NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE217928 Query DataSets for GSE217928
Status Public on Mar 04, 2024
Title Gene expression analysis in murine muscle fibers and whole muscle after denervation
Organism Mus musculus
Experiment type Expression profiling by high throughput sequencing
Summary Background: Skeletal muscle function crucially depends on motor innervation and after injury on the resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties. Methods: We investigated the alterations of MuSCs and their immediate niche, the myofiber, after denervation in a surgery-based mouse model of unilateral sciatic nerve transection. FACS-isolated MuSCs were subjected to transcriptomics and proteomics analyses to investigate which changes occur after denervation. We performed Cardiotoxin-induced muscle injury, MuSC transplantation and floating myofiber cultures to assess MuSC functionality after denervation in addition to bioinformatics and histological analyses. Results: We observed a significant increase in the number of MuSCs (Pax7 positive; p-value= 0.0441), proliferating MuSCs (Pax7/Ki67 positive; p-value= 0.0023), activated MuSCs (MyoD positive; p-value= 0.0016) and differentiating MuSCs (Myog positive; p-value= 0.0057) after denervation. This aberrant activation and premature commitment of MuSCs to the myogenic lineage was accompanied by profound alterations on the mRNA (2613 differentially expressed genes, adj. p-value <0.05) and protein (1096 differentially abundant proteins, q-value <0.05) level after denervation. MuSCs from denervated hosts still engrafted and fused to form new myofibers irrespective of the innervation status of the recipient, suggesting the MuSC niche is driving alterations in MuSCs after denervation. The myofiber transcriptome after denervation showed massive changes in the general expression profile (10492 DEGs, p-value <0.05) and in several predicted secreted factors. Incubation of myofiber-associated MuSCs with supernatant from denervated myofibers increased cluster formation, reinforcing myofibers as a source of secreted factors driving MuSC alterations after denervation. Opn and Tgfb1 showed an increased secretion by denervated myofibers (30-fold and 6000-fold, respectively), and incubation with Tgfb1 alone induced Junb expression in myogenic cells, one of the genes highly upregulated in MuSCs after denervation (p-value= 1.85e-18, log2fc= 3.27), demonstrating that myofiber-secreted ligands influence MuSC gene expression. A combination of skeletal muscle injury and denervation led to reduced numbers of proliferating MuSCs (Sham: 47 vs DEN: 19.75 cells per cross section 10 days post-injury) and sustained high levels of developmental myosin heavy chain (Sham: 1 % vs DEN: 40 % of all myofibers 21 days post-injury), indicating hampered MuSC functionality due to changes in the microenvironment. Conclusion: Denervation of skeletal muscle causes alterations in myofiber secretion, leading to activation and profound changes of MuSCs, ultimately resulting in a reduced regenerative capacity. As these alterations are partially reversible, MuSCs are a promising target for novel treatment options for neuromuscular disorders and peripheral nerve injuries.
 
Overall design 16 samples in 4 groups: 4 samples per group (whole muscle DEN, whole muscle sham, muscle fiber DEN, muscle fiber sham)
 
Contributor(s) Henze H, Groth M
Citation(s) 38424446
Submission date Nov 14, 2022
Last update date Mar 04, 2024
Contact name Marco Groth
E-mail(s) dnaseq@leibniz-fli.de
Organization name Leibniz Institute on Aging - FLI
Department Core Facility - Next Generation Sequencing
Street address Beutenbergstraße 11
City Jena
ZIP/Postal code 07747
Country Germany
 
Platforms (1)
GPL24247 Illumina NovaSeq 6000 (Mus musculus)
Samples (16)
GSM6730055 Whole muscle (TA), DEN, rep 1
GSM6730056 Whole muscle (TA), DEN, rep 2
GSM6730057 Whole muscle (TA), DEN, rep 3
Relations
BioProject PRJNA901417

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE217928_counts_RPMs_RPKMs.xls.gz 16.5 Mb (ftp)(http) XLS
SRA Run SelectorHelp
Raw data are available in SRA
Processed data are available on Series record

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap