ss1067565420, ss1080869835, ss1357561431, ss1584102409, ss1635117232, ss1678111265, ss1692487434, ss1752213133, ss1752213134, ss1917911984, ss1936272971, ss1946424245, ss1959711631, ss1971464519, ss2028926295, ss2095070733, ss2157367874, ss2628953374, ss2633363337, ss2701904641, ss2742271273, ss2749635765, ss2946702198, ss2985080445, ss2985718375, ss3015041387, ss3021742085, ss3351606488, ss3627602938, ss3627602939, ss3631346731, ss3633132162, ss3633838990, ss3634658681, ss3634658682, ss3635527015, ss3636350093, ss3637278510, ss3638143981, ss3640366001, ss3640366002, ss3644677326, ss3646500355, ss3652154483, ss3652154484, ss3653852542, ss3682019185, ss3741791956, ss3744436933, ss3744959044, ss3744959045, ss3754343116, ss3772457150, ss3772457151, ss3825053866, ss3825887450, ss3834732215, ss3885136846, ss3934702342, ss3984102668, ss3984718270, ss3985776302, ss3986072009, ss3986703905, ss5221067054, ss5237570267, ss5315865843, ss5425824602, ss5624389590, ss5659545416, ss5799967744, ss5846860253, ss5847783822, ss5848435441, ss5950960229, ss5979496598 | NC_000016.9:89985939:G:A | NC_000016.10:89919531:G:A | (self) |
RCV000015378.29, RCV000015379.29, RCV000247471.1, RCV000278283.7, RCV001707509.1, 92855285, 498997305, 1443714, 34600949, 1125014, 110357354, 242168329, 1622692412, ss244239407, ss275515487, ss2214824161, ss3028280823, ss3699905741, ss3725591483, ss3771903545, ss3819613402, ss3978222948, ss5026622668, ss5236937438, ss5237667445, ss5302107346, ss5314445947, ss5495328307, ss5605329350, ss5776520250, ss5816253031, ss5851702271, ss5900402858 | NC_000016.10:89919531:G:A | NC_000016.10:89919531:G:A | (self) |
ss16697812 | NT_010542.14:1541845:G:A | NC_000016.10:89919531:G:A | (self) |
ss3173167, ss4472755, ss40647778, ss48295622, ss49848775, ss74900011, ss160517278, ss161821088, ss173192590 | NT_010542.15:1546556:G:A | NC_000016.10:89919531:G:A | (self) |
ss1692487435, ss2742271273 | NC_000016.9:89985939:G:C | NC_000016.10:89919531:G:C | (self) |
92855285, ss5605329350 | NC_000016.10:89919531:G:C | NC_000016.10:89919531:G:C |
Publications tab displays PubMed articles citing the variation as a listing of PMID, Title, Author, Year, Journal, ordered by Year, descending.
PMID | Title | Author | Year | Journal |
---|---|---|---|---|
7581459 | Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. | Valverde P et al. | 1995 | Nature genetics |
8944016 | Val92Met variant of the melanocyte stimulating hormone receptor gene. | Xu X et al. | 1996 | Nature genetics |
8990005 | Identification of common polymorphisms in the coding sequence of the human MSH receptor (MCIR) with possible biological effects. | Koppula SV et al. | 1997 | Human mutation |
11487574 | The melanocortin-1-receptor gene is the major freckle gene. | Bastiaens M et al. | 2001 | Human molecular genetics |
16463023 | Identification of novel functional variants of the melanocortin 1 receptor gene originated from Asians. | Nakayama K et al. | 2006 | Human genetics |
17999355 | A genomewide association study of skin pigmentation in a South Asian population. | Stokowski RP et al. | 2007 | American journal of human genetics |
19710684 | Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma. | Duffy DL et al. | 2010 | The Journal of investigative dermatology |
20042077 | Genetic determinants of hair and eye colours in the Scottish and Danish populations. | Mengel-From J et al. | 2009 | BMC genetics |
20158590 | Predicting phenotype from genotype: normal pigmentation. | Valenzuela RK et al. | 2010 | Journal of forensic sciences |
20670983 | The Multiple Sclerosis Severity Score: associations with MC1R single nucleotide polymorphisms and host response to ultraviolet radiation. | Strange RC et al. | 2010 | Multiple sclerosis (Houndmills, Basingstoke, England) |
21052032 | Sequence polymorphisms of MC1R gene and their association with depression and antidepressant response. | Wu GS et al. | 2011 | Psychiatric genetics |
21197618 | Model-based prediction of human hair color using DNA variants. | Branicki W et al. | 2011 | Human genetics |
22629401 | Evaluation of genetic markers as instruments for Mendelian randomization studies on vitamin D. | Berry DJ et al. | 2012 | PloS one |
23744330 | [Association study of MC1R gene polymorphisms with freckles in Chinese Han population from Chengdu]. | Cao L et al. | 2013 | Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics |
25741868 | Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. | Richards S et al. | 2015 | Genetics in medicine |
25945350 | Variants of SCARB1 and VDR Involved in Complex Genetic Interactions May Be Implicated in the Genetic Susceptibility to Clear Cell Renal Cell Carcinoma. | Pośpiech E et al. | 2015 | BioMed research international |
26482799 | MC1R diversity in Northern Island Melanesia has not been constrained by strong purifying selection and cannot explain pigmentation phenotype variation in the region. | Norton HL et al. | 2015 | BMC genetics |
26547235 | Crowdsourced direct-to-consumer genomic analysis of a family quartet. | Corpas M et al. | 2015 | BMC genomics |
26826707 | The Effects of Sequence Variation on Genome-wide NRF2 Binding--New Target Genes and Regulatory SNPs. | Kuosmanen SM et al. | 2016 | Nucleic acids research |
27084066 | MC1R variants in Chinese Han patients with sporadic Parkinson's disease. | Shi CH et al. | 2016 | Neurobiology of aging |
28059796 | A Common Variant in the MC1R Gene (p.V92M) is associated with Alzheimer's Disease Risk. | Tell-Marti G et al. | 2017 | Journal of Alzheimer's disease |
30657907 | A study in scarlet: MC1R as the main predictor of red hair and exemplar of the flip-flop effect. | Zorina-Lichtenwalter K et al. | 2019 | Human molecular genetics |
32835660 | GWAS Analysis of 17,019 Korean Women Identifies the Variants Associated with Facial Pigmented Spots. | Shin JG et al. | 2021 | The Journal of investigative dermatology |
33907405 | Association Analysis of Polymorphisms in BIN1, MC1R, STARD6 and PVRL2 with Mild Cognitive Impairment in Elderly Carrying APOE ε4 Allele. | Wu Y et al. | 2021 | Neuropsychiatric disease and treatment |
34698109 | MC1R Is a Prognostic Marker and Its Expression Is Correlated with MSI in Colorectal Cancer. | Peng L et al. | 2021 | Current issues in molecular biology |
35176104 | Unveiling forensically relevant biogeographic, phenotype and Y-chromosome SNP variation in Pakistani ethnic groups using a customized hybridisation enrichment forensic intelligence panel. | Rauf S et al. | 2022 | PloS one |
35188998 | MC1R diversity and its role in skin pigmentation variation in West Maharashtra, India. | Jonnalagadda M et al. | 2022 | American journal of human biology |
35955479 | Implication of Melanocortin Receptor Genes in the Familial Comorbidity of Type 2 Diabetes and Depression. | Amin M et al. | 2022 | International journal of molecular sciences |
The Flanks tab provides retrieving flanking sequences of a SNP on all molecules that have placements.
Genomic regions, transcripts, and products
Top▲
Help
NCBI Graphical Sequence Viewer display of the genomic region, transcripts and protein products for the reported RefSNP (rs).
Use the zoom option to view the nucleotides around the RefSNP and find other neighboring RefSNPs.
Visit Sequence Viewer for help with navigating inside the display and modifying the selection of displayed data tracks.
NCBI Graphical Sequence Viewer display of the genomic region, transcripts and protein products for the reported RefSNP (rs).
Use the zoom option to view the nucleotides around the RefSNP and find other neighboring RefSNPs.
Visit Sequence Viewer for help with navigating inside the display and modifying the selection of displayed data tracks.