NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE101521 Query DataSets for GSE101521
Status Public on Jul 18, 2017
Title Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide
Organism Homo sapiens
Experiment type Expression profiling by high throughput sequencing
Non-coding RNA profiling by high throughput sequencing
Summary Brain gene expression profiling studies of suicide and depression using oligonucleotide microarrays have often failed to distinguish these two phenotypes. Moreover, next generation sequencing approaches are more accurate in quantifying gene expression and can detect alternative splicing. Using RNA-seq, we examined whole-exome gene and exon expression in non-psychiatric controls (CON, N=29), DSM-IV major depressive disorder suicides (MDD-S, N=21) and MDD non-suicides (MDD, N=9) in the dorsal lateral prefrontal cortex (Brodmann Area 9) of sudden death medication-free individuals post mortem. Using small RNA-seq, we also examined miRNA expression (nine samples per group). DeSeq2 identified 35 genes differentially expressed between groups and surviving adjustment for false discovery rate (adjusted P<0.1). In depression, altered genes include humanin-like-8 (MTRNRL8), interleukin-8 (IL8), and serpin peptidase inhibitor, clade H (SERPINH1) and chemokine ligand 4 (CCL4), while exploratory gene ontology (GO) analyses revealed lower expression of immune-related pathways such as chemokine receptor activity, chemotaxis and cytokine biosynthesis, and angiogenesis and vascular development in (adjusted P<0.1). Hypothesis-driven GO analysis suggests lower expression of genes involved in oligodendrocyte differentiation, regulation of glutamatergic neurotransmission, and oxytocin receptor expression in both suicide and depression, and provisional evidence for altered DNA-dependent ATPase expression in suicide only. DEXSEq analysis identified differential exon usage in ATPase, class II, type 9B (adjusted P<0.1) in depression. Differences in miRNA expression or structural gene variants were not detected. Results lend further support for models in which deficits in microglial, endothelial (blood-brain barrier), ATPase activity and astrocytic cell functions contribute to MDD and suicide, and identify putative pathways and mechanisms for further study in these disorder
 
Overall design We examined whole-exome gene and exon expression in non-psychiatric controls (CON, N=29), DSM-IV major depressive disorder suicides (MDD-S, N=21) and MDD non-suicides (MDD, N=9) in the dorsal lateral prefrontal cortex (Brodmann Area 9) of sudden death medication-free individuals post mortem. Using small RNA-seq, we also examined miRNA expression (nine samples per group).
 
Contributor(s) Pantazatos SP, Arango V, Mann JJ
Citation(s) 27528462
Submission date Jul 17, 2017
Last update date May 15, 2019
Contact name Spiro Pantazatos
E-mail(s) spp2101@columbia.edu
Organization name Columbia University
Department Psychiatry
Street address 1051 Riverside Dr.
City New York
State/province New York
ZIP/Postal code 10032
Country USA
 
Platforms (2)
GPL15520 Illumina MiSeq (Homo sapiens)
GPL16791 Illumina HiSeq 2500 (Homo sapiens)
Samples (86)
GSM2705366 V1
GSM2705367 V2
GSM2705368 V3
Relations
BioProject PRJNA394722
SRA SRP112551

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE101521_microRNA_exp.csv.gz 44.8 Kb (ftp)(http) CSV
GSE101521_totalRNA_counts.csv.gz 12.0 Mb (ftp)(http) CSV
SRA Run SelectorHelp
Raw data are available in SRA
Processed data are available on Series record

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap