Chloroplast RPS7 has both general and specific regulatory roles in chloroplast translation process. uS7, also known as Ribosomal protein (RP)S7, is universally present in the small subunit of prokaryotic and eukaryotic ribosomes. The chloroplasts of plants and algae have bacterial ancestry, but it has adopted novel mechanisms in order to execute its roles within a eukaryotic cell. Chloroplast RPS7 is more homologous to bacterial RPS7 than other eukaryotic mitochondrial proteins. The ribosome small subunit is one of the two subunits of ribosome organelles that use mRNA as a template for protein synthesis in a process called translation. The chloroplast translation regulation is more complex than in bacteria with additional RNA and chloroplast-unique proteins. The small subunits of bacteria and eukaryotes have the same shape of head, body, platform, beak, and shoulder. RPS7 is located at the head of the small subunit. RPS7 is a primary ribosomal RNA (rRNA) binding protein that assists in rRNA folding and the binding of other proteins during small subunit assembly in all species. RPS7 is also involved in the formation of the mRNA exit channel at the interface of the large and small subunits. Some ribosomal proteins have extra ribosomal functions in cell differentiation and apoptosis.