Entry - #256300 - NEPHROTIC SYNDROME, TYPE 1; NPHS1 - OMIM
# 256300

NEPHROTIC SYNDROME, TYPE 1; NPHS1


Alternative titles; symbols

FINNISH CONGENITAL NEPHROSIS; CNF
NEPHROTIC SYNDROME, CONGENITAL


Phenotype-Gene Relationships

Location Phenotype Phenotype
MIM number
Inheritance Phenotype
mapping key
Gene/Locus Gene/Locus
MIM number
19q13.12 Nephrotic syndrome, type 1 256300 AR 3 NPHS1 602716
Clinical Synopsis
 
Phenotypic Series
 

INHERITANCE
- Autosomal recessive
GROWTH
Other
- Growth retardation
GENITOURINARY
Kidneys
- Nephrotic syndrome
- Proteinuria, severe
- Biopsy shows dilated proximal tubules
- Tubular atrophy
- Interstitial fibrosis
- Mesangial cell proliferation
- Diffuse mesangial sclerosis
- Glomerulosclerosis and fibrosis
- Loss of podocyte foot processes
MUSCLE, SOFT TISSUES
- Edema
PRENATAL MANIFESTATIONS
Amniotic Fluid
- Proteinuria
- Increased alpha-fetoprotein
Placenta & Umbilical Cord
- Enlarged placenta
Delivery
- Prematurity
LABORATORY ABNORMALITIES
- Hyperlipidemia
- Hypoalbuminemia
MISCELLANEOUS
- Onset in utero
- Rapidly progressive
- End-stage renal failure in first decade
- Early death without kidney transplant
- Not responsive to steroid treatment
- Some patients may have a milder phenotype
- Incidence of 12.2 per 100,000 in Finland
MOLECULAR BASIS
- Caused by mutation in the nephrin gene (NPHS1, 602716.0001)
Nephrotic syndrome - PS256300 - 26 Entries
Location Phenotype Inheritance Phenotype
mapping key
Phenotype
MIM number
Gene/Locus Gene/Locus
MIM number
1q23.1 Nephrotic syndrome, type 23 AR 3 619201 KIRREL1 607428
1q23.3 Nephrotic syndrome, type 22 AR 3 619155 NOS1AP 605551
1q25.2 Nephrotic syndrome, type 2 AR 3 600995 PDCN 604766
1q42.13 Nephrotic syndrome, type 18 AR 3 618177 NUP133 607613
3p21.31 Nephrotic syndrome, type 5, with or without ocular abnormalities AR 3 614199 LAMB2 150325
6p21.2 Nephrotic syndrome, type 24 AR 3 619263 DAAM2 606627
7q21.11 Nephrotic syndrome, type 15 AR 3 617609 MAGI2 606382
7q33 ?Nephrotic syndrome, type 13 AR 3 616893 NUP205 614352
10q22.1 RENI syndrome AR 3 617575 SGPL1 603729
10q23.33 Nephrotic syndrome, type 3 AR 3 610725 PLCE1 608414
11p13 Nephrotic syndrome, type 4 AD 3 256370 WT1 607102
11p11.2 ?Nephrotic syndrome, type 19 AR 3 618178 NUP160 607614
12p12.3 Nephrotic syndrome, type 6 AR 3 614196 PTPRO 600579
12q14.1 Nephrotic syndrome, type 21 AR 3 618594 AVIL 613397
12q15 Nephrotic syndrome, type 11 AR 3 616730 NUP107 607617
16p13.13 Nephrotic syndrome, type 10 AR 3 615861 EMP2 602334
16q13 Nephrotic syndrome, type 12 AR 3 616892 NUP93 614351
17q22 Nephrotic syndrome, type 7 AR 3 615008 DGKE 601440
17q22 {Hemolytic uremic syndrome, atypical, susceptibility to, 7} AR 3 615008 DGKE 601440
17q25.1 Nephrotic syndrome, type 17 AR 3 618176 NUP85 170285
17q25.3 Nephrotic syndrome, type 8 AR 3 615244 ARHGDIA 601925
19p13.2 Nephrotic syndrome, type 16 AR 3 617783 KANK2 614610
19q13.12 Nephrotic syndrome, type 1 AR 3 256300 NPHS1 602716
19q13.2 Nephrotic syndrome, type 9 AR 3 615573 COQ8B 615567
20q13.33 Nephrotic syndrome, type 26 AR 3 620049 LAMA5 601033
Xq22.3 Nephrotic syndrome, type 20 XL 3 301028 TBC1D8B 301027

TEXT

A number sign (#) is used with this entry because nephrotic syndrome type 1 (NPHS1), also known as Finnish congenital nephrosis, is caused by homozygous or compound heterozygous mutation in the gene encoding nephrin (NPHS1; 602716) on chromosome 19q13.


Description

The nephrotic syndrome is characterized clinically by proteinuria, hypoalbuminemia, hyperlipidemia, and edema. Kidney biopsies show nonspecific histologic changes such as minimal change, focal segmental glomerulosclerosis (FSGS), and diffuse mesangial proliferation. Approximately 20% of affected individuals have an inherited steroid-resistant form and progress to end-stage renal failure (summary by Fuchshuber et al., 1996).

Nephrotic syndrome type 1 (NPHS1) is characterized by prenatal onset of massive proteinuria followed by severe steroid-resistant nephrotic syndrome apparent at birth with rapid progression to end-stage renal failure (Kestila et al., 1998).

Because of confusion in the literature regarding use of the terms 'nephrotic syndrome' and 'focal segmental glomerulosclerosis' (see NOMENCLATURE section), these disorders in OMIM are classified as NPHS or FSGS according to how they were first designated in the literature.

Genetic Heterogeneity of Nephrotic Syndrome and Focal Segmental Glomerulosclerosis

Nephrotic syndrome and FSGS are genetically heterogeneous disorders representing a spectrum of hereditary renal diseases. See also NPHS2 (600995), caused by mutation in the podocin gene (604766); NPHS3 (610725), caused by mutation in the PLCE1 gene (608414); NPHS4 (256370), caused by mutation in the WT1 gene (607102); NPHS5 (614199), caused by mutation in the LAMB2 gene (150325); NPHS6 (614196), caused by mutation in the PTPRO gene (600579); NPHS7 (615008), caused by mutation in the DGKE gene (601440); NPHS8 (615244), caused by mutation in the ARHGDIA gene (601925); NPHS9 (615573), caused by mutation in the COQ8B gene (615567); NPHS10 (615861), caused by mutation in the EMP2 gene (602334); NPHS11 (616730), caused by mutation in the NUP107 gene (607617); NPHS12 (616892), caused by mutation in the NUP93 gene (614351); NPHS13 (616893), caused by mutation in the NUP205 gene (614352); NPHS14 (617575), caused by mutation in the SGPL1 gene (603729); NPHS15 (617609), caused by mutation in the MAGI2 gene (606382); NPHS16 (617783), caused by mutation in the KANK2 gene (614610), NPHS17 (618176), caused by mutation in the NUP85 gene (170285); NPHS18 (618177), caused by mutation in the NUP133 gene (607613); NPHS19 (618178), caused by mutation in the NUP160 gene (607614); NPHS20 (301028), caused by mutation in the TBC1D8B gene (301027); NPHS21 (618594) caused by mutation in the AVIL gene (613397); NPHS22 (619155), caused by mutation in the NOS1AP gene (605551); NPHS23 (619201), caused by mutation in the KIRREL1 gene (607428); NPHS24 (619263), caused by mutation in the DAAM2 gene (606627); and NPHS26 (620049), caused by mutation in the LAMA5 gene (601033).

The symbol NPHS25 has been used as an alternative designation for NPHS21.

See also FSGS1 (603278), caused by mutation in the ACTN4 gene (604638); FSGS2 (603965), caused by mutation in the TRPC6 gene (603652); FSGS3 (607832), associated with variation in the CD2AP gene (604241); FSGS4 (612551), mapped to chromosome 22q12; FSGS5 (613237), caused by mutation in the INF2 gene (610982); FSGS6 (614131), caused by mutation in the MYO1E gene (601479); FSGS7 (616002), caused by mutation in the PAX2 gene (167409); FSGS8 (616032), caused by mutation in the ANLN gene (616027); and FSGS9 (616220), caused by mutation in the CRB2 gene (609720).


Clinical Features

Ongre (1961) described sibs with nephrosis starting in the neonatal period associated with cystic-like dilation of renal tubules.

In a review of Finnish congenital nephrosis, Tryggvason et al. (2006) noted that affected persons have massive proteinuria in utero and the nephrotic syndrome develops soon after birth. Affected children are usually born prematurely, and the weight of the placenta is almost invariably more than 25% of the weight of the child at birth. Hypoalbuminemia, hyperlipidemia, abdominal distention, and edema appear soon after birth. Electron microscopic studies of the kidney show effacement of the podocytes, a narrow slit, and absence of the slit diaphragm. The disorder is lethal; immunosuppressive therapy does not induce a remission. Successful kidney transplant is curative, although there is a risk of recurrence of nephrotic syndrome after transplantation. At least half the patients with recurrence have circulating antinephrin antibodies, which probably have a pathogenic role in the recurrence.

Clinical Variability

Kitamura et al. (2007) reported a Japanese brother and sister, aged 11 years and 4 years, respectively, who had nephrotic syndrome in infancy and achieved partial remission without immunosuppressive therapy, with only mild relapsing proteinuria associated with upper respiratory infections thereafter. The sibs had normal growth, and renal function was preserved in both. Renal biopsies from the brother at ages 2 months and 5 years showed minimal-change histology; electron microscopy revealed diffuse podocyte foot process effacement with no other significant ultrastructural abnormalities. Immunohistochemical staining of the biopsy specimen showed nephrin and podocin in a continuous linear pattern along the glomerular capillary loops with an intensity comparable to control tissue, suggesting that foot process integrity was fairly well preserved. Genetic analysis identified compound heterozygosity for missense mutations in the nephrin gene (602716.0008 and 602716.0009).


Other Features

Twelve percent of 41 infants with congenital nephrotic syndrome described by Mahan et al. (1984) presented with pyloric stenosis.

Grahame-Smith et al. (1988) described twins with Finnish congenital nephrosis. One twin was stillborn; the second presented with a diagnosis of pyloric stenosis.


Inheritance

Nephrotic syndrome type 1 is an autosomal recessive disorder (Kestila et al., 1998).


Diagnosis

Prenatal Diagnosis

Seppala et al. (1976) demonstrated that this disorder can be diagnosed antenatally by elevated levels of alpha-fetoprotein (AFP; 104150) in amniotic fluid.

Morris et al. (1995) described congenital Finnish nephrosis in 2 of 3 successive pregnancies of a nonconsanguineous couple with no known Finnish ancestry. They confirmed the usefulness of amniotic fluid alpha-fetoprotein determination in the prenatal diagnosis, since the fetus loses large amounts of AFP in the urine due to kidney damage.


Clinical Management

NPHS1 is a form of steroid-resistant nephrotic syndrome. Mahan et al. (1984) found that steroids or cytotoxic drugs, alone or in combination, were without benefit in 41 patients with congenital nephrotic syndrome. Intensive medical therapy to control bacterial infections, combined with renal transplantation, was judged to offer a good opportunity for survival with an acceptable quality of life for infants with congenital nephrotic syndrome.


Pathogenesis

Using radioimmunoassay methods, Risteli et al. (1982) found an accumulation of type IV collagen in the renal cortex in renal biopsies from patients with congenital nephrotic syndrome. The accumulation of the collagen was out of proportion to another basement membrane protein, laminin. They interpreted this to mean that metabolism of type IV collagen is disturbed in this disorder. The normal barrier to penetration of the renal glomerular basement membrane by anionic plasma proteins depends in part on the existence of negatively charged sites within the membrane (Cotran and Rennke, 1983).

Vernier et al. (1983) found that normal subjects had anionic sites distributed at regular intervals in the lamina rara externa, with a frequency of 23.8 sites per 1,000 nm length of membrane, whereas 5 patients with congenital nephrosis had 8.9 sites. An in vitro histochemical technique was used in these studies. Vernier et al. (1983) concluded that the basic defect in congenital nephrosis is failure of heparan sulfate-rich anionic sites to develop in the lamina rara externa of the glomerular basement membrane.

Tryggvason et al. (2006) stated that Finnish congenital nephrosis is caused by the absence of functional nephrin, which leads to the absence or malfunction of the slit diaphragm and loss of the size-selective slit filter.


Mapping

Kestila et al. (1994) assigned the locus for congenital nephrotic syndrome of the Finnish type (symbolized CNF by them) to 19q12-q13.1 on the basis of linkage analyses in 17 Finnish families. Although Dressler and Douglass (1992) had shown in transgenic mice that deregulation of the Pax2 gene (167409) resulted in severe kidney abnormalities resembling those found in patients with Finnish nephrosis, Kestila et al. (1994) showed that the disorder in these patients is not linked to the PAX2 gene locus on chromosome 10.

Olsen et al. (1996) assembled a 1-Mb cosmid contig and restriction map spanning the candidate region for NPHS1 on chromosome 19q13.1.

Mannikko et al. (1996) applied haplotype analysis to several non-Finnish CNF families to determine whether the same genetic locus is involved in these families as in Finnish families. The results indicated linkage to the 19q13.1 region. It was also observed that, in most cases, alleles typically found on CNF chromosomes of Finnish families were also found on CNF chromosomes of non-Finnish families from North America and Europe.


Population Genetics

Nephrotic syndrome type 1 has a relatively high frequency in Finland (Norio et al., 1964), where the incidence is about 1 in 8,000 (Norio, 1980). A large series of cases was collected by Hallman and Hjelt (1959) in Finland and by Vernier et al. (1957) and Worthen et al. (1959) in Minnesota, where many persons of Finnish extraction live. Worthen et al. (1959) were impressed with the high frequency of maternal toxemia in these cases.

Nine of 41 patients (22%) with congenital nephrotic syndrome studied by Mahan et al. (1984) in Minneapolis, Minnesota, were shown to have Finnish ancestry.

Bolk et al. (1999) observed a high incidence of NPHS1 in the Old Order Mennonites in Lancaster County, Pennsylvania. They identified 26 cases, dating from the 1950s. All but 1 of the cases occurred in a subgroup known as the Groffdale Conference Mennonites, formed as a result of a schism in the Weaverland Conference Mennonites in 1927. Bolk et al. (1999) estimated the frequency to be about 1 per 500 live births, giving an incidence 20 times greater than that observed in Finland and predicting that approximately 8% of Groffdale Mennonites are carriers of the NPHS1-causing allele. There was no known Finnish ancestry.


Molecular Genetics

By use of positional cloning strategies, Kestila et al. (1998) isolated the gene responsible for NPHS1 and identified pathogenic mutations in Finnish patients with congenital nephrosis. The most common Finnish mutation was a deletion of 2 nucleotides in exon 2 (602716.0001), resulting in a frameshift and a truncated protein. The predicted nephrin protein belongs to the immunoglobulin family of cell adhesion molecules and is specifically expressed in renal glomeruli.

Bolk et al. (1999) confirmed the role of nephrin in NPHS1, showed that a major mutation (602716.0005) was shared by families with nephrosis that are in the Groffdale Conference, and showed that this mutation was most likely of recent origin, uncovered by inbreeding and amplified by genetic drift. The data suggested that the major Mennonite mutation probably predated the split from the Weaverland Conference, since 1 proband in the previous group was a double heterozygote with 1 copy of the major nephrin mutation and a second novel mutation (602716.0006), possibly contributed through a non-Mennonite lineage. Puffenberger (2003) published data on the surname distribution in the Weaverland and Groffdale Mennonite groups indicating appreciable differences.

Frishberg et al. (2007) identified homozygosity or compound heterozygosity for 3 novel mutations in the NPHS1 gene in 12 children with congenital nephrotic syndrome living in a village near Jerusalem. All were descendants of 1 Muslim family with high inbreeding.

Associations Pending Confirmation

For discussion of a possible association between nephrotic syndrome and variation in the XPO5 gene, see 607845.0001.

For discussion of a possible association between nephrotic syndrome and variation in the FAT1 gene, see 600976.0001.

For discussion of a possible association between nephrotic syndrome and variation in the KANK1 gene, see 607704.0002.

For discussion of a possible association between nephrotic syndrome and variation in the KANK4 gene, see 614612.0001.

For discussion of a possible association between nephrotic syndrome and variation in the GAPVD1 gene, see 611714.

For discussion of a possible association between nephrotic syndrome and variation in the ANKFY1 gene, see 607927.


Nomenclature

In the literature, use of the clinical term 'nephrotic syndrome' (NPHS) and the pathologic term 'focal segmental glomerulosclerosis' (FSGS) to refer to the same disease entity has generated confusion in the naming and classification of similar disorders. In OMIM, these disorders are classified as NPHS or FSGS according to how they were first designated in the literature. It is important to recognize that FSGS is a histologic pattern of renal injury: some patients with FSGS on biopsy have nephrotic syndrome, whereas others have only mild proteinuria. NPHS and FSGS represent a spectrum of hereditary renal diseases of the podocyte (see reviews by Pollak, 2002; Meyrier, 2005; Caridi et al., 2010; Hildebrandt, 2010).


History

Finnish congenital nephrosis is only one of many disorders, numbering more than 30, that are absent or infrequent elsewhere and exist in the Finnish population, sometimes at high carrier frequencies. Conversely, recessive autosomal diseases common in other European populations, such as cystic fibrosis (219700), phenylketonuria (261600), or galactosemia (230400), are rare or absent in Finland. Sajantila et al. (1996) noted that single mutations embedded in chromosomal regions exhibiting linkage disequilibrium have been demonstrated in the case of several of these 'Finnish' genetic disorders. In contrast, outside Finland, the rare cases of these disorders are usually due to several different mutations. Furthermore, many of the disorders occur in locally restricted areas in Finland. Sajantila et al. (1996) found that Y-chromosomal haplotypes in several European populations revealed an almost monomorphic pattern in the Finns, whereas Y-chromosomal diversity was significantly higher in other populations. Furthermore, analyses of nucleotide positions in the mitochondrial control region that evolves slowly showed a decrease in genetic diversity in Finns. Thus, relatively few men and women contributed to the genetic lineages that today survive in the Finnish population. This is likely to have caused the 'Finnish disease heritage,' i.e., the occurrence of several genetic diseases in the Finnish population that are rare elsewhere. A preliminary analysis of the mitochondrial mutations that had accumulated subsequent to the bottleneck suggested that it occurred about 4,000 years ago, presumably when populations using agriculture and animal husbandry arrived in Finland. The results suggested that genetic founder effects have played a role also in the biologic history of Estonians and the Basques.

Fournier et al. (1963) observed a family in which 4 of 5 children had clinical and/or autopsy evidence of pulmonary stenosis and congenital nephrotic syndrome (see 265600). Zunin and Soave (1964) observed nephrosis in association with nephroblastoma in 2 sibs. In one of them, removal of the tumor was accompanied by amelioration of the nephrotic syndrome.


REFERENCES

  1. Ahvenainen, E. K., Hallman, N., Hjelt, L. Nephrotic syndrome in newborn and young infants. Ann. Paediat. Fenn. 2: 227-241, 1956. [PubMed: 13373132, related citations]

  2. Autio-Harmainen, H., Rapola, J. The thickness of the glomerular basement membrane in congenital nephrotic syndrome of the Finnish type. Nephron 34: 48-50, 1983. [PubMed: 6855995, related citations] [Full Text]

  3. Bader, P. I., Grove, J., Trygstad, C. W., Nance, W. E. Familial nephrotic syndrome. Am. J. Med. 56: 34-43, 1974. [PubMed: 4129268, related citations] [Full Text]

  4. Bolk, S., Puffenberger, E. G., Hudson, J., Morton, D. H., Chakravarti, A. Elevated frequency and allelic heterogeneity of congenital nephrotic syndrome, Finnish type, in the Old Order Mennonites. (Letter) Am. J. Hum. Genet. 65: 1785-1790, 1999. [PubMed: 10577936, images, related citations] [Full Text]

  5. Caridi, G., Trivelli, A., Sanna-Cherchi, S., Perfumo, F., Ghiggeri, G. M. Familial forms of nephrotic syndrome. Pediat. Nephrol. 25: 241-252, 2010. [PubMed: 19066979, related citations] [Full Text]

  6. Cotran, R. S., Rennke, H. G. Anionic sites and the mechanisms of proteinuria. (Editorial) New Eng. J. Med. 309: 1050-1051, 1983. [PubMed: 6621641, related citations] [Full Text]

  7. Dressler, G. R., Douglass, E. C. Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc. Nat. Acad. Sci. 89: 1179-1183, 1992. [PubMed: 1311084, related citations] [Full Text]

  8. Fournier, A., Paget, M., Pauli, A., Devin, P. Syndromes nephrotiques familiaux. Syndrome nephrotique associe a une cardiopathie congenitale chez quatre soeurs. Pediatrie 18: 677-685, 1963. [PubMed: 14057981, related citations]

  9. Frishberg, Y., Ben-Neriah, Z., Suvanto, M., Rinat, C., Mannikko, M., Feinstein, S., Becker-Cohen, R., Jalanko, H., Zlotogora, J., Kestila, M. Misleading findings of homozygosity mapping resulting from three novel mutations in NPHS1 encoding nephrin in a highly inbred community. Genet. Med. 9: 180-184, 2007. [PubMed: 17413422, related citations] [Full Text]

  10. Fuchshuber, A., Janssen, F., Gribouval, O., Niaudet, P., Kamoun, A., Antignac, C. Presymptomatic diagnosis of familial steroid-resistant nephrotic syndrome. (Letter) Lancet 347: 1050-1051, 1996. [PubMed: 8606597, related citations] [Full Text]

  11. Giles, H. M., Pugh, R. C. B., Darmady, E. M., Stranack, F., Woolf, L. I. The nephrotic syndrome in early infancy: a report of 3 cases. Arch. Dis. Child. 32: 167-180, 1957. [PubMed: 13445295, related citations] [Full Text]

  12. Grahame-Smith, H. N., Ward, P. S., Jones, R. D. Finnish type congenital nephrotic syndrome in twins: presentation with pyloric stenosis. J. Roy. Soc. Med. 81: 358 only, 1988. [PubMed: 3404530, related citations] [Full Text]

  13. Hallman, N., Hjelt, L. Congenital nephrotic syndrome. J. Pediat. 55: 152-162, 1959. [PubMed: 13673354, related citations] [Full Text]

  14. Hallman, N., Norio, R., Kouvalainen, K. Main features of the congenital nephrotic syndrome. Acta Paediat. Scand. 172 (suppl.): 75-78, 1967. [PubMed: 6047603, related citations] [Full Text]

  15. Hildebrandt, F. Genetic kidney diseases. Lancet 375: 1287-1295, 2010. [PubMed: 20382325, related citations] [Full Text]

  16. Huttunen, N.-P. Congenital nephrotic syndrome of Finnish type: study of 75 patients. Arch. Dis. Child. 51: 344-348, 1976. [PubMed: 938078, related citations] [Full Text]

  17. Inferrera, C., Barresi, G., Chimicata, S., De Luca, F., Baviera, G., Gulli, V., Gemelli, M. Morphologic considerations on the placenta in congenital nephrotic syndrome of Finnish type. Virchows Arch. A Path. Anat. Histol. 389: 13-26, 1980. [PubMed: 7456320, related citations] [Full Text]

  18. Kaukinen, A., Kuusniemi, A.-M., Helin, H., Jalanko, H. Changes in glomerular mesangium in kidneys with congenital nephrotic syndrome of the Finnish type. Pediat. Nephrol. 25: 867-875, 2010. [PubMed: 20020158, related citations] [Full Text]

  19. Kestila, M., Lenkkeri, U., Mannikko, M., Lamerdin, J., McCready, P., Putaala, H., Ruotsalainen, V., Morita, T., Nissinen, M., Herva, R., Kashtan, C. E., Peltonen, L., Holmberg, C., Olsen, A., Tryggvason, K. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Molec. Cell 1: 575-582, 1998. [PubMed: 9660941, related citations] [Full Text]

  20. Kestila, M., Mannikko, M., Holmberg, C., Gyapay, G., Weissenbach, J., Savolainen, E.-R., Peltonen, L., Tryggvason, K. Congenital nephrotic syndrome of the Finnish type maps to the long arm of chromosome 19. Am. J. Hum. Genet. 54: 757-764, 1994. [PubMed: 8178817, related citations]

  21. Kestila, M., Mannikko, M., Holmberg, C., Tryggvason, K., Peltonen, L. Congenital nephrotic syndrome of the Finnish type is not associated with the Pax-2 gene despite the promising transgenic animal model. Genomics 19: 570-572, 1994. [PubMed: 8188301, related citations] [Full Text]

  22. Kitamura, A., Tsukaguchi, H., Hiramoto, R., Shono, A., Doi, T., Kagami, S., Iijima, K. A familial childhood-onset relapsing nephrotic syndrome. Kidney Int. 71: 946-951, 2007. [PubMed: 17290294, related citations] [Full Text]

  23. Mahan, J. D., Mauer, S. M., Sibley, R. K., Vernier, R. L. Congenital nephrotic syndrome: evolution of medical management and results of renal transplantation. J. Pediat. 105: 549-557, 1984. [PubMed: 6384451, related citations] [Full Text]

  24. Mannikko, M., Lenkkeri, U., Kashtan, C. E., Kestila, M., Holmberg, C., Tryggvason, K. Haplotype analysis of congenital nephrotic syndrome of the Finnish type in non-Finnish families. J. Am. Soc. Nephrol. 7: 2700-2703, 1996. [PubMed: 8989752, related citations] [Full Text]

  25. Meyrier, A. Mechanisms of disease: focal segmental glomerulosclerosis. Nature Clin. Pract. Nephrol. 1: 44-54, 2005. [PubMed: 16932363, related citations] [Full Text]

  26. Morgan, G., Postlethwaite, R. J., Lendon, M., Houston, I. B., Savage, J. M. Postural deformities in congenital nephrotic syndrome. Arch. Dis. Child. 56: 959-962, 1981. [PubMed: 7332344, related citations] [Full Text]

  27. Morris, J., Ellwood, D., Kennedy, D., Knight, J. Amniotic alpha-fetoprotein in the prenatal diagnosis of congenital nephrotic syndrome of the Finnish type. Prenatal Diag. 15: 482-485, 1995. [PubMed: 7543998, related citations] [Full Text]

  28. Norio, R., Hjelt, L., Hallman, N. Congenital nephrotic syndrome: an inherited disease? A preliminary report. Ann. Paediat. Fenn. 10: 223-227, 1964. [PubMed: 14166251, related citations]

  29. Norio, R. Heredity in the congenital nephrotic syndrome: a genetic study of 57 Finnish families with a review of reported cases. Ann. Paediat. Fenn. 12 (suppl. 27): 1-94, 1966. [PubMed: 5915041, related citations]

  30. Norio, R. Congenital nephrotic syndrome of Finnish type (CNF). In: Eriksson, A. W.; Forsius, H. R.; Nevanlinna, H. R.; Workman, P. L.; Norio, R. K.: Population Structure and Genetic Disorders. New York: Academic Press (pub.) 1980. Pp. 600-604.

  31. Olsen, A. S., Georgescu, A., Johnson, S., Carrano, A. V. Assembly of a 1-Mb restriction-mapped cosmid contig spanning the candidate region for Finnish congenital nephrosis (NPHS1) in 19q13.1. Genomics 34: 223-225, 1996. [PubMed: 8661053, related citations] [Full Text]

  32. Ongre, A. A. Nephrotic syndrome with cyst-like dilations of renal tubules: report of 2 cases in siblings in early infancy. Acta Path. Microbiol. Scand. 51: 1-8, 1961. [PubMed: 13730979, related citations] [Full Text]

  33. Pollak, M. R. Inherited podocytopathies: FSGS and nephrotic syndrome from a genetic viewpoint. J. Am. Soc. Nephrol. 13: 3016-3023, 2002. [PubMed: 12444222, related citations] [Full Text]

  34. Puffenberger, E. G. Genetic heritage of the Old Order Mennonites of southeastern Pennsylvania. Am. J. Med. Genet. 121C: 18-31, 2003. [PubMed: 12888983, related citations] [Full Text]

  35. Risteli, L., Autio-Harmainen, H., Huttunen, N.-P., Risteli, J. Slow accumulation of basement membrane collagen in kidney cortex in congenital nephrotic syndrome. Lancet 319: 712-714, 1982. Note: Originally Volume I. [PubMed: 6122009, related citations] [Full Text]

  36. Roy, S., Pitcock, J. A. Idiopathic nephrosis in identical twins. Am. J. Dis. Child. 121: 428-430, 1971. [PubMed: 5091537, related citations] [Full Text]

  37. Sajantila, A., Salem, A.-H., Savolainen, P., Bauer, K., Gierig, C., Paabo, S. Paternal and maternal DNA lineages reveal a bottleneck in the founding of the Finnish population. Proc. Nat. Acad. Sci. 93: 12035-12039, 1996. [PubMed: 8876258, related citations] [Full Text]

  38. Seppala, M., Rapola, J., Huttunen, N.-P., Aula, P., Karjalainen, O., Ruoslahti, E. Congenital nephrotic syndrome: prenatal diagnosis and genetic counselling by estimation of amniotic-fluid and maternal serum alpha-fetoprotein. Lancet 308: 123-125, 1976. Note: Originally Volume II. [PubMed: 59186, related citations] [Full Text]

  39. Tryggvason, K., Patrakka, J., Wartiovaara, J. Hereditary proteinuria syndromes and mechanisms of proteinuria. New Eng. J. Med. 354: 1387-1401, 2006. [PubMed: 16571882, related citations] [Full Text]

  40. Vernier, R. L., Brunson, J., Good, R. A. Studies on familial nephrosis. I. Clinical and pathologic study of four cases in a single family. Am. J. Dis. Child. 93: 469-485, 1957. [PubMed: 13410383, related citations]

  41. Vernier, R. L., Klein, D. J., Sisson, S. P., Mahan, J. D., Oegema, T. R., Brown, D. M. Heparan sulfate-rich anionic sites in the human glomerular basement membrane. New Eng. J. Med. 309: 1001-1009, 1983. [PubMed: 6225948, related citations] [Full Text]

  42. Worthen, H. G., Vernier, R. L., Good, R. A. Infantile nephrosis: clinical, biochemical, and morphologic studies of the syndrome. Am. J. Dis. Child. 98: 731-748, 1959. [PubMed: 13845999, related citations]

  43. Zunin, C., Soave, F. Association of nephrotic syndrome and nephroblastoma in siblings. Ann. Paediat. (Basel) 203: 29-38, 1964. [PubMed: 14186696, related citations]


Cassandra L. Kniffin - updated : 02/23/2021
Cassandra L. Kniffin - updated : 11/27/2017
Cassandra L. Kniffin - updated : 4/5/2016
Cassandra L. Kniffin - updated : 10/8/2010
Marla J. F. O'Neill - updated : 7/28/2010
Victor A. McKusick - updated : 4/10/2006
Victor A. McKusick - updated : 8/21/2003
Victor A. McKusick - updated : 12/28/1999
Stylianos E. Antonarakis - updated : 6/12/1998
Victor A. McKusick - edited : 11/26/1997
Creation Date:
Victor A. McKusick : 6/4/1986
alopez : 09/26/2022
ckniffin : 09/21/2022
carol : 06/23/2022
alopez : 06/22/2022
carol : 04/08/2021
ckniffin : 04/06/2021
alopez : 03/02/2021
alopez : 03/02/2021
alopez : 03/02/2021
ckniffin : 02/24/2021
ckniffin : 02/23/2021
alopez : 01/25/2021
ckniffin : 01/15/2021
carol : 09/25/2019
ckniffin : 09/23/2019
carol : 07/11/2019
ckniffin : 07/05/2019
carol : 11/12/2018
ckniffin : 11/08/2018
carol : 11/27/2017
ckniffin : 11/27/2017
carol : 11/17/2017
ckniffin : 11/16/2017
carol : 08/09/2017
ckniffin : 08/08/2017
carol : 07/21/2017
ckniffin : 07/20/2017
carol : 11/07/2016
alopez : 09/16/2016
carol : 04/26/2016
alopez : 4/6/2016
ckniffin : 4/5/2016
carol : 1/11/2016
ckniffin : 1/7/2016
carol : 6/26/2014
ckniffin : 6/24/2014
carol : 12/19/2013
ckniffin : 12/18/2013
carol : 5/23/2013
ckniffin : 5/22/2013
carol : 1/9/2013
ckniffin : 1/9/2013
carol : 9/6/2011
ckniffin : 8/31/2011
carol : 10/25/2010
ckniffin : 10/8/2010
wwang : 7/28/2010
terry : 7/28/2010
carol : 7/9/2010
terry : 3/13/2009
carol : 1/25/2007
alopez : 4/11/2006
terry : 4/10/2006
tkritzer : 9/9/2003
terry : 8/21/2003
mgross : 12/28/1999
carol : 6/12/1998
jenny : 12/2/1997
terry : 11/26/1997
terry : 2/12/1997
jenny : 12/9/1996
terry : 11/22/1996
terry : 6/26/1996
terry : 6/21/1996
terry : 9/13/1995
carol : 1/25/1995
davew : 7/6/1994
mimadm : 4/18/1994
supermim : 3/17/1992
supermim : 3/20/1990

# 256300

NEPHROTIC SYNDROME, TYPE 1; NPHS1


Alternative titles; symbols

FINNISH CONGENITAL NEPHROSIS; CNF
NEPHROTIC SYNDROME, CONGENITAL


SNOMEDCT: 197601003;   ORPHA: 839;   DO: 0080390;  


Phenotype-Gene Relationships

Location Phenotype Phenotype
MIM number
Inheritance Phenotype
mapping key
Gene/Locus Gene/Locus
MIM number
19q13.12 Nephrotic syndrome, type 1 256300 Autosomal recessive 3 NPHS1 602716

TEXT

A number sign (#) is used with this entry because nephrotic syndrome type 1 (NPHS1), also known as Finnish congenital nephrosis, is caused by homozygous or compound heterozygous mutation in the gene encoding nephrin (NPHS1; 602716) on chromosome 19q13.


Description

The nephrotic syndrome is characterized clinically by proteinuria, hypoalbuminemia, hyperlipidemia, and edema. Kidney biopsies show nonspecific histologic changes such as minimal change, focal segmental glomerulosclerosis (FSGS), and diffuse mesangial proliferation. Approximately 20% of affected individuals have an inherited steroid-resistant form and progress to end-stage renal failure (summary by Fuchshuber et al., 1996).

Nephrotic syndrome type 1 (NPHS1) is characterized by prenatal onset of massive proteinuria followed by severe steroid-resistant nephrotic syndrome apparent at birth with rapid progression to end-stage renal failure (Kestila et al., 1998).

Because of confusion in the literature regarding use of the terms 'nephrotic syndrome' and 'focal segmental glomerulosclerosis' (see NOMENCLATURE section), these disorders in OMIM are classified as NPHS or FSGS according to how they were first designated in the literature.

Genetic Heterogeneity of Nephrotic Syndrome and Focal Segmental Glomerulosclerosis

Nephrotic syndrome and FSGS are genetically heterogeneous disorders representing a spectrum of hereditary renal diseases. See also NPHS2 (600995), caused by mutation in the podocin gene (604766); NPHS3 (610725), caused by mutation in the PLCE1 gene (608414); NPHS4 (256370), caused by mutation in the WT1 gene (607102); NPHS5 (614199), caused by mutation in the LAMB2 gene (150325); NPHS6 (614196), caused by mutation in the PTPRO gene (600579); NPHS7 (615008), caused by mutation in the DGKE gene (601440); NPHS8 (615244), caused by mutation in the ARHGDIA gene (601925); NPHS9 (615573), caused by mutation in the COQ8B gene (615567); NPHS10 (615861), caused by mutation in the EMP2 gene (602334); NPHS11 (616730), caused by mutation in the NUP107 gene (607617); NPHS12 (616892), caused by mutation in the NUP93 gene (614351); NPHS13 (616893), caused by mutation in the NUP205 gene (614352); NPHS14 (617575), caused by mutation in the SGPL1 gene (603729); NPHS15 (617609), caused by mutation in the MAGI2 gene (606382); NPHS16 (617783), caused by mutation in the KANK2 gene (614610), NPHS17 (618176), caused by mutation in the NUP85 gene (170285); NPHS18 (618177), caused by mutation in the NUP133 gene (607613); NPHS19 (618178), caused by mutation in the NUP160 gene (607614); NPHS20 (301028), caused by mutation in the TBC1D8B gene (301027); NPHS21 (618594) caused by mutation in the AVIL gene (613397); NPHS22 (619155), caused by mutation in the NOS1AP gene (605551); NPHS23 (619201), caused by mutation in the KIRREL1 gene (607428); NPHS24 (619263), caused by mutation in the DAAM2 gene (606627); and NPHS26 (620049), caused by mutation in the LAMA5 gene (601033).

The symbol NPHS25 has been used as an alternative designation for NPHS21.

See also FSGS1 (603278), caused by mutation in the ACTN4 gene (604638); FSGS2 (603965), caused by mutation in the TRPC6 gene (603652); FSGS3 (607832), associated with variation in the CD2AP gene (604241); FSGS4 (612551), mapped to chromosome 22q12; FSGS5 (613237), caused by mutation in the INF2 gene (610982); FSGS6 (614131), caused by mutation in the MYO1E gene (601479); FSGS7 (616002), caused by mutation in the PAX2 gene (167409); FSGS8 (616032), caused by mutation in the ANLN gene (616027); and FSGS9 (616220), caused by mutation in the CRB2 gene (609720).


Clinical Features

Ongre (1961) described sibs with nephrosis starting in the neonatal period associated with cystic-like dilation of renal tubules.

In a review of Finnish congenital nephrosis, Tryggvason et al. (2006) noted that affected persons have massive proteinuria in utero and the nephrotic syndrome develops soon after birth. Affected children are usually born prematurely, and the weight of the placenta is almost invariably more than 25% of the weight of the child at birth. Hypoalbuminemia, hyperlipidemia, abdominal distention, and edema appear soon after birth. Electron microscopic studies of the kidney show effacement of the podocytes, a narrow slit, and absence of the slit diaphragm. The disorder is lethal; immunosuppressive therapy does not induce a remission. Successful kidney transplant is curative, although there is a risk of recurrence of nephrotic syndrome after transplantation. At least half the patients with recurrence have circulating antinephrin antibodies, which probably have a pathogenic role in the recurrence.

Clinical Variability

Kitamura et al. (2007) reported a Japanese brother and sister, aged 11 years and 4 years, respectively, who had nephrotic syndrome in infancy and achieved partial remission without immunosuppressive therapy, with only mild relapsing proteinuria associated with upper respiratory infections thereafter. The sibs had normal growth, and renal function was preserved in both. Renal biopsies from the brother at ages 2 months and 5 years showed minimal-change histology; electron microscopy revealed diffuse podocyte foot process effacement with no other significant ultrastructural abnormalities. Immunohistochemical staining of the biopsy specimen showed nephrin and podocin in a continuous linear pattern along the glomerular capillary loops with an intensity comparable to control tissue, suggesting that foot process integrity was fairly well preserved. Genetic analysis identified compound heterozygosity for missense mutations in the nephrin gene (602716.0008 and 602716.0009).


Other Features

Twelve percent of 41 infants with congenital nephrotic syndrome described by Mahan et al. (1984) presented with pyloric stenosis.

Grahame-Smith et al. (1988) described twins with Finnish congenital nephrosis. One twin was stillborn; the second presented with a diagnosis of pyloric stenosis.


Inheritance

Nephrotic syndrome type 1 is an autosomal recessive disorder (Kestila et al., 1998).


Diagnosis

Prenatal Diagnosis

Seppala et al. (1976) demonstrated that this disorder can be diagnosed antenatally by elevated levels of alpha-fetoprotein (AFP; 104150) in amniotic fluid.

Morris et al. (1995) described congenital Finnish nephrosis in 2 of 3 successive pregnancies of a nonconsanguineous couple with no known Finnish ancestry. They confirmed the usefulness of amniotic fluid alpha-fetoprotein determination in the prenatal diagnosis, since the fetus loses large amounts of AFP in the urine due to kidney damage.


Clinical Management

NPHS1 is a form of steroid-resistant nephrotic syndrome. Mahan et al. (1984) found that steroids or cytotoxic drugs, alone or in combination, were without benefit in 41 patients with congenital nephrotic syndrome. Intensive medical therapy to control bacterial infections, combined with renal transplantation, was judged to offer a good opportunity for survival with an acceptable quality of life for infants with congenital nephrotic syndrome.


Pathogenesis

Using radioimmunoassay methods, Risteli et al. (1982) found an accumulation of type IV collagen in the renal cortex in renal biopsies from patients with congenital nephrotic syndrome. The accumulation of the collagen was out of proportion to another basement membrane protein, laminin. They interpreted this to mean that metabolism of type IV collagen is disturbed in this disorder. The normal barrier to penetration of the renal glomerular basement membrane by anionic plasma proteins depends in part on the existence of negatively charged sites within the membrane (Cotran and Rennke, 1983).

Vernier et al. (1983) found that normal subjects had anionic sites distributed at regular intervals in the lamina rara externa, with a frequency of 23.8 sites per 1,000 nm length of membrane, whereas 5 patients with congenital nephrosis had 8.9 sites. An in vitro histochemical technique was used in these studies. Vernier et al. (1983) concluded that the basic defect in congenital nephrosis is failure of heparan sulfate-rich anionic sites to develop in the lamina rara externa of the glomerular basement membrane.

Tryggvason et al. (2006) stated that Finnish congenital nephrosis is caused by the absence of functional nephrin, which leads to the absence or malfunction of the slit diaphragm and loss of the size-selective slit filter.


Mapping

Kestila et al. (1994) assigned the locus for congenital nephrotic syndrome of the Finnish type (symbolized CNF by them) to 19q12-q13.1 on the basis of linkage analyses in 17 Finnish families. Although Dressler and Douglass (1992) had shown in transgenic mice that deregulation of the Pax2 gene (167409) resulted in severe kidney abnormalities resembling those found in patients with Finnish nephrosis, Kestila et al. (1994) showed that the disorder in these patients is not linked to the PAX2 gene locus on chromosome 10.

Olsen et al. (1996) assembled a 1-Mb cosmid contig and restriction map spanning the candidate region for NPHS1 on chromosome 19q13.1.

Mannikko et al. (1996) applied haplotype analysis to several non-Finnish CNF families to determine whether the same genetic locus is involved in these families as in Finnish families. The results indicated linkage to the 19q13.1 region. It was also observed that, in most cases, alleles typically found on CNF chromosomes of Finnish families were also found on CNF chromosomes of non-Finnish families from North America and Europe.


Population Genetics

Nephrotic syndrome type 1 has a relatively high frequency in Finland (Norio et al., 1964), where the incidence is about 1 in 8,000 (Norio, 1980). A large series of cases was collected by Hallman and Hjelt (1959) in Finland and by Vernier et al. (1957) and Worthen et al. (1959) in Minnesota, where many persons of Finnish extraction live. Worthen et al. (1959) were impressed with the high frequency of maternal toxemia in these cases.

Nine of 41 patients (22%) with congenital nephrotic syndrome studied by Mahan et al. (1984) in Minneapolis, Minnesota, were shown to have Finnish ancestry.

Bolk et al. (1999) observed a high incidence of NPHS1 in the Old Order Mennonites in Lancaster County, Pennsylvania. They identified 26 cases, dating from the 1950s. All but 1 of the cases occurred in a subgroup known as the Groffdale Conference Mennonites, formed as a result of a schism in the Weaverland Conference Mennonites in 1927. Bolk et al. (1999) estimated the frequency to be about 1 per 500 live births, giving an incidence 20 times greater than that observed in Finland and predicting that approximately 8% of Groffdale Mennonites are carriers of the NPHS1-causing allele. There was no known Finnish ancestry.


Molecular Genetics

By use of positional cloning strategies, Kestila et al. (1998) isolated the gene responsible for NPHS1 and identified pathogenic mutations in Finnish patients with congenital nephrosis. The most common Finnish mutation was a deletion of 2 nucleotides in exon 2 (602716.0001), resulting in a frameshift and a truncated protein. The predicted nephrin protein belongs to the immunoglobulin family of cell adhesion molecules and is specifically expressed in renal glomeruli.

Bolk et al. (1999) confirmed the role of nephrin in NPHS1, showed that a major mutation (602716.0005) was shared by families with nephrosis that are in the Groffdale Conference, and showed that this mutation was most likely of recent origin, uncovered by inbreeding and amplified by genetic drift. The data suggested that the major Mennonite mutation probably predated the split from the Weaverland Conference, since 1 proband in the previous group was a double heterozygote with 1 copy of the major nephrin mutation and a second novel mutation (602716.0006), possibly contributed through a non-Mennonite lineage. Puffenberger (2003) published data on the surname distribution in the Weaverland and Groffdale Mennonite groups indicating appreciable differences.

Frishberg et al. (2007) identified homozygosity or compound heterozygosity for 3 novel mutations in the NPHS1 gene in 12 children with congenital nephrotic syndrome living in a village near Jerusalem. All were descendants of 1 Muslim family with high inbreeding.

Associations Pending Confirmation

For discussion of a possible association between nephrotic syndrome and variation in the XPO5 gene, see 607845.0001.

For discussion of a possible association between nephrotic syndrome and variation in the FAT1 gene, see 600976.0001.

For discussion of a possible association between nephrotic syndrome and variation in the KANK1 gene, see 607704.0002.

For discussion of a possible association between nephrotic syndrome and variation in the KANK4 gene, see 614612.0001.

For discussion of a possible association between nephrotic syndrome and variation in the GAPVD1 gene, see 611714.

For discussion of a possible association between nephrotic syndrome and variation in the ANKFY1 gene, see 607927.


Nomenclature

In the literature, use of the clinical term 'nephrotic syndrome' (NPHS) and the pathologic term 'focal segmental glomerulosclerosis' (FSGS) to refer to the same disease entity has generated confusion in the naming and classification of similar disorders. In OMIM, these disorders are classified as NPHS or FSGS according to how they were first designated in the literature. It is important to recognize that FSGS is a histologic pattern of renal injury: some patients with FSGS on biopsy have nephrotic syndrome, whereas others have only mild proteinuria. NPHS and FSGS represent a spectrum of hereditary renal diseases of the podocyte (see reviews by Pollak, 2002; Meyrier, 2005; Caridi et al., 2010; Hildebrandt, 2010).


History

Finnish congenital nephrosis is only one of many disorders, numbering more than 30, that are absent or infrequent elsewhere and exist in the Finnish population, sometimes at high carrier frequencies. Conversely, recessive autosomal diseases common in other European populations, such as cystic fibrosis (219700), phenylketonuria (261600), or galactosemia (230400), are rare or absent in Finland. Sajantila et al. (1996) noted that single mutations embedded in chromosomal regions exhibiting linkage disequilibrium have been demonstrated in the case of several of these 'Finnish' genetic disorders. In contrast, outside Finland, the rare cases of these disorders are usually due to several different mutations. Furthermore, many of the disorders occur in locally restricted areas in Finland. Sajantila et al. (1996) found that Y-chromosomal haplotypes in several European populations revealed an almost monomorphic pattern in the Finns, whereas Y-chromosomal diversity was significantly higher in other populations. Furthermore, analyses of nucleotide positions in the mitochondrial control region that evolves slowly showed a decrease in genetic diversity in Finns. Thus, relatively few men and women contributed to the genetic lineages that today survive in the Finnish population. This is likely to have caused the 'Finnish disease heritage,' i.e., the occurrence of several genetic diseases in the Finnish population that are rare elsewhere. A preliminary analysis of the mitochondrial mutations that had accumulated subsequent to the bottleneck suggested that it occurred about 4,000 years ago, presumably when populations using agriculture and animal husbandry arrived in Finland. The results suggested that genetic founder effects have played a role also in the biologic history of Estonians and the Basques.

Fournier et al. (1963) observed a family in which 4 of 5 children had clinical and/or autopsy evidence of pulmonary stenosis and congenital nephrotic syndrome (see 265600). Zunin and Soave (1964) observed nephrosis in association with nephroblastoma in 2 sibs. In one of them, removal of the tumor was accompanied by amelioration of the nephrotic syndrome.


See Also:

Ahvenainen et al. (1956); Autio-Harmainen and Rapola (1983); Bader et al. (1974); Giles et al. (1957); Hallman et al. (1967); Huttunen (1976); Inferrera et al. (1980); Kaukinen et al. (2010); Morgan et al. (1981); Norio (1966); Roy and Pitcock (1971)

REFERENCES

  1. Ahvenainen, E. K., Hallman, N., Hjelt, L. Nephrotic syndrome in newborn and young infants. Ann. Paediat. Fenn. 2: 227-241, 1956. [PubMed: 13373132]

  2. Autio-Harmainen, H., Rapola, J. The thickness of the glomerular basement membrane in congenital nephrotic syndrome of the Finnish type. Nephron 34: 48-50, 1983. [PubMed: 6855995] [Full Text: https://doi.org/10.1159/000182978]

  3. Bader, P. I., Grove, J., Trygstad, C. W., Nance, W. E. Familial nephrotic syndrome. Am. J. Med. 56: 34-43, 1974. [PubMed: 4129268] [Full Text: https://doi.org/10.1016/0002-9343(74)90748-7]

  4. Bolk, S., Puffenberger, E. G., Hudson, J., Morton, D. H., Chakravarti, A. Elevated frequency and allelic heterogeneity of congenital nephrotic syndrome, Finnish type, in the Old Order Mennonites. (Letter) Am. J. Hum. Genet. 65: 1785-1790, 1999. [PubMed: 10577936] [Full Text: https://doi.org/10.1086/302687]

  5. Caridi, G., Trivelli, A., Sanna-Cherchi, S., Perfumo, F., Ghiggeri, G. M. Familial forms of nephrotic syndrome. Pediat. Nephrol. 25: 241-252, 2010. [PubMed: 19066979] [Full Text: https://doi.org/10.1007/s00467-008-1051-3]

  6. Cotran, R. S., Rennke, H. G. Anionic sites and the mechanisms of proteinuria. (Editorial) New Eng. J. Med. 309: 1050-1051, 1983. [PubMed: 6621641] [Full Text: https://doi.org/10.1056/NEJM198310273091709]

  7. Dressler, G. R., Douglass, E. C. Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc. Nat. Acad. Sci. 89: 1179-1183, 1992. [PubMed: 1311084] [Full Text: https://doi.org/10.1073/pnas.89.4.1179]

  8. Fournier, A., Paget, M., Pauli, A., Devin, P. Syndromes nephrotiques familiaux. Syndrome nephrotique associe a une cardiopathie congenitale chez quatre soeurs. Pediatrie 18: 677-685, 1963. [PubMed: 14057981]

  9. Frishberg, Y., Ben-Neriah, Z., Suvanto, M., Rinat, C., Mannikko, M., Feinstein, S., Becker-Cohen, R., Jalanko, H., Zlotogora, J., Kestila, M. Misleading findings of homozygosity mapping resulting from three novel mutations in NPHS1 encoding nephrin in a highly inbred community. Genet. Med. 9: 180-184, 2007. [PubMed: 17413422] [Full Text: https://doi.org/10.1097/gim.0b013e318031c7de]

  10. Fuchshuber, A., Janssen, F., Gribouval, O., Niaudet, P., Kamoun, A., Antignac, C. Presymptomatic diagnosis of familial steroid-resistant nephrotic syndrome. (Letter) Lancet 347: 1050-1051, 1996. [PubMed: 8606597] [Full Text: https://doi.org/10.1016/s0140-6736(96)90193-2]

  11. Giles, H. M., Pugh, R. C. B., Darmady, E. M., Stranack, F., Woolf, L. I. The nephrotic syndrome in early infancy: a report of 3 cases. Arch. Dis. Child. 32: 167-180, 1957. [PubMed: 13445295] [Full Text: https://doi.org/10.1136/adc.32.163.167]

  12. Grahame-Smith, H. N., Ward, P. S., Jones, R. D. Finnish type congenital nephrotic syndrome in twins: presentation with pyloric stenosis. J. Roy. Soc. Med. 81: 358 only, 1988. [PubMed: 3404530] [Full Text: https://doi.org/10.1177/014107688808100622]

  13. Hallman, N., Hjelt, L. Congenital nephrotic syndrome. J. Pediat. 55: 152-162, 1959. [PubMed: 13673354] [Full Text: https://doi.org/10.1016/s0022-3476(59)80083-4]

  14. Hallman, N., Norio, R., Kouvalainen, K. Main features of the congenital nephrotic syndrome. Acta Paediat. Scand. 172 (suppl.): 75-78, 1967. [PubMed: 6047603] [Full Text: https://doi.org/10.1111/j.1651-2227.1967.tb15279.x]

  15. Hildebrandt, F. Genetic kidney diseases. Lancet 375: 1287-1295, 2010. [PubMed: 20382325] [Full Text: https://doi.org/10.1016/S0140-6736(10)60236-X]

  16. Huttunen, N.-P. Congenital nephrotic syndrome of Finnish type: study of 75 patients. Arch. Dis. Child. 51: 344-348, 1976. [PubMed: 938078] [Full Text: https://doi.org/10.1136/adc.51.5.344]

  17. Inferrera, C., Barresi, G., Chimicata, S., De Luca, F., Baviera, G., Gulli, V., Gemelli, M. Morphologic considerations on the placenta in congenital nephrotic syndrome of Finnish type. Virchows Arch. A Path. Anat. Histol. 389: 13-26, 1980. [PubMed: 7456320] [Full Text: https://doi.org/10.1007/BF00428665]

  18. Kaukinen, A., Kuusniemi, A.-M., Helin, H., Jalanko, H. Changes in glomerular mesangium in kidneys with congenital nephrotic syndrome of the Finnish type. Pediat. Nephrol. 25: 867-875, 2010. [PubMed: 20020158] [Full Text: https://doi.org/10.1007/s00467-009-1385-5]

  19. Kestila, M., Lenkkeri, U., Mannikko, M., Lamerdin, J., McCready, P., Putaala, H., Ruotsalainen, V., Morita, T., Nissinen, M., Herva, R., Kashtan, C. E., Peltonen, L., Holmberg, C., Olsen, A., Tryggvason, K. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Molec. Cell 1: 575-582, 1998. [PubMed: 9660941] [Full Text: https://doi.org/10.1016/s1097-2765(00)80057-x]

  20. Kestila, M., Mannikko, M., Holmberg, C., Gyapay, G., Weissenbach, J., Savolainen, E.-R., Peltonen, L., Tryggvason, K. Congenital nephrotic syndrome of the Finnish type maps to the long arm of chromosome 19. Am. J. Hum. Genet. 54: 757-764, 1994. [PubMed: 8178817]

  21. Kestila, M., Mannikko, M., Holmberg, C., Tryggvason, K., Peltonen, L. Congenital nephrotic syndrome of the Finnish type is not associated with the Pax-2 gene despite the promising transgenic animal model. Genomics 19: 570-572, 1994. [PubMed: 8188301] [Full Text: https://doi.org/10.1006/geno.1994.1109]

  22. Kitamura, A., Tsukaguchi, H., Hiramoto, R., Shono, A., Doi, T., Kagami, S., Iijima, K. A familial childhood-onset relapsing nephrotic syndrome. Kidney Int. 71: 946-951, 2007. [PubMed: 17290294] [Full Text: https://doi.org/10.1038/sj.ki.5002110]

  23. Mahan, J. D., Mauer, S. M., Sibley, R. K., Vernier, R. L. Congenital nephrotic syndrome: evolution of medical management and results of renal transplantation. J. Pediat. 105: 549-557, 1984. [PubMed: 6384451] [Full Text: https://doi.org/10.1016/s0022-3476(84)80418-7]

  24. Mannikko, M., Lenkkeri, U., Kashtan, C. E., Kestila, M., Holmberg, C., Tryggvason, K. Haplotype analysis of congenital nephrotic syndrome of the Finnish type in non-Finnish families. J. Am. Soc. Nephrol. 7: 2700-2703, 1996. [PubMed: 8989752] [Full Text: https://doi.org/10.1681/ASN.V7122700]

  25. Meyrier, A. Mechanisms of disease: focal segmental glomerulosclerosis. Nature Clin. Pract. Nephrol. 1: 44-54, 2005. [PubMed: 16932363] [Full Text: https://doi.org/10.1038/ncpneph0025]

