?
PP2B, metallophosphatase domain PP2B (calcineurin) is a unique serine/threonine protein phosphatase in its regulation by a second messenger (calcium and calmodulin). PP2B is involved in many biological processes including immune responses, the second messenger cAMP pathway, sodium/potassium ion transport in the nephron, cell cycle progression in lower eukaryotes, cardiac hypertrophy, and memory formation. PP2B is highly conserved from yeast to humans, but is absent from plants. PP2B is a heterodimer consisting of a catalytic subunit (CnA) and a regulatory subunit (CnB); CnB contains four Ca2+ binding motifs referred to as EF hands. The PPP (phosphoprotein phosphatase) family, to which PP2B belongs, is one of two known protein phosphatase families specific for serine and threonine. The PPP family also includes: PP1, PP2A, PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination.
|