Epsin N-Terminal Homology (ENTH) domain of Yeast Ent3 and similar proteins
This subfamily is composed of one of two epsinR orthologs present in Saccharomyces cerevisiae, Epsin-3 (Ent3 or Ent3p), and similar proteins. Ent3 is an adaptor proteins at the Trans-Golgi Network (TGN); it cooperates with yeast SNARE Vti1p to regulate transport from the TGN to the prevacuolar endosome. Ent3 facilitates the interaction between Gga2p with both the endosomal syntaxin Pep12p and clathrin in the GGA-dependent transport to the late endosome. Yeast epsins contain an Epsin N-Terminal Homology (ENTH) domain, an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. ENTH domain is highly similar to the N-terminal region of the AP180 N-Terminal Homology (ANTH_N) domain. ENTH and ANTH_N domains are structurally similar to the VHS domain and are composed of a superhelix of eight alpha helices. ENTH domains bind both, inositol phospholipids with preference for PtdIns(4,5)P2, and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. Similar to mammalian epsinR, The ENTH domain of Ent3 binds to the yeast SNARE Vti1p; soluble NSF attachment protein receptors (SNAREs) are type II transmembrane proteins that have critical roles in providing the specificity and energy for transport-vesicle fusion. Specific ENTH domains may also function as protein cargo selection/recognition modules. ENTH and ANTH (E/ANTH)-containing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the Trans-Golgi Network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding.
Feature 1:phosphoinositide binding site [chemical binding site]
Evidence:
Comment:based on the binding of Rattus norvegicus Epsin ENTH domain to inositol 1,4,5-trisphosphate
Comment:ENTH domains bind phosphoinositides (PtdInsPs), usually with a preference for PdtIns(4,5)P2, although not all ENTH domains show this preference.