  26. Morgan, G., Postlethwaite, R. J., Lendon, M., Houston, I. B., Savage, J. M. Postural deformities in congenital nephrotic syndrome. Arch. Dis. Child. 56: 959-962, 1981. [PubMed: 7332344] [Full Text: https://doi.org/10.1136/adc.56.12.959]

  27. Morris, J., Ellwood, D., Kennedy, D., Knight, J. Amniotic alpha-fetoprotein in the prenatal diagnosis of congenital nephrotic syndrome of the Finnish type. Prenatal Diag. 15: 482-485, 1995. [PubMed: 7543998] [Full Text: https://doi.org/10.1002/pd.1970150513]

  28. Norio, R., Hjelt, L., Hallman, N. Congenital nephrotic syndrome: an inherited disease? A preliminary report. Ann. Paediat. Fenn. 10: 223-227, 1964. [PubMed: 14166251]

  29. Norio, R. Heredity in the congenital nephrotic syndrome: a genetic study of 57 Finnish families with a review of reported cases. Ann. Paediat. Fenn. 12 (suppl. 27): 1-94, 1966. [PubMed: 5915041]

  30. Norio, R. Congenital nephrotic syndrome of Finnish type (CNF). In: Eriksson, A. W.; Forsius, H. R.; Nevanlinna, H. R.; Workman, P. L.; Norio, R. K.: Population Structure and Genetic Disorders. New York: Academic Press (pub.) 1980. Pp. 600-604.

  31. Olsen, A. S., Georgescu, A., Johnson, S., Carrano, A. V. Assembly of a 1-Mb restriction-mapped cosmid contig spanning the candidate region for Finnish congenital nephrosis (NPHS1) in 19q13.1. Genomics 34: 223-225, 1996. [PubMed: 8661053] [Full Text: https://doi.org/10.1006/geno.1996.0270]

  32. Ongre, A. A. Nephrotic syndrome with cyst-like dilations of renal tubules: report of 2 cases in siblings in early infancy. Acta Path. Microbiol. Scand. 51: 1-8, 1961. [PubMed: 13730979] [Full Text: https://doi.org/10.1111/j.1699-0463.1961.tb00338.x]

  33. Pollak, M. R. Inherited podocytopathies: FSGS and nephrotic syndrome from a genetic viewpoint. J. Am. Soc. Nephrol. 13: 3016-3023, 2002. [PubMed: 12444222] [Full Text: https://doi.org/10.1097/01.asn.0000039569.34360.5e]

  34. Puffenberger, E. G. Genetic heritage of the Old Order Mennonites of southeastern Pennsylvania. Am. J. Med. Genet. 121C: 18-31, 2003. [PubMed: 12888983] [Full Text: https://doi.org/10.1002/ajmg.c.20003]

  35. Risteli, L., Autio-Harmainen, H., Huttunen, N.-P., Risteli, J. Slow accumulation of basement membrane collagen in kidney cortex in congenital nephrotic syndrome. Lancet 319: 712-714, 1982. Note: Originally Volume I. [PubMed: 6122009] [Full Text: https://doi.org/10.1016/s0140-6736(82)92624-1]

  36. Roy, S., Pitcock, J. A. Idiopathic nephrosis in identical twins. Am. J. Dis. Child. 121: 428-430, 1971. [PubMed: 5091537] [Full Text: https://doi.org/10.1001/archpedi.1971.02100160098015]

  37. Sajantila, A., Salem, A.-H., Savolainen, P., Bauer, K., Gierig, C., Paabo, S. Paternal and maternal DNA lineages reveal a bottleneck in the founding of the Finnish population. Proc. Nat. Acad. Sci. 93: 12035-12039, 1996. [PubMed: 8876258] [Full Text: https://doi.org/10.1073/pnas.93.21.12035]

  38. Seppala, M., Rapola, J., Huttunen, N.-P., Aula, P., Karjalainen, O., Ruoslahti, E. Congenital nephrotic syndrome: prenatal diagnosis and genetic counselling by estimation of amniotic-fluid and maternal serum alpha-fetoprotein. Lancet 308: 123-125, 1976. Note: Originally Volume II. [PubMed: 59186] [Full Text: https://doi.org/10.1016/s0140-6736(76)92847-6]

  39. Tryggvason, K., Patrakka, J., Wartiovaara, J. Hereditary proteinuria syndromes and mechanisms of proteinuria. New Eng. J. Med. 354: 1387-1401, 2006. [PubMed: 16571882] [Full Text: https://doi.org/10.1056/NEJMra052131]

  40. Vernier, R. L., Brunson, J., Good, R. A. Studies on familial nephrosis. I. Clinical and pathologic study of four cases in a single family. Am. J. Dis. Child. 93: 469-485, 1957. [PubMed: 13410383]

  41. Vernier, R. L., Klein, D. J., Sisson, S. P., Mahan, J. D., Oegema, T. R., Brown, D. M. Heparan sulfate-rich anionic sites in the human glomerular basement membrane. New Eng. J. Med. 309: 1001-1009, 1983. [PubMed: 6225948] [Full Text: https://doi.org/10.1056/NEJM198310273091701]

  42. Worthen, H. G., Vernier, R. L., Good, R. A. Infantile nephrosis: clinical, biochemical, and morphologic studies of the syndrome. Am. J. Dis. Child. 98: 731-748, 1959. [PubMed: 13845999]

  43. Zunin, C., Soave, F. Association of nephrotic syndrome and nephroblastoma in siblings. Ann. Paediat. (Basel) 203: 29-38, 1964. [PubMed: 14186696]


Contributors:
Cassandra L. Kniffin - updated : 02/23/2021
Cassandra L. Kniffin - updated : 11/27/2017
Cassandra L. Kniffin - updated : 4/5/2016
Cassandra L. Kniffin - updated : 10/8/2010
Marla J. F. O'Neill - updated : 7/28/2010
Victor A. McKusick - updated : 4/10/2006
Victor A. McKusick - updated : 8/21/2003
Victor A. McKusick - updated : 12/28/1999
Stylianos E. Antonarakis - updated : 6/12/1998
Victor A. McKusick - edited : 11/26/1997

Creation Date:
Victor A. McKusick : 6/4/1986

Edit History:
alopez : 09/26/2022
ckniffin : 09/21/2022
carol : 06/23/2022
alopez : 06/22/2022
carol : 04/08/2021
ckniffin : 04/06/2021
alopez : 03/02/2021
alopez : 03/02/2021
alopez : 03/02/2021
ckniffin : 02/24/2021
ckniffin : 02/23/2021
alopez : 01/25/2021
ckniffin : 01/15/2021
carol : 09/25/2019
ckniffin : 09/23/2019
carol : 07/11/2019
ckniffin : 07/05/2019
carol : 11/12/2018
ckniffin : 11/08/2018
carol : 11/27/2017
ckniffin : 11/27/2017
carol : 11/17/2017
ckniffin : 11/16/2017
carol : 08/09/2017
ckniffin : 08/08/2017
carol : 07/21/2017
ckniffin : 07/20/2017
carol : 11/07/2016
alopez : 09/16/2016
carol : 04/26/2016
alopez : 4/6/2016
ckniffin : 4/5/2016
carol : 1/11/2016
ckniffin : 1/7/2016
carol : 6/26/2014
ckniffin : 6/24/2014
carol : 12/19/2013
ckniffin : 12/18/2013
carol : 5/23/2013
ckniffin : 5/22/2013
carol : 1/9/2013
ckniffin : 1/9/2013
carol : 9/6/2011
ckniffin : 8/31/2011
carol : 10/25/2010
ckniffin : 10/8/2010
wwang : 7/28/2010
terry : 7/28/2010
carol : 7/9/2010
terry : 3/13/2009
carol : 1/25/2007
alopez : 4/11/2006
terry : 4/10/2006
tkritzer : 9/9/2003
terry : 8/21/2003
mgross : 12/28/1999
carol : 6/12/1998
jenny : 12/2/1997
terry : 11/26/1997
terry : 2/12/1997
jenny : 12/9/1996
terry : 11/22/1996
terry : 6/26/1996
terry : 6/21/1996
terry : 9/13/1995
carol : 1/25/1995
davew : 7/6/1994
mimadm : 4/18/1994
supermim : 3/17/1992
supermim : 3/20/1990