 |
 |
GEO help: Mouse over screen elements for information. |
|
Status |
Public on Dec 23, 2015 |
Title |
The role of antigen presenting cells in the induction of HIV-1 latency in resting CD4+ T-cells |
Organism |
Homo sapiens |
Experiment type |
Expression profiling by high throughput sequencing
|
Summary |
BACKGROUND: Combination antiretroviral therapy (cART) is able to control HIV-1 viral replication, however long-lived latent infection in resting memory CD4+ T-cells persist. The mechanisms for establishment and maintenance of latent infection in resting memory CD4+ T-cells remain unclear. Previously we have shown that HIV-1 infection of resting CD4+ T-cells co-cultured with CD11c+ myeloid dendritic cells (mDC) produced a population of non-proliferating T-cells with latent infection. Here we asked whether different antigen presenting cells (APC), including subpopulations of DC and monocytes, were able to induce post-integration latent infection in resting CD4+ T-cells, and examined potential cell interactions that may be involved using RNA-seq.
RESULTS: mDC (CD1c+), SLAN+ DC and CD14+ monocytes were most efficient in stimulating proliferation of CD4+ T-cells during syngeneic culture and in generating post-integration latent infection in non-proliferating CD4+ T-cells following HIV-1 infection of APC-T-cell co-cultures. In comparison, plasmacytoid DC (pDC) and B-cells did not induce latent infection in APC-T-cell co-cultures. We compared the RNA expression profiles of APC subpopulations that could and could not induce latency in non-proliferating CD4+ T-cells. Gene expression analysis, comparing the mDC, SLAN+ DC and CD14+ monocyte subpopulations to pDC identified 53 upregulated genes that encode proteins expressed on the plasma membrane that could signal to CD4+ T-cells via cell-cell interactions (32 genes), immune checkpoints (IC) (5 genes), T-cell activation (9 genes), regulation of apoptosis (5 genes), antigen presentation (1 gene) and through unknown ligands (1 gene).
CONCLUSIONS: APC subpopulations from the myeloid lineage, specifically mDC subpopulations and CD14+ monocytes, were able to efficiently induce post-integration HIV-1 latency in non-proliferating CD4+ T-cells in vitro. Inhibition of key pathways involved in mDC-T-cell interactions and HIV-1 latency may provide novel targets to eliminate HIV latency.
|
|
|
Overall design |
mRNA profiles of sorted, pure antigen presenting cells including, CD1c+ myleoid dendirtic cells (mDC), SLAN+ mDC, CD14+ monocytes and plasmacytoid DC (pDC), were generated using next generation sequencing in triplicate, using Illumina Illumina Hiseq 2000.
|
|
|
Contributor(s) |
Kumar N, Cameron PU, Powell DR |
Citation(s) |
26362311 |
Submission date |
Jun 22, 2015 |
Last update date |
May 15, 2019 |
Contact name |
David Richard Powell |
E-mail(s) |
david.powell@monash.edu
|
Organization name |
Monash University
|
Department |
Bioinformatics Platform
|
Street address |
Wellington Road
|
City |
Clayton |
State/province |
VIC |
ZIP/Postal code |
3800 |
Country |
Australia |
|
|
Platforms (1) |
GPL16791 |
Illumina HiSeq 2500 (Homo sapiens) |
|
Samples (12)
|
|
Relations |
BioProject |
PRJNA287649 |
SRA |
SRP059735 |
Supplementary file |
Size |
Download |
File type/resource |
GSE70106_counts.txt.gz |
1.0 Mb |
(ftp)(http) |
TXT |
SRA Run Selector |
Raw data are available in SRA |
Processed data are available on Series record |
|
|
|
|
 |