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Assessing Gene-Environment 
Interactions in Genome-Wide Association 
Studies: Statistical Approaches
Philip C. Cooley, Robert F. Clark, and Ralph E. Folsom

Abstract
In this report, we address a scenario that uses synthetic genotype case-control 
data that is influenced by environmental factors in a genome-wide association 
study (GWAS) context. The precise way the environmental influence contributes 
to a given phenotype is typically unknown. Therefore, our study evaluates how to 
approach a GWAS that may have an environmental component. Specifically, we 
assess different statistical models in the context of a GWAS to make association 
predictions when the form of the environmental influence is questionable. 
We used a simulation approach to generate synthetic data corresponding to 
a variety of possible environmental-genetic models, including a “main effects 
only” model as well as a “main effects with interactions” model. Our method 
takes into account the strength of the association between phenotype and 
both genotype and environmental factors, but we focus on low-risk genetic and 
environmental risks that necessitate using large sample sizes (N = 10,000 and 
200,000) to predict associations with high levels of confidence. We also simulated 
different Mendelian gene models, and we analyzed how the collection of factors 
influences statistical power in the context of a GWAS. Using simulated data 
provides a “truth set” of known outcomes such that the association-affecting 
factors can be unambiguously determined. We also test different statistical 
methods to determine their performance properties. Our results suggest that the 
chances of predicting an association in a GWAS is reduced if an environmental 
effect is present and the statistical model does not adjust for that effect. This is 
especially true if the environmental effect and genetic marker do not have an 
interaction effect. The functional form of the statistical model also matters. The 
more accurately the form of the environmental influence is portrayed by the 
statistical model, the more accurate the prediction will be. Finally, even with very 
large samples sizes, association predictions involving recessive markers with low 
risk can be poor.
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Introduction
In recent years, scientists and researchers have 
increasingly used the genome-wide association 
study (GWAS) in attempts to unravel the genetic 
factors that influence important phenotypes such as 
disease presence and predisposition. The hypothesis 
GWAS implies is that if genetic variations are more 
frequent in people with a given disease, the variations 
are likely associated with the disease. In general, 
GWAS apply univariate statistical tests to each gene 
marker or single nucleotide polymorphism (SNP) 
as an initial step. This SNP-based test is statistically 
straightforward, and the core tests for assessing the 
associations are standard methods (e.g., Chi Square 
tests, regression) that have been studied outside of 
and within the GWAS context. Kuo and Feingold1 
describe the most commonly used statistical 
methods applied to GWAS. All the tests they cite are 
single-locus tests. However, in an earlier paper2 we 
recommended combining two or more statistical tests 
if the genetic inheritance properties are not known. 

The popularity of the GWAS approach is testimony 
to its simplicity; however, it obscures the important 
issue of whether a single-gene model is conducive to 
unraveling the workings of the biosynthetic pathways 
of a phenotype. In the path leading from gene to 
trait, factors such as epigenetics, alternate splicing, 
gene expression levels, and protein-folding processes 
create a great deal of complexity. 

A number of researchers believe that most 
complex diseases involve multiple genes and their 
interactions.3,4 Although GWAS have had some 
success in identifying genetic variants underlying 
complex diseases, most existing studies are based 
on limited single-locus approaches that detect 
SNPs based on their marginal associations using a 
qualitative disease (case-control) diagnosis measure. 
A further problem with GWAS has been that the 
genetic (SNP) variation explains only a small 
proportion of the heritability.5 This issue has been 
identified in studies of twins, where an alternative 
estimate of heritability is available. 

Researchers can use classical statistical tests derived 
from case-control experiments to determine whether 

two loci associate in a GWAS context. Both Pearson’s 
chi squared test and tests involving logistic regression 
can be used to examine for pair-wise interaction 
assumptions. An early study6 investigating gene-
gene interactions showed that explicitly modeling 
interactions between loci for GWAS with hundreds of 
thousands of markers is computationally feasible. This 
study also showed that simple methods that explicitly 
consider interactions can actually achieve reasonably 
high power with realistic sample sizes under different 
interaction models with some marginal effects. This 
is true even after adjusting for multiple testing using 
the Bonferroni correction. However, the genotype-
phenotype scenarios addressed by this study had 
atypically large effects. 

In our study, we focused on low-effect loci with low 
relative risks of association with disease diagnosis, 
because the evidence7 suggests these are common. 
Most GWAS report only small changes in disease 
risk (1.1 to 1.5). It has also been reported8 that 
relative risks underestimate the true risk and the 
corresponding effect size. 

The word risk can have a variety of meanings. In an 
environmental context, it means “a hazard based 
on an exposure” to a chemical or pollutant such as 
tobacco smoke. In another context, risk is interpreted 
more narrowly to mean the probability of an adverse 
consequence, for example, an adverse event such as 
a disease. The term environmental risk in this study 
is used broadly; we define it as any process that 
contributes to a disease diagnosis that is not genetic 
in origin. Environmental risks can represent exposure 
to chemicals or pollutants—or a subject’s age, for 
example. 

Our overarching goal was to identify which 
statistical methods best identify genotype-
phenotype associations when environmental 
effects also influence the association. Detecting 
such associations is particularly difficult for genetic 
variants with modest impacts on risk. Consequently, 
our experiments specifically investigated scenarios 
involving low-risk genetic variants and assessed 
whether environmental influences with varied levels 
of risk could be a source of the “missing heritability” 
observed using single-gene models.9 Not surprisingly, 
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our investigations demonstrated that the best 
statistical method (with respect to statistical power) 
depends on whether there are interactions between 
the genotype and environmental factors as well as 
how well the specified statistical model matches the 
environmental effect associated with the phenotype. 
In summary, the simulated dataset provides a truth 
set for assessing the sensitivity of the effect of the 
statistical method and of the predicted association. 
Establishing the genotype-to-phenotype connections 
without using a simulation approach is difficult to 
impossible. While our study results demonstrate a 
number of obvious “truths,” a number of unexpected 
results may lead researchers to more powerful 
statistical approaches that can establish the validity of 
the simulation approach.

Background
Many complex diseases (e.g., diabetes, asthma, 
cancer) are affected in part by interactions between 
genes and environmental factors. However, 
investigators conducting GWAS typically test don’t 
investigate environmental factors. 

There have been several notable exceptions. 
For example, Terry et al.10 showed a significant 
interaction between smoking status and the specific 
gene for lung cancer. Another study, by Stern et 
al.,11 found smoking status to be an effect modifier 
of the association between a codon and the risk 
of bladder cancer. Understanding the relationship 
between genetic polymorphisms and environmental 
exposures can greatly aid investigators in detecting 
high-risk subgroups in the population and provide 
better insight into pathway mechanisms for complex 
diseases. 

Current GWAS methods are designed to detect 
main effects, that is, direct associations of a single 
nucleotide polymorphism (SNP) or clusters of 
SNPs with disease.12,13 In the context of complex 
diseases, examining main effects only could miss 
important genetic variants specific to subgroups of 
the population.

Gene-Gene Interaction Studies
Lichtenstein et al.14 studied twins and sought to 
connect hereditary factors to the causes of sporadic 
cancer. The study assessed the risks of cancer at 28 
anatomical sites for twin children of a parent who has 
cancer. Statistical modeling was used to estimate the 
relative importance of heritable and environmental 
factors in causing cancer at 11 of those sites. A major 
finding was that inherited genetic factors make a 
minor contribution to susceptibility for most types 
of neoplasms, indicating that the environment plays 
the principal role in causing sporadic cancer. The 
relatively large effect of heritability in cancer at a few 
sites (such as prostate and colorectal cancer) suggests 
major gaps in our knowledge of the genetics of 
cancer.

Another large study, by Pearce et al.,15 that also 
focused on cancer attempted to link several well-
established environmental risk factors for ovarian 
cancer and the results of a recent GWAS that 
identified six variants that influence disease risk. They 
pooled data from 14 ovarian cancer case-control 
studies, and then conducted stratified analyses of each 
environmental risk factor to evaluate the presence 
of interactions for all histological subtypes. They 
fit a multivariate model to examine the association 
between all environmental risk factors and genetic 
risk score on ovarian cancer risk. The results 
indicated no strong statistical evidence of interaction 
between the six SNPs or genetic risk score and the 
environmental risk factors on ovarian cancer risk. 

A large bladder cancer study16 demonstrated 
interactions due to smoking using a logistic 
regression (LR) adjusted for age. This study coded 
the genotype variable as a count of minor alleles 
conforming to our Models 1, 2, and 3 below. A study 
involving prostate cancer17 found no contribution 
from a number of environmental factors. This study 
used a number of LR models similar to those we used 
in our analysis. Another study18 developed a Bayesian 
framework to investigate the influence of multiple 
loci simultaneously on disease risk. Their “full” 
model consisted of a standard LR model that treats 
the genotype variable as a categorical variable and 
specifies a main effect with interactions model.
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Researchers have also used GWAS to examine type 2 
diabetes, a second disease with a strong interplay of 
both environmental and genetic factors.19 Genetic 
loci discovered through GWAS explain only a small 
portion of the disease risk variance; some of the 
unexplained risk may be due to gene-environment 
interactions. The study suggested that the adverse 
effect of several type 2 diabetes loci may be abolished 
or at least attenuated by higher physical activity levels 
or healthy lifestyle, whereas low physical activity and 
the typical Western diet may augment it. 

Patel et al.19 used data from two surveys from 
the Centers for Disease Control and Prevention’s 
National Health and Nutrition Examination Survey 
(NHANES). They used a GWAS to screen 18 genetic 
loci and type 2 diabetes for statistical interactions 
that were associated with disease. They describe their 
investigation as an environment-wide association 
study (EWAS), and they used data sets from four 
cohorts from the NHANES. Because the four 
cohorts were analyzed individually, the number of 
environmental factors varied among them.

Patel et al.19 used logistic regression and adjusted 
all models for age, sex, body mass index, and race. 
The results identified eight potential disease gene–
environmental factor interactions. One interaction 
(trans-β-carotene) was particularly significant. The 
per-risk-allele effect sizes, after adjusting for age, 
sex, body mass index, and race for subjects with low 
trans-β-carotene levels, were 40 percent greater than 
the marginal genetic effect size of the SNP. They 
also found a strong interaction between a SNP and 
a nutrient found in corn oil, which conveyed a 20 
percent higher risk than the SNP alone did. 

Murcray et al.20 performed a general methodological 
study that focused on identifying SNPs that 
demonstrate heterogeneity between subgroups 
defined by some environmental exposure. They 
describe a two-step approach for detecting loci 
involved in gene-environment interactions that is 
performed independently of any initial scans for 
main effects. They expanded on the traditional test 

for gene-environment interaction in a case-control 
study by incorporating a preliminary screening step 
constructed to efficiently use all available information 
in the data. They claim that their two-step approach 
is more powerful than the standard test of interaction 
across a wide range of models and consequently is 
more robust to changes in environmental exposure 
and minor allele frequency than the traditional 
one-step test for identifying highly significant SNPs. 
The difficulty with most methods, including theirs, 
is that it is not a “data mining” method. The specific 
environmental factor and the form of that factor have 
to be established prior to analysis. This has proven 
to be a difficulty with our methods as well. The 
specific environmental factor or factors to include 
in the model greatly affect the power of the tests. 
Specifically, researchers should use some combination 
of the literature and/or data mining activities to 
establish the form of the environmental effect model 
(step function or linear) on the logistic scale. 

A study by Cornelis et al.21 provides a comparative 
study of several logistic regression–based tests of 
gene-environment (G-E) and G×E interactions. All 
seven methods compared in their paper assumed 
a log-additive mode-of-inheritance model for each 
SNP. This differs from our methods, in which the 
mode of inheritance was agnostic. Cornelis et al. 
do not identify a preference for any of the seven 
methods and instead indicate that preference would 
depend on the goal of the study. They also explored 
methods investigating environment effects only in 
subjects with a positive phenotype case (i.e., case-only 
studies). 

Finally, a Kraft et al. study,22 similar in content to the 
Cornelis et al. study in that it also focused on log-
additive gene models, formulated a likelihood ratio 
test of association between disease and locus with the 
possibility that the genetic effect may be modified by 
an environmental factor. The specific environment 
model they investigated was similar to one of the 
experiments examined in our study—namely, a 
chemical spill—an all-or-nothing type of exposure. 
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Methods

Overview
We simulated genetic and environmental interactions 
in a GWAS context using a qualitative association 
framework to determine which statistical methods 
and models reliably predict associations between 
a qualitative phenotype (specifically, a disease 
diagnosis, coded as “case” for a positive diagnosis 
or “control” for a negative diagnosis) and a gene 
paired with an environmental influence. As with 
our previous work,2 the concept of relative risk is 
the basis for this investigation. We define the genetic 
relative risk (Φ) of a wild-type genotype to be the 
ratio of the probability of a positive diagnosis given 
an occurrence of a (wild-type) genotype divided by 
the probability of disease in the absence of the disease 
genotype. We also define the environmental risk (Π) 
as the ratio of the probability of a positive diagnosis 
given an exposure divided by the probability of a 
positive diagnosis in unexposed subjects. The values 
of Φ and Π are specified exogenously and vary from 
low-risk to not-so-low-risk. 

We generated 1,000 replicates of simulation data 
that depended on the two risk values (Φ and Π) for 
each of three gene models using a standard Bernoulli 
process and analyzed them in terms of the observed 
power profiles for a low alpha error (α ≤ 10-8). The 
distribution of the number of alleles per genotype 
was randomized across replicates and was based on 
real data from Schymick et al. (2007).23 We biased 
the risk levels to the low end of the risk continuum 
because these are more difficult scenarios and are 
typical of what has been observed in the literature.7 
To support these low risk levels, we fixed our sample 
size to N = 10,000 (5,000 cases and 5,000 controls) 
and N = 200,000 (100,000 cases and 100,000 controls) 
to determine whether it is possible to measure 
associations in low-risk, recessive inheritance 
scenarios. Others24 have used smaller values 
(N = 6000) for comparable investigations. 

Generating the Synthetic SNP Data
We derived our data generation method from a study 
by Iles25 and from Mendelian concepts of inheritance. 
We specifically incorporated autosomal dominant, 

recessive, and additive inheritance patterns into the 
data. These data also depend on factors known to 
influence association measurements in the context of 
GWAS. Our simulation process assumes Mendelian 
type inheritance patterns. 

Penetrance was defined as the proportion of 
individuals without the risk allele who have 
a definable trait (phenotype). In other words, 
penetrance was a genotype-specific probability of 
being affected with the trait. We designated a as the 
risk allele and A as the allele without risk. Generating 
the synthetic dataset using the relationships between 
penetrance and risk for different mode of inheritance 
(MOI) categories was straightforward (see Cooley 
et al., 2010,2 for further detail). 

Initially, we supplied as input data the following 
variables: 

•	 n = the target number of cases and controls in a 
given experiment,

•	 P = the disease penetrance,

•	 Φ = the genotype relative risk (1.10, 1.15, 1.20), and

•	 Π = the environmental relative risk (specification 
details are provided below).

The distribution of genotypes were drawn at random 
from a master set of genotype distributions obtained 
from real SNP data.23 

In screening samples from the master set, Chan 
et al.26 recommend that a minor allele frequency 
(MAF) threshold not be applied as a filter. They 
argue that filtering MAFs out of the process because 
of low frequencies or to maintain Hardy–Weinberg 
equilibrium deviation has little effect on the overall 
false positive rate and, in some cases, filtering on 
MAF excludes SNPs. The effect of this step is to select 
a specific genotype distribution at random from the 
master distribution.

From the selected relative risk (Φ), penetrance (P), 
and MOI assumptions, we used the formulas in 
Table 1 to assign a case (1) or control code (0). This 
step converts the relative risk ratio (Φ) into the 
probability of a case (disease), given the MOI gene 
model assumed.
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This genotype-specific process can be represented by 
the following logic:

•	 Major homozygote (AA)

	 If the AA (non-disease) genotype is selected, the 
probability of a case equals the disease penetrance, 
P.

•	 Minor homozygote (aa)

	 Ψaa is the exogenous risk and represents the ratio 
of two probabilities: the probability of a case for a 
minor homozygote divided by the probability (Pr) 
of a case for a major homozygote, i.e.,

	 Ψaa = Pr(case/aa) / Pr(case/AA) = x/P.		 (1)

	 Thus, the probability of a case given the minor 
genotype is

 	 x = Ψaa * P	 (2)

•	 Heterozygote (aA)

	 By the same argument, the phenotype risk  
given a heterozygote is

	 ΨaA = Pr(case/aA) / Pr(case/AA) = y/P.	 (3)

	 Thus, the risk of a case given the heterozygote 
genotype is 

	 y = ΨaA * P	 (4)

	 where ΨaA is the assumed risk factor and P is  
the assumed penetrance. 

Implicit in equations 1 through 4 is a consistent 
definition of penetrance defined as the proportion of 
cases that are present in the major genotype AA. 

Using the estimate of x from equation 2 and y from 
equation 4, we specified a subject as a case (1) or 
control (0) at random using the four different MOI 
models from Table 1. For the MOI models that 
assume an elevated risk from the minor and the 

heterozygote genotypes, we would expect a higher 
proportion of cases to be more easily identified via 
the statistical procedures. Specifying risk depends on 
known and unknown disease mechanisms. A relative 
risk of 1.7 is considered strong and is associated with 
positive replication,27 and a risk of 1.3 is considered28 
to be a more realistic assumption for complex 
diseases. Consequently, we limited our focus to 
relative risks in the range of 1.10 to 1.20. 

Note that we assigned cases and controls so that there 
would be no possibility for the introduction of bias. 
We chose to ignore errors in both genotype and the 
phenotype measurements which in a real experiment 
could be a source of bias (we examined both sources 
of error in an earlier study).29 This process continued 
until we created n1 cases and n2 controls. We then 
applied a set of statistical methods (identified below) 
to predict associations, then recorded and tracked the 
results. For each set of unique factor combinations 
(i.e., penetrance, sample sizes, relative risk levels, 
and MOI categories) we generated 1,000 replicate 
experiments.

Exogenously, we specified the genetic inheritance 
(GI) relative risk of disease as 1.10, 1.15, and 1.20 
and defined it in the Overview as the ratio of the 
probability of a disease diagnosis for subjects, 
dividing the wild-type gene by the probability of 
disease, based on all genetic and nongenetic causes. 
We also defined a second relative risk component 
based on a specific environmental exposure (EE). 
We defined this ratio as the probability of a disease 
given the environmental exposure divided by the 
probability of a diagnosis given no environmental 
exposure. In discussion of these experiments, we use 
the notation Φ to represent GI and Π to represent EE. 

Table 1. Relative risk assumptions by mode of inheritance (MOI)

Inheritance Model

Major Homozygote Risk Minor Homozygote Risk  Heterozygote Risk

ΨAA
Pr(case/aa)
Pr(case/AA)

Ψaa = Pr(case/aA)
Pr(case/AA)ΨAa =

Recessive 1 Φ 1

Dominant 1 Φ Φ

Additive 1 2 * Φ − 1 Φ

Multiplicative 1 Φ * Φ Φ
Pr = probability. Φ = genetic inheritance risk.

Source: Iles (2002).25
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The form of the EE relative risk can be specified 
using a variety of assumptions. In all scenarios, the 
genetic risk is first used to determine the phenotype 
status (case or control). Then the environmental 
risk calculation determines whether the phenotype 
status is altered from control to case according to 
the EE assumptions. We assume that the form of the 
EE effect is not known but that the specific variable 
is known. In the following experiments we use E = 
age as a proxy for the different assumed forms of 
exposure, and we assign E a value obtained from 
a uniform distribution of 30 to 70. The value of E 
controls the EE risk according to different experiment 
designs. The main objective of this assessment is to 
identify whether one statistical model outperforms all 
other models and how much variation occurs across 
the different experiments. 

For all experiments below, we used the GI as 
described above.

Experiment 1—The Main Effects Model
For the first experiment, half of the population 
(selected at random and assigned ages 50 < E < 71) 
incurred an EE relative risk (Π). The assigned risk 
value was 1.10, 1.20, 1.30, or 1.40. The other half of 
the population (assigned ages 29 < E < 51) incurred 
no risk; i.e., Π = 1.0. Thus, Experiment 1 simulates 
a fixed EE. When the determinant risk variable, E, 
exceeds a threshold, a positive diagnosis is more 
likely to occur. This is identified as the fixed risk, main 
effects, no interaction model. 

Experiment 2—The Interaction Effects Model
For the second scenario, again half of the population 
(selected at random and assigned ages 50 < E < 71) 
incurred an EE relative risk (Π). This risk value was 
1.10, 1.20, 1.30, or 1.40, but only if the subject also 
had a wild-type allele (i.e., a heterozygote or minor 
homozygote genotype). The other component of the 
population (aged 50 < E < 71 and genotype = AA) 
incurred no EE risk; i.e., Π = 1.0. Experiment 2 also 
simulates a fixed EE but only if the genotype contains 
a wild type allele. This is identified as the fixed risk, 
main effect with interaction model. 

Experiment 3—The Main Effects Log-Linear Risk 
Model 
For the third scenario, the entire population 
(randomly assigned ages 30 ≤ E ≤ 70) incurred an 
EE relative risk (Π) which was related to E in the 
following manner: 

	 y = 	(E – 30)/40. 

	 Π = X y (X to the y power) where X =  
	 {1.10, 1.20, 1.30, 1.40}.

Experiment 3 simulates a log-linear variable risk 
model, with larger values of E conveying additional 
risk levels. As in Experiment 1, there is no interaction 
between the GI and EE risks. 

Experiment 4—The Interaction Effects Log-Linear 
Risk Model 
The fourth scenario is the same as the third scenario, 
but the risk applies only if the subject has a wild-type 
allele. 

Experiment 4 simulates a variable risk scenario with 
larger values of E conveying higher risk levels—but 
only if the genotype contains a wild-type allele. This 
is the log-linear variable risk main effect with genotype 
interaction model. 

For each experiment type, we varied the gene model 
to determine the relative power differences across 
model specification. Overall, Experiment 1 data has 
a step function relationship to EE and no interaction 
or difference in slopes (or EE step heights) across the 
three genotypes. In contrast, the Experiment 2 data 
has a step function relationship with EE where the aa 
and aA genotypes have the same slope (step height) 
but different intercepts. The AA genotype relationship 
to the EE is flat or has zero slope (no step up). In 
Experiment 3, the relationship to EE is log-linear, 
with equal slopes for all three genotypes. Finally, in 
Experiment 4, the relationship to EE is log-linear; 
the aa and aA genotypes have the same slope but 
different intercepts; and the AA genotype relationship 
to the EE is flat, or has zero slope.
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Statistical Models
All models tested assumed a logistic regression 
(LR) specification. This form is commonly used 
in association studies involving environmental 
interactions.21

The variables used in the different models are shown 
in Table 2. 

We used three specific statistical models to assess 
the data generated by the four experiments. Each 
assumed an intercept term and had the following 
form: 

•	 Model 1 is a logistic regression model with a single 
variable genotype (G) main effect (2 df). This is a 
candidate model if no environmental exposure were 
suspected. 

•	 Model 2 is a logistic regression mixed main effects 
and interaction model (g1, g2, E, g1*E, g2*E) (6 df). 
This is a fully specified model that assumes that the 
environmental exposure is a continuous variable.

•	 Model 3 is also a logistic regression mixed main 
effects and interaction model (g1, g2, e1, g1*e1, 
g2*e1) (6 df). This is the fully specified categorical 
model and assumes that the environmental 
exposure has a specific (all-or-nothing) categorical 
variable form.

The specific regression models we used in this study 
are summarized in Table 4. Note that we initially 
compared six models. Two were gene-only models—a 
1 df (log-additive test) and a 2 df test—and four were 
main effects plus interaction models. We had two 
environmental exposure specifications (E and e1) 
and two genetic inheritance specifications (G and g1, 
g2). From the six initial models, we selected the three 
models that dominated the other three: M-1, M-2, 
and M-3. We dropped the other three models (M-1a, 
M-2a, and M-3a) from our assessment.

Table 2. Descriptions of variables used in the logistic 
regression models

Variable 
Category Name Form Values
Genotype G Continuous 0, 1, 2

Genotype g1, g2 Categorical 0, 1

Environmental E Continuous 30–70

Environmental e1 Categorical 0, 1

Interaction g1*E Mixed 0, 30–70

Interaction g1*e1, g2*e1 Categorical 0, 1

Notes: G = the number of wild-type alleles for the genotype (0, 1, 2).

g1 = 1 if the subject is a heterozygote, otherwise g1 = 0. 

g2 = 1 if the subject is a minor or wild homozygote, otherwise g2 = 0. 

E = a variate from a uniform distribution (30–70) that suggests it is an age. 

e1 = an indicator variable set to 0 if E < 50. Otherwise e1 = 1.

The difference between the experiments is 
straightforward. For subjects younger than age 50, the 
environmental exposure risk is 1.0 (i.e., no risk) in 
Experiments 1 and 2; subjects older than age 50 have 
an environmental exposure (i.e., the risk is greater 
than 1.0). However, for Experiment 2, an additional 
condition pertains: Here only subjects age 50 and 
older who have a wild-type allele are assumed to have 
the assigned risk. The main discriminator between 
Experiments 1 and 3 (and Experiments 2 and 4) is 
the risk characterization. For Experiments 1 and 2, 
the risk is intended to be an all-or-nothing process 
akin to a toxic exposure that occurs some time after 
the subject reaches age 50. For Experiments 3 and 4, 
the risk due to an environmental exposure is present 
in all subjects and increases as age increases. The 
experiments are summarized in Table 3.

Table 3. Experiment description

Experiment Risk Type Scenario 
Description

Exposure Action

1 Fixed EE Chemical 
exposure 

Risk applies to half of 
the population

2 Fixed 
EE with 
interaction

Chemical 
exposure 
affects 
genotype

Risk applies to the half 
of the population who 
have the wild-type 
allele

3 Variable EE Advancing 
age

Risk applies to half of 
the population and 
increases with age

4 Variable 
EE with 
interaction

Advancing 
age affects 
genotype

Risk applies to the 
half of the population 
who have the wild-
type allele, and risk 
increases with age

EE = environmental exposure.
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The test statistics we used in our analyses are defined 
as the difference between two log-likelihood (LLH) 
statistics. The first is specific to the model used, 
and the second is based on a model with only the 
intercept term. 

Results

Association Analysis
In this section, we describe the power profiles that 
result by applying the models described in Table 4 
to the data generated according to the four different 
experiments in Table 3. We focus 
on detecting the associations 
between the combined genotype-
environmental factors on phenotype 
outcome (disease diagnosis). We 
assess the importance of model 
specification in predicting the 
presence of association with a 
phenotype of interest and to what 
degree the gene model and genotype 
environment interactions influence 
power. In the following section, 
Genotype Associations (p. 14), we 
assess the role of the genotype alone 
in predicting association while 
controlling for the environmental 
influence. 

Note that in calculating all power 
results in this section we assumed 
that the Type I error rate was 10-8. 

However, since all combined environmental exposure 
and genetic inheritance risk values are greater than 
1.0 in all of our experiments, only Type II errors were 
possible. 

Table 5 shows the data generated using the protocol 
for Experiment 1. Note that for this and all 
subsequent tables in this section, the highest power 
value for each risk profile within the three MOI 
categories is bolded to highlight the optimal model. 
For each genetic inheritance (GI) risk level (Φ) there 
is an environmental exposure (EE)risk level (Π) equal 
to 1.0, indicating no EE risk.

Table 4. Statistical models assessed

Model Main Effects Interactions df Test Statistic
M-1 G NA 1 LLH[log(α, G)] – LLH[log(α)] 

M-1a g1, g2 NA 2 LLH[log(α, g1, g2)] – LLH[log(α)] 

M-2 g1, g2, E g1*E, g2*E 5 LLH[log(α, g1, g2, E, g1*E, g2*E)] – LLH[log(α)] 

M-2a G, E G*E 3 LLH[log(α, G, E, G*E)] – LLH[log(α)]

M-3 g1, g2, e1 g1*e1, g2*e1 5 LLH[log(α, g1, g2, e1, g1*e1, g2*e1)] – LLH[log(α)]

M-3a G, e1 G*e1 3 LLH[log(α, G, e1, G*e1)] – LLH[log(α)]
df = degrees of freedom; NA = not applicable; LLH = log-likelihood. α = the logit scale intercept for the line relating environmental exposure (EE) to the log-odds risk 

among those subjects with the non-disease genotype AA.
Notes: G = the number of wild-type alleles for the genotype(0, 1, 2).
g1 = 1 if the subject is a heterozygote, otherwise g1 = 0. 
g2 = 1 if the subject is a minor or wild homozygote, otherwise g2 = 0. 
E = age, 30–70.

Table 5. Power values, by statistical model, Φ, and Π: Experiment 1—all 
gene models

Additive Dominant Recessive

Φ  Π M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3
1.10 1.00 .002 .004 .004 .000 .004 .004 .000 .000 .000

1.10 1.05 .002 .016 .022 .000 .040 .044 .000 .000 .000

1.10 1.10 .000 .160 .316 .000 .214 .354 .000 .050 .122

1.10 1.15 .002 .654 .882 .000 .728 .924 .000 .488 .810

1.10 1.20 .006 .986 1.00 .000 .992 1.00 .000 .968 1.00

1.15 1.00 .024 .046 .042 .000 .028 .024 .000 .000 .000

1.15 1.05 .028 .102 .138 .000 .082 .102 .000 .000 .000

1.15 1.10 .042 .378 .538 .000 .336 .468 .000 .038 .144

1.15 1.15 .052 .838 .948 .000 .832 .954 .000 .528 .806

1.15 1.20 .064 .996 1.00 .000 .994 1.00 .000 .958 .998

1.20 1.00 .246 .210 .206 .004 .100 .104 .000 .000 .000

1.20 1.05 .274 .308 .338 .002 .214 .240 .000 .002 .004

1.20 1.10 .308 .630 .746 .006 .552 .684 .000 .054 .142

1.20 1.15 .350 .908 .982 .016 .912 .972 .002 .586 .852

1.20 1.20 .394 .996 1.00 .028 .994 1.00 .004 .972 .998

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: Bold indicates the optimal model.  The statistical models (M-1, M-2, and M-3) are indicated in Table 4.
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Figure 1 shows the data generated using the protocol 
for Experiment 1 for the additive gene model. Figure 
1 includes the optimal model (Model M-3, identified 
by the bolded cells in Table 5) and the model that 
does not include an EE variable in its specification 
(Model M-1). The results presented in Table 5 and 
Figure 1 indicate that there is little difference in 
performance between models when the risk of EE is 
not present.

The results shown in Figure 1 and Table 5 indicate the 
following:

•	The power profile of model M-1 is substantially 
below that of models M-2 and M-3. M-1 represents 
a typical single locus method used in a GWAS that 
ignores environmental influences. We conclude that 
not including an EE reduces the likelihood of the 
locus being associated with the phenotype. 

•	 Model M-3 is the most powerful of the three 
models. This is expected since the Experiment 1 
protocol should generate data consistent with the 
M-3 model formulation. 

•	The difference between the profiles of models 
M-2 and M-3 is a result of the manner used to 

characterize the EE functional form. Because the 
data was generated in a manner compatible with 
the e1 variable used in model M-3, it generated 
more accurate power predictions.

Note that in the full M-3 model, the overall intercept 
is the log of the intercept for the line that relates EE 
to the log-odds risk among those subjects with the 
non-disease genotype AA. The coefficient associated 
with the g1 main effect is testing for the difference 
between intercepts for the subjects with genotype aA 
and those with genotype AA. Similarly, the g2 main 
effect coefficient is testing for the difference between 
the intercepts for subjects with the aa genotype and 
those with the AA genotype. 

The EE main effect coefficient is the height of the 
step in the step function relating EE to log-odds-risk 
for subjects with the AA genotype and, it therefore, 
tests for a common EE step height across all three 
genotypes. The g1*E interaction coefficient is the 
difference between the step heights for the aA 
subjects and the AA subjects. Similarly, the g2*E 
coefficient is the difference between the step heights 
for the aa subjects and the AA subjects. Since the AA, 

Figure 1. Power curves, by statistical model, Φ, and Π: Experiment 1—additive gene model
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Note: The statistical models (M-1 and M-3) are indicated in Table 4.
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aA, and aa step heights/slopes associated with the EE 
environmental effect are all equal in Experiments 1 
and 3, only the common main effect (ME) associated 
with EE contributes to association 
prediction in those data sets, and the 
interaction terms are superfluous. 

Table 6 and Figure 2 show the 
results of applying the three 
models described in Table 4 to the 
data generated according to the 
Experiment 2 protocol (see Table 3). 
Experiment 2’s results indicate that

•	 Even though model M-1 does 
not adjust for EE, the observed 
(relatively) high power profiles 
for high EE risk levels suggest 
that the GI-EE interaction effect 
is embedded in the M-1 power 
values, and the high power profiles 
are credited as a genotype main 
effect. 

•	 As in Experiment 1, model M-3 
outperforms all other models 
because the variable e1 properly 
characterizes EE behavior. This 

clearly demonstrates the value of preprocessing (i.e., 
mining) the data before committing to a specific 
association model.

Figure 2. Power curves, by statistical model, Φ, and Π: Experiment 2—additive gene model
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Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: The statistical models (M-1 and M-3) are described in Table 4.

