NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE34483 Query DataSets for GSE34483
Status Public on Dec 20, 2012
Title H2A.Z Facilitates Access of Active and Repressive Complexes to Chromatin in Embryonic Stem Cell Self-renewal and Differentiation
Organism Mus musculus
Experiment type Genome binding/occupancy profiling by high throughput sequencing
Summary Chromatin modifications have been implicated in the self-renewal and differentiation of embryonic stem cells (ESCs). However, the function of histone variant H2A.Z in ESCs remains unclear. We show that H2A.Z is highly enriched at promoters and enhancers and is required for both efficient self-renewal and differentiation of murine ESCs. H2A.Z deposition leads to an abnormal nucleosome structure, decreased nucleosome occupancy and increased chromatin accessibility. In self-renewing ESCs, knockdown of H2A.Z compromises OCT4 binding to its target genes and leads to decreased binding of MLL complexes to active genes and of PRC2 complex to repressed genes in self-renewal of ESCs. During differentiation of ESCs, inhibition of H2A.Z also compromises RA-induced RARĪ± binding, activation of differentiation markers and the repression of pluripotency genes. We propose that H2A.Z mediates such contrasting activities by acting as a 'general facilitator' that generates access for a variety of complexes both activating and repressive.
 
Overall design ChIP-Seq in murine embryonic stem (mES) cells for H2A.Z and acetylated H2A.Z. ChIP-Seq of H3K4me3, H3K27me3, RbBP5, SUZ12 and OCT4 for mES cells of both H2A.Z RNAi knockdown and shLuc control. ChIP-Seq of RARalpha in H2A.Z knockdown (withdraw of LIF and exposure to RA for 3h) and control cells. MNase-Seq and chromatin accessibility assay using Benzonase digestion followed by next-generation sequencing for mES cells of both H2A.Z RNAi knockdown and shLuc control. ChIP-Seq of H2A.Z and H3K4me3 for mES cells of both MLL4 RNAi knockdown and shLuc control. RNA-Seq for mES cells of H2A.Z knockdown and shluc control. RNA-Seq for embryonic bodies derived from mES cells (H2A.Z knockdown and shLuc control) at day 3 and day 7.
 
Contributor(s) Hu G, Cui K, Northrup D, Liu C, Wang C, Tang Q, Ge K, Levens D, Crane-Robinson C, Zhao K
Citation(s) 23260488
Submission date Dec 15, 2011
Last update date May 15, 2019
Contact name Gangqing Hu
E-mail(s) michael.hu@hsc.wvu.edu
Organization name West Virginia University
Department MicroBiology, Immunology, and Cell Biology
Lab 2072A, HSC North, Floor 2
Street address 64 Medical Center Drive
City Morgantown
State/province West Virginia
ZIP/Postal code 26506-9177
Country USA
 
Platforms (2)
GPL11002 Illumina Genome Analyzer IIx (Mus musculus)
GPL13112 Illumina HiSeq 2000 (Mus musculus)
Samples (42)
GSM849928 mES_WT_H2AZ
GSM849929 mES_WT_acH2AZ
GSM849932 mES_H3K4me3_shluc_ctrl_for_H2AZKD
Relations
SRA SRP009853
BioProject PRJNA151337

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE34483_RAW.tar 3.6 Gb (http)(custom) TAR (of BED)
SRA Run SelectorHelp
Raw data are available in SRA
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap