Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Costello syndrome
While the majority of individuals with Costello syndrome share characteristic findings affecting multiple organ systems, the phenotypic spectrum is wide, ranging from a milder or attenuated phenotype to a severe phenotype with early lethal complications. Costello syndrome is typically characterized by failure to thrive in infancy as a result of severe postnatal feeding difficulties; short stature; developmental delay or intellectual disability; coarse facial features (full lips, large mouth, full nasal tip); curly or sparse, fine hair; loose, soft skin with deep palmar and plantar creases; papillomata of the face and perianal region; diffuse hypotonia and joint laxity with ulnar deviation of the wrists and fingers; tight Achilles tendons; and cardiac involvement including: cardiac hypertrophy (usually typical hypertrophic cardiomyopathy), congenital heart defect (usually valvar pulmonic stenosis), and arrhythmia (usually supraventricular tachycardia, especially chaotic atrial rhythm/multifocal atrial tachycardia or ectopic atrial tachycardia). Relative or absolute macrocephaly is typical, and postnatal cerebellar overgrowth can result in the development of a Chiari I malformation with associated anomalies including hydrocephalus or syringomyelia. Individuals with Costello syndrome have an approximately 15% lifetime risk for malignant tumors including rhabdomyosarcoma and neuroblastoma in young children and transitional cell carcinoma of the bladder in adolescents and young adults. [from GeneReviews]
Hypochondroplasia
Hypochondroplasia is a skeletal dysplasia characterized by short stature; stocky build; disproportionately short arms and legs; broad, short hands and feet; mild joint laxity; and macrocephaly. Radiologic features include shortening of long bones with mild metaphyseal flare; narrowing of the inferior lumbar interpedicular distances; short, broad femoral neck; and squared, shortened ilia. The skeletal features are very similar to those seen in achondroplasia but tend to be milder. Medical complications common to achondroplasia (e.g., spinal stenosis, tibial bowing, obstructive apnea) occur less frequently in hypochondroplasia but intellectual disability and epilepsy may be more prevalent. Children usually present as toddlers or at early school age with decreased growth velocity leading to short stature and limb disproportion. Other features also become more prominent over time. [from GeneReviews]
Alstrom syndrome
Alström syndrome is characterized by cone-rod dystrophy, obesity, progressive bilateral sensorineural hearing impairment, acute infantile-onset cardiomyopathy and/or adolescent- or adult-onset restrictive cardiomyopathy, insulin resistance / type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), and chronic progressive kidney disease. Cone-rod dystrophy presents as progressive visual impairment, photophobia, and nystagmus usually starting between birth and age 15 months. Many individuals lose all perception of light by the end of the second decade, but a minority retain the ability to read large print into the third decade. Children usually have normal birth weight but develop truncal obesity during their first year. Sensorineural hearing loss presents in the first decade in as many as 70% of individuals and may progress to the severe or moderately severe range (40-70 db) by the end of the first to second decade. Insulin resistance is typically accompanied by the skin changes of acanthosis nigricans, and proceeds to T2DM in the majority by the third decade. Nearly all demonstrate hypertriglyceridemia. Other findings can include endocrine abnormalities (hypothyroidism, hypogonadotropic hypogonadism in males, and hyperandrogenism in females), urologic dysfunction / detrusor instability, progressive decrease in renal function, and hepatic disease (ranging from elevated transaminases to steatohepatitis/NAFLD). Approximately 20% of affected individuals have delay in early developmental milestones, most commonly in gross and fine motor skills. About 30% have a learning disability. Cognitive impairment (IQ <70) is very rare. Wide clinical variability is observed among affected individuals, even within the same family. [from GeneReviews]
Familial partial lipodystrophy, Dunnigan type
Familial partial lipodystrophy is a metabolic disorder characterized by abnormal subcutaneous adipose tissue distribution beginning in late childhood or early adult life. Affected individuals gradually lose fat from the upper and lower extremities and the gluteal and truncal regions, resulting in a muscular appearance with prominent superficial veins. In some patients, adipose tissue accumulates on the face and neck, causing a double chin, fat neck, or cushingoid appearance. Metabolic abnormalities include insulin-resistant diabetes mellitus with acanthosis nigricans and hypertriglyceridemia; hirsutism and menstrual abnormalities occur infrequently. Familial partial lipodystrophy may also be referred to as lipoatrophic diabetes mellitus, but the essential feature is loss of subcutaneous fat (review by Garg, 2004). The disorder may be misdiagnosed as Cushing disease (see 219080) (Kobberling and Dunnigan, 1986; Garg, 2004). Genetic Heterogeneity of Familial Partial Lipodystrophy Familial partial lipodystrophy is a clinically and genetically heterogeneous disorder. Types 1 and 2 were originally described as clinical subtypes: type 1 (FPLD1; 608600), characterized by loss of subcutaneous fat confined to the limbs (Kobberling et al., 1975), and FPLD2, characterized by loss of subcutaneous fat from the limbs and trunk (Dunnigan et al., 1974; Kobberling and Dunnigan, 1986). No genetic basis for FPLD1 has yet been delineated. FPLD3 (604367) is caused by mutation in the PPARG gene (601487) on chromosome 3p25; FPLD4 (613877) is caused by mutation in the PLIN1 gene (170290) on chromosome 15q26; FPLD5 (615238) is caused by mutation in the CIDEC gene (612120) on chromosome 3p25; FPLD6 (615980) is caused by mutation in the LIPE gene (151750) on chromosome 19q13; FPLD7 (606721) is caused by mutation in the CAV1 gene (601047) on chromosome 7q31; FPLD8 (620679), caused by mutation in the ADRA2A gene (104210) on chromosome 10q25; and FPLD9 (620683), caused by mutation in the PLAAT3 gene (613867) on chromosome 11q12. [from OMIM]
Mandibuloacral dysplasia with type A lipodystrophy
Mandibuloacral dysplasia with type A lipodystrophy (MADA) is an autosomal recessive disorder characterized by growth retardation, craniofacial anomalies with mandibular hypoplasia, skeletal abnormalities with progressive osteolysis of the distal phalanges and clavicles, and pigmentary skin changes. The lipodystrophy is characterized by a marked acral loss of fatty tissue with normal or increased fatty tissue in the neck and trunk. Some patients may show progeroid features. Metabolic complications can arise due to insulin resistance and diabetes (Young et al., 1971; Simha and Garg, 2002; summary by Garavelli et al., 2009). See also MAD type B (MADB; 608612), which is caused by mutation in the ZMPSTE24 gene (606480). [from OMIM]
Congenital generalized lipodystrophy type 1
Berardinelli-Seip congenital lipodystrophy (BSCL) is usually diagnosed at birth or soon thereafter. Because of the absence of functional adipocytes, lipid is stored in other tissues, including muscle and liver. Affected individuals develop insulin resistance and approximately 25%-35% develop diabetes mellitus between ages 15 and 20 years. Hepatomegaly secondary to hepatic steatosis and skeletal muscle hypertrophy occur in all affected individuals. Hypertrophic cardiomyopathy is reported in 20%-25% of affected individuals and is a significant cause of morbidity from cardiac failure and early mortality. [from GeneReviews]
Congenital generalized lipodystrophy type 2
Crouzon syndrome-acanthosis nigricans syndrome
Crouzon syndrome with acanthosis nigricans is considered to be a distinct disorder from classic Crouzon syndrome (123500), which is caused by mutation in the FGFR2 gene (176943). Cohen (1999) argued that this condition is separate from Crouzon syndrome for 2 main reasons: it is caused by a highly specific mutation of the FGFR3 gene, whereas multiple different FGFR2 mutations result in Crouzon syndrome, and the phenotypes are different. [from OMIM]
Beare-Stevenson cutis gyrata syndrome
Beare-Stevenson cutis gyrata syndrome (BSTVS) is an autosomal dominant condition characterized by the furrowed skin disorder of cutis gyrata, acanthosis nigricans, craniosynostosis, craniofacial dysmorphism, digital anomalies, umbilical and anogenital abnormalities, and early death (summary by Przylepa et al., 1996). [from OMIM]
Leprechaunism syndrome
INSR-related severe syndromic insulin resistance comprises a phenotypic spectrum that is a continuum from the severe phenotype Donohue syndrome (DS) (also known as leprechaunism) to the milder phenotype Rabson-Mendenhall syndrome (RMS). DS at the severe end of the spectrum is characterized by severe insulin resistance (hyperinsulinemia with associated fasting hypoglycemia and postprandial hyperglycemia), severe prenatal growth restriction and postnatal growth failure, hypotonia and developmental delay, characteristic facies, and organomegaly involving heart, kidneys, liver, spleen, and ovaries. Death usually occurs before age one year. RMS at the milder end of the spectrum is characterized by severe insulin resistance that, although not as severe as that of DS, is nonetheless accompanied by fluctuations in blood glucose levels, diabetic ketoacidosis, and – in the second decade – microvascular complications. Findings can range from severe growth delay and intellectual disability to normal growth and development. Facial features can be milder than those of DS. Complications of longstanding hyperglycemia are the most common cause of death. While death usually occurs in the second decade, some affected individuals live longer. [from GeneReviews]
PPARG-related familial partial lipodystrophy
A rare familial partial lipodystrophy with characteristics of adult onset of distal lipoatrophy with gluteofemoral fat loss, as well as increased fat accumulation in the face and trunk and visceral adiposity. Additional manifestations include diabetes mellitus, atherogenic dyslipidemia, eyelid xanthelasma, arterial hypertension, cardiovascular disease, hepatic steatosis, acanthosis nigricans on axilla and neck, hirsutism, and muscular hypertrophy of the lower limbs. Caused by heterozygous mutation in the PPARG gene on chromosome 3p25. [from SNOMEDCT_US]
Congenital generalized lipodystrophy type 3
Congenital generalized lipodystrophy, also known as Berardinelli-Seip syndrome, is an autosomal recessive disorder characterized by marked paucity of adipose tissue, extreme insulin resistance, hypertriglyceridemia, hepatic steatosis, and early onset of diabetes (Garg, 2004). For a general description and a discussion of genetic heterogeneity of congenital generalized lipodystrophy, see CGL1 (608594). [from OMIM]
Congenital generalized lipodystrophy type 4
Congenital generalized lipodystrophy type 4 (CGL4) combines the phenotype of classic Berardinelli-Seip lipodystrophy (608594) with muscular dystrophy and cardiac conduction anomalies (Hayashi et al., 2009). For a general description and a discussion of genetic heterogeneity of congenital generalized lipodystrophy, see CGL1 (608594). [from OMIM]
Rabson-Mendenhall syndrome
Partial lipodystrophy, congenital cataracts, and neurodegeneration syndrome
Lipodystrophies are rare disorders characterized by loss of body fat from various regions and predisposition to metabolic complications of insulin resistance and lipid abnormalities. FPLD7 is an autosomal dominant disorder with a highly variable phenotype. Additional features, including early-onset cataracts and later onset of spasticity of the lower limbs, have been noted in some patients (summary by Garg et al., 2015). For a general phenotypic description and a discussion of genetic heterogeneity of familial partial lipodystrophy (FPLD), see 151660. [from OMIM]
Proteasome-associated autoinflammatory syndrome 1
Proteasome-associated autoinflammatory syndrome-1 (PRAAS1) is an autosomal recessive disorder characterized by early childhood onset of annular erythematous plaques on the face and extremities with subsequent development of partial lipodystrophy and laboratory evidence of immune dysregulation. More variable features include recurrent fever, severe joint contractures, muscle weakness and atrophy, hepatosplenomegaly, basal ganglia calcifications, and microcytic anemia (summary by Agarwal et al., 2010; Kitamura et al., 2011; Arima et al., 2011). This disorder encompasses Nakajo-Nishimura syndrome (NKJO); joint contractures, muscular atrophy, microcytic anemia, and panniculitis-induced lipodystrophy (JMP syndrome); and chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature syndrome (CANDLE). Among Japanese patients, this disorder is best described as Nakajo-Nishimura syndrome, since both Nakajo (1939) and Nishimura et al. (1950) contributed to the original phenotypic descriptions. Genetic Heterogeneity of Proteasome-Associated Autoinflammatory Syndrome See also PRAAS2 (618048), caused by mutation in the POMP gene (613386) on chromosome 13q12; PRAAS3 (617591), caused by mutation in the PSMB4 gene (602177) on chromosome 1q21; PRAAS4 (619183), caused by mutation in the PSMG2 gene (609702) on chromosome 18p11; PRAAS5 (619175), caused by mutation in the PSMB10 gene (176847) on chromosome 16q22; and PRAAS6 (620796), caused by mutation in the PSMB9 gene (177045) on chromosome 6p21. [from OMIM]
Severe achondroplasia-developmental delay-acanthosis nigricans syndrome
SADDAN dysplasia (severe achondroplasia with developmental delay and acanthosis nigricans) is a very rare skeletal dysplasia characterized by the constellation of these features. Radiology reveals 'ram's horn' shaped clavicles and reverse bowing of lower limbs. Approximately half of patients die before the fourth week of life secondary to respiratory failure (summary by Zankl et al., 2008). [from OMIM]
LIPE-related familial partial lipodystrophy
Familial partial lipodystrophy type 6 (FPLD6) is characterized by abnormal subcutaneous fat distribution, with variable excess accumulation of fat in the face, neck, shoulders, axillae, back, abdomen, and pubic region, and reduction in subcutaneous fat of the lower extremities. Progressive adult-onset myopathy is seen in some patients, and there is variable association with diabetes, hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol, and hepatic steatosis (Zolotov et al., 2017). For a general phenotypic description and a discussion of genetic heterogeneity of familial partial lipodystrophy (FPLD), see 151660. [from OMIM]
Short stature, microcephaly, and endocrine dysfunction
In patients with SSMED, short stature and microcephaly are apparent at birth, and there is progressive postnatal growth failure. Endocrine dysfunction, including hypergonadotropic hypogonadism, multinodular goiter, and diabetes mellitus, is present in affected adults. Progressive ataxia has been reported in some patients, with onset ranging from the second to fifth decade of life. In addition, a few patients have developed tumors, suggesting that there may be a predisposition to tumorigenesis. In contrast to syndromes involving defects in other components of the nonhomologous end-joining (NHEJ) complex (see, e.g., 606593), no clinically overt immunodeficiency has been observed in SSMED, although laboratory analysis has revealed lymphopenia or borderline leukopenia in some patients (Murray et al., 2015; Bee et al., 2015; de Bruin et al., 2015; Guo et al., 2015). [from OMIM]
PLIN1-related familial partial lipodystrophy
Familial partial lipodystrophy type 4 is an autosomal dominant metabolic disorder characterized by childhood or young adult onset of loss of subcutaneous adipose tissue primarily affecting the lower limbs, insulin-resistant diabetes mellitus, hypertriglyceridemia, and hypertension (summary by Gandotra et al., 2011). Other features may include hepatic steatosis, acanthosis nigricans, polycystic ovary syndrome, and renal disease (summary by Chen et al., 2018). For a general phenotypic description and a discussion of genetic heterogeneity of familial partial lipodystrophy (FPLD), see 151660. [from OMIM]
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on