Table 6. Power values, by statistical model, Φ, and Π: Experiment 2—all  
gene models

Additive Dominant Recessive

Φ  Π M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3
1.10 1.00 .002 .004 .004 .000 .004 .004 .000 .000 .000

1.10 1.05 .012 .086 .106 .000 .086 .094 .000 .000 .002

1.10 1.10 .114 .394 .462 .010 .408 .442 .002 .072 .116

1.10 1.15 .340 .702 .744 .078 .690 .738 .022 .376 .462

1.10 1.20 .640 .856 .914 .318 .844 .896 .104 .642 .714

1.15 1.00 .024 .046 .042 .000 .028 .024 .000 .000 .000

1.15 1.05 .166 .258 .290 .006 .212 .222 .000 .000 .004

1.15 1.10 .478 .634 .676 .082 .570 .590 .002 .090 .126

1.15 1.15 .710 .808 .832 .380 .846 .872 .082 .398 .464

1.15 1.20 .880 .952 .968 .730 .934 .954 .230 .654 .740

1.20 1.00 .246 .210 .206 .004 .100 .104 .000 .000 .000

1.20 1.05 .544 .518 .520 .084 .404 .426 .008 .002 .006

1.20 1.10 .760 .776 .784 .336 .752 .784 .052 .120 .162

1.20 1.15 .918 .926 .936 .736 .920 .944 .184 .418 .496

1.20 1.20 .978 .990 .996 .916 .984 .986 .345 .640 .725

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.
Note: Bold indicates the optimal model. The statistical models (M-1, M-2, and M-3) are described in Table 4.
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Table 7 and Figure 3 show the results 
of applying the three statistical 
models described in Table 4 to the 
data generated according to the 
Experiment 3 protocol (see Table 3).

For Experiment 3, the results shown 
in Figure 3 and Table 7 indicate that 

•	 Model M-1 consistently performs 
below M-2 and M-3, indicating that 
not including an EE term limits the 
association assessment. 

•	 In general, model M-2 produces 
better power profiles than M-3. 
This is expected given that the EE 
incremental risk is linearly related 
to the log of EE. Thus, model 
M-2 is more consistent with the 
protocol used to generate the data 
in Experiment 3.

Table 7. Power values, by statistical model, Φ, and Π: Experiment 3—all 
gene models

Additive Dominant Recessive

Φ  Π M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3
1.10 1.00 .002 .000 .004 .000 .006 .004 .000 .000 .000

1.10 1.05 .002 .008 .006 .000 .014 .014 .000 .000 .000

1.10 1.10 .002 .034 .030 .000 .044 .030 .004 .004 .000

1.10 1.15 .002 .152 .096 .000 .190 .120 .062 .024 .018

1.10 1.20 .004 .472 .296 .000 .500 .260 .258 .228 .066

1.15 1.00 .024 .036 .042 .000 .034 .024 .000 .000 .000

1.15 1.05 .030 .068 .058 .000 .048 .052 .000 .000 .000

1.15 1.10 .040 .152 .106 .000 .162 .118 .002 .002 .002

1.15 1.15 .046 .390 .278 .000 .384 .302 .048 .034 .012

1.15 1.20 .052 .650 .524 .000 .670 .508 .308 .278 .074

1.20 1.00 .246 .174 .206 .004 .114 .104 .000 .000 .000

1.20 1.05 .270 .274 .250 .002 .166 .150 .000 .000 .000

1.20 1.10 .286 .402 .376 .002 .344 .260 .004 .002 .002

1.20 1.15 .348 .658 .548 .012 .520 .490 .098 .058 .032

1.20 1.20 .378 .862 .718 .024 .796 .660 .299 .289 .107

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: Bold indicates the optimal model. The statistical models (M-1, M-2, and M-3) are described in Table 4.

Figure 3. Power curves, by statistical model, Φ, and Π: Experiment 3—additive gene model
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The results for Experiment 4 are 
shown in Table 8 and Figure 4. They 
indicate the results of applying the three 
models described in Table 4 to the data 
generated according to the Experiment 4 
protocol (see Table 3). 

The results shown in Table 8 and Figure 
4 indicate that

•	 Consistent with Experiment 2’s results, 
model M-1 does not adjust for EE, 
but because of the influence of GI-EE 
interaction effects, M-1 displays higher 
power profiles for large EE risk levels. 

•	 As in Experiment 3, model M-2 
outperforms M-3 because it 
better characterizes the EE by 
using the variable E (age) and 
further demonstrates the value of 
preprocessing (i.e., mining) the 
data before committing to a specific 
association model. 

•	 In the presence of GI-EE interaction 
effects, the genetic-only model (M-1) 
performs better than anticipated.

Table 8. Power values, by statistical model, Φ, and Π: Experiment 4—all 
gene models

Additive Dominant Recessive

Φ  Π M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3
1.10 1.00 .002 .006 .004 .000 .006 .004 .000 .000 .000

1.10 1.05 .008 .054 .006 .000 .068 .054 .000 .000 .002

1.10 1.10 .078 .236 .030 .006 .284 .226 .002 .014 .008

1.10 1.15 .220 .478 .096 .048 .500 .476 .008 .110 .078

1.10 1.20 .510 .672 .678 .148 .624 .632 .046 .314 .294

1.15 1.00 .024 .074 .042 .000 .046 .024 .000 .000 .000

1.15 1.05 .118 .208 .164 .002 .162 .130 .000 .000 .000

1.15 1.10 .384 .514 .476 .040 .454 .410 .000 .018 .016

1.15 1.15 .618 .688 .658 .232 .698 .684 .046 .162 .132

1.15 1.20 .820 .830 .838 .570 .802 .792 .144 .354 .328

1.20 1.00 .246 .250 .206 .004 .138 .104 .000 .000 .000

1.20 1.05 .464 .466 .406 .046 .354 .290 .004 .002 .000

1.20 1.10 .714 .714 .692 .222 .642 .624 .026 .040 .022

1.20 1.15 .892 .876 .864 .622 .816 .824 .136 .216 .170

1.20 1.20 .954 .940 .944 .848 .916 .930 .257 .317 .343

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level.

Note: Bold indicates the optimal model. The statistical models (M-1, M-2, and M-3) are described in Table 4.

Figure 4. Power curves, by statistical model, Φ, and Π: Experiment 4—additive gene model
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Genotype Associations
The analysis in the previous section focused 
exclusively on composite associations, that is, 
whether a specific gene plus an environmental factor 
associates with a phenotype. As we noted earlier, our 
main interest was separating main genetic effects 
from environmental effects and their interactions. To 
accomplish this, we defined a total effect test (TOT) 
that adjusts for EE where:

	 TOT = LLH [log (α, g1, g2, e1, g1*e1, g2*e1)]  
	 – LLH [log (α, e1)]	 (5)

is the test we applied to the data generated by 
Experiments 1 and 2 protocols and

	 TOT = LLH [log (α, g1, g2, E, g1*E, g2*E)]  
	 – LLH [log (α, E)]	 (5a)

is the test that we applied to the data generated by 
Experiments 3 and 4 protocols.

TOT is the association test that measures genetic 
effects (main and interactive) and is adjusted for 
the environmental effect.30 TOT simultaneously 
measures whether the aA and aa intercepts are 
different from the AA intercept and whether the aA 
and aa slopes are non-zero, given that the AA slope 
on EE is zero. This test was used to test for association 
from all causes. 

We also define two additional tests for genotype-
environment interactions, INT, as follows:

	 INT = LLH [log (α, e1, g1, g2, g1*e1, g2*e1)]  
	 – LLH [log (α, e1, g1, g2)]	 (6)

and

	 INT = LLH [log (α, E, g1, g2, g1*E, g2*E)]  
	 – LLH [log (α, E, g1, g2)].	 (6a)

The INT test subtracts the main effects for g1, g2, and 
EE from the TOT and tests whether the EE steps (or 
slopes) for the aA and aa genotypes are different from 
the corresponding EE step (slope) for genotype AA.

The final test measures the influence of the genetic 
main effects (ME). 

	 ME = LLH [log (α, e1, g1, g2)]  
	 – LLH [log (α, e1)]	 (7)

is the test applied to the data generated by 
Experiments 1 and 2 protocols and

	 ME = LLH [log (α, E, g1, g2)]  
	 – LLH [log (α, E)]	 (7a)

is the corresponding test for data from Experiments 3 
and 4 protocols.

The ME tests check whether the estimated aA and aa 
intercepts differ from the AA intercept, conditioned 
on the EE step sizes (e1 in experiments 1and 2) or the 
EE slopes (E in experiments 3 and 4) being equal for 
all three genotypes. 

Note that for Experiments 2 and 4, both the AA 
step (coefficient of e1) and slope (coefficient of E) 
on EE are zero, and therefore the coefficient for the 
EE main effect (assuming that the M-3 is operating) 
is estimating zero; the two interaction columns are 
estimating the aA step/slope minus zero and the aa 
step/slope minus zero, respectively. 

Typically, these three tests would be applied 
sequentially: TOT followed by INT, then ME. 
Assessing whether an interactive or non-interactive 
genetic association is obtained would depend on the 
result of the preceding test. 

For example, if TOT is non-significant, the process 
stops and we conclude that there is no connection 
between the genetic locus and the phenotype. 
Otherwise, we would apply the INT test. If INT was 
significant, we could conclude that the locus and the 
phenotype are significantly related, with the caveat 
that the strength of the genotype effect varies by the 
EE risk level. The ME test would only be applied if the 
TOT is significant and INT test is not significant. In 
this case, the ME test would be applied to affirm that 
the genetic and environmental effects are operating 
independently of each other and to assert that a 
common genotype main effect exists that applies to all 
EE levels. The results of running the three tests (TOT, 
INT, and ME) are shown in Tables 9 through 13.

Consider that every replicate in every cell produced 
by the simulation experiments is designed to generate 
a genotype-phenotype association (albeit at low 
risk). Some of these replicates influenced by an EE 
also contribute toward association. However, in a 
perfect statistical world, all are generated to predict 
an association with the phenotype. The fact that they 
do not is an indication of the limitations of the GWAS 
process.
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In addition, Table 9 suggests that

•	 Association detection involving recessive genes 
is difficult to identify (and accordingly requires a 
larger sample size than we used in our experiments.

•	 Scenarios involving gene-environment interactions 
(Experiments 2 and 4) greatly influence whether 
genetic influences can be detected by a gene-only 
model.

•	The type of EE process influences the ability to 
detect an association, whether the effect is due to a 
chemical-type exposure (Experiments 1 and 2) or is 
due to aging (Experiments 3 and 4). 

Table 10 presents the results of applying the INT test 
to all experiments and all gene models. Not shown are 
the results for Experiments 1 and 3, which generated 
data without interaction effects. They estimate no 
interaction between GI and EE (as they should), so 
those results are not shown. Note that the Type 1 α 
thresholds in Table 11 for generating power estimates 
for all cells are ≤10-2.

Table 10 reaffirms the results of Table 9, namely, that

•	 Power values for recessive genes are very low and 
accordingly were more difficult to identify than 
other gene models.

•	 Gene-environment interactions influence 
association outcomes. This is evidenced by all cells 
of the no-interaction experiments (1 and 3) having 
power values <.004.

•	The type of EE process influences the detection 
of an association, whether the effect is due to an 
exposure (Experiments 1 and 2) or is due to an 
aging mechanism (Experiments 3 and 4).

•	 Interaction effects achieve significant levels in 
Experiment 2 for risk values of EE ≥ 1.2 only.

Table 9. Total effects test (TOT) power values, by risk profile, Φ, and Π—all experiments and gene models, 
N = 200,000

Φ Π

Experiment 1 Experiment 2 Experiment 3 Experiment 4

TOT^ 
Rec

TOT^ 
Dom

TOT^ 
Add

TOT^ 
Rec

TOT^ 
Dom

TOT^ 
Add

TOT* 
Rec

TOT* 
Dom

TOT* 
Add

TOT* 
Rec

TOT* 
Dom

TOT* 
Add

1.10 1.00 .319 .601 .574 .319 .601 .574 .328 .573 .538 .328 .573 .538

1.10 1.05 .328 .602 .612 .523 .777 .827 .340 .619 .608 .719 .958 .968

1.10 1.10 .343 .604 .577 .806 .949 .953 .377 .636 .596 .990 1.00 1.00

1.10 1.15 .344 .613 .625 .958 .994 .999 .408 .684 .662 1.00 1.00 1.00

1.10 1.20 .358 .622 .637 .993 .999 1.00 .492 .709 .704 1.00 1.00 1.00

1.15 1.00 .341 .725 .739 .341 .725 .739 .336 .725 .713 .336 .725 .713

1.15 1.05 .363 .745 .769 .534 .918 .919 .367 .750 .766 .764 .995 .997

1.15 1.10 .375 .770 .773 .837 .986 .993 .427 .796 .828 .992 1.00 1.00

1.15 1.15 .358 .751 .776 .934 .999 1.00 .480 .832 .870 1.00 1.00 1.00

1.15 1.20 .351 .775 .787 .995 .999 1.00 .487 .861 .893 1.00 1.00 1.00

1.20 1.00 .444 .889 .915 .444 .889 .915 .439 .851 .904 .439 .851 .904

1.20 1.05 .456 .900 .918 .631 .986 .982 .490 .912 .950 .809 1.00 .999

1.20 1.10 .477 .897 .943 .854 .998 1.00 .514 .949 .949 .995 1.00 1.00

1.20 1.15 .471 .917 .935 .973 1.00 1.00 .594 .946 .975 1.00 1.00 1.00

1.20 1.20 .514 .925 .945 .996 1.00 1.00 .632 .961 .986 1.00 1.00 1.00

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level; TOT = total effects test; gene models: Rec = recessive, Dom = dominant, 
Add = additive.

Note: ^ = TOT from equation 5; * = TOT from equation 5a; α ≤ 10-8.  Bold indicates the optimal model.
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Table 11 presents the results of the ME 
test for Experiments 1 and 3. ME results 
for Experiments 2 and 4 are not shown 
because they were generated by a protocol 
that produced EE and GI interactions, and 
if the INT test demonstrated significance 
(as it should have), the ME tests would 
have been unnecessary. In all cases the 
alpha threshold was set to 10-2.

Table 11 reaffirms the results of Tables 9 
and 10: namely, that

•	 Associations involving recessive genes 
are more difficult to identify,

•	 Gene-environment interactions 
influence association outcomes,

•	The type of process influences the 
detection of an association, as shown 
by differences between power values 
for exposure mechanisms such as those 
resembling chemical spills (Experiments 
1 and 2) and those recognizing aging 
mechanisms (Experiments 3 and 4), and

•	 Main effects are only ascribed significant 
for larger risk values of genetic 
inheritance, those with a risk of 1.2 or 
above.

Note that the power threshold values are 
set to low (α ≤ 10-2) for the interaction 
and main effects tables. To investigate the 
effect of a very large N, we repeated the 
simulation process with N = 200,000 and 
reduced the threshold to (α ≤ 10-8). The 
results are shown in Tables 12 and 13.

Table 10. Genotype-environment interactions (INT) power values, 
by risk profile (Φ and Π)—all experiments and gene models, 
N = 10,000

Φ Π

Experiment 2 Experiment 4

INT^ 
Rec

INT^ 
Dom

INT^ 
Add

INT* 
Rec

INT* 
Dom

INT* 
Add

1.10 1.00 .014 .008 .014 .005 .010 .020

1.10 1.05 .051 .061 .063 .021 .022 .027

1.10 1.10 .275 .300 .332 .059 .077 .082

1.10 1.15 .665 .732 .736 .174 .195 .223

1.10 1.20 .897 .950 .944 .329 .376 .432

1.15 1.00 .004 .004 .012 .012 .012 .009

1.15 1.05 .057 .059 .055 .023 .024 .025

1.15 1.10 .319 .355 .362 .065 .086 .083

1.15 1.15 .658 .740 .775 .198 .210 .211

1.15 1.20 .906 .947 .960 .373 .380 .433

1.20 1.00 .012 .011 .015 .010 .015 .008

1.20 1.05 .059 .067 .060 .020 .026 .021

1.20 1.10 .306 .389 .378 .075 .088 .096

1.20 1.15 .664 .770 .782 .181 .250 .252

1.20 1.20 .920 .970 .955 .359 .455 .475

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level;  
INT = genotype-environment interactions; gene models: Rec = recessive,  
Dom = dominant, Add = additive.

Note: ^ = INT from equation 6; * = INT from equation 6a; α ≤ 10-2.  
Bold indicates the optimal model.

Table 11. Main effects (ME) power values, by risk profile 
(Φ and Π)—all gene models, N = 10,000

Φ Π

Experiment 2 Experiment 4

ME^ 
Rec

ME^ 
Dom

ME^ 
Add

ME* 
Rec

ME* 
Dom

ME* 
Add

1.10 1.00 .123 .463 .434 .139 .450 .417

1.10 1.05 .131 .478 .476 .156 .479 .437

1.10 1.10 .138 .491 .459 .138 .476 .399

1.10 1.15 .138 .523 .500 .149 .498 .478

1.10 1.20 .154 .507 .495 .167 .506 .487

1.15 1.00 .153 .626 .628 .147 .608 .585

1.15 1.05 .179 .642 .664 .146 .619 .659

1.15 1.10 .193 .676 .660 .177 .654 .675

1.15 1.15 .163 .670 .670 .191 .653 .675

1.15 1.20 .171 .668 .682 .182 .676 .695

1.20 1.00 .204 .805 .850 .239 .755 .834

1.20 1.05 .244 .824 .850 .236 .807 .861

1.20 1.10 .250 .829 .887 .239 .817 .866

1.20 1.15 .264 .840 .873 .274 .816 .867

1.20 1.20 .315 .854 .893 .268 .830 .878

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level;  
ME = main effects; gene models: Rec = recessive, Dom = dominant, Add = additive.

Note:^ = ME from equation 7; * = ME from equation 7a; α ≤ 10-2.  
Bold indicates the optimal model.
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The results shown in Table 12 suggest that 
the GI-EE interactions are very sensitive 
to low EE levels (Π < 1.10). They also 
accurately estimate an interaction power 
value of zero when Π = 1.00, that is, no EE 
risk.

These results suggest that for very large 
studies it is possible to predict positive 
associations between recessive genes linked 
to phenotypes with low to moderate risk. 

Table 12. Genotype-environment interactions (INT) power values, 
by risk profile (Φ and Π)—all gene models, N = 200,000

Φ Π

Experiment 2 Experiment 4

INT^ 
Rec

INT^ 
Dom

INT^ 
Add

INT* 
Rec

INT* 
Dom

INT* 
Add

1.10 1.00 .00 .00 .00 .00 .00 .00

1.10 1.05 .00 .00 .03 .00 .00 .00

1.10 1.10 .75 .77 .88 .35 .50 .56

1.10 1.15 1.0 1.0 1.0 1.0 1.0 1.0

1.10 1.20 1.0 1.0 1.0 1.0 1.0 1.0

1.15 1.00 .00 .00 .00 .00 .00 .00

1.15 1.05 .00 .01 .03 .00 .00 .01

1.15 1.10 .78 .86 .91 .44 .52 .60

1.15 1.15 1.0 1.0 1.0 .96 1.0 1.0

1.15 1.20 1.0 1.0 1.0 1.0 1.0 1.0

1.20 1.00 .00 .00 .00 .00 .00 .00

1.20 1.05 .01 .04 .05 .00 .00 .00

1.20 1.10 .75 .92 .96 .45 .65 .74

1.20 1.15 .99 1.0 1.0 1.0 1.0 1.0

1.20 1.20 1.0 1.0 1.0 1.0 1.0 1.0

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level;  
gene models: Rec = recessive, Dom = dominant, Add = additive.

Note: ^ = INT from equation 6; * = INT from equation 6a; α ≤ 10-8. 

Table 13. Main effects (ME) power values, by risk profile 
(Φ and Π)—all gene models, N = 200,0000

Φ Π

Experiment 1 Experiment 3

ME^ 
Rec

ME^ 
Dom

ME^ 
Add

ME* 
Rec

ME* 
Dom

ME* 
Add

1.10 1.00 .68 .68 .68 .68 .68 .68

1.10 1.05 .67 .70 .73 .70 .70 .73

1.10 1.10 .65 .75 .68 .75 .75 .68

1.10 1.15 .65 .68 .72 .68 .68 .71

1.10 1.20 .77 .81 .69 .78 .79 .68

1.15 1.00 .60 .88 .94 .60 .88 .94

1.15 1.05 .65 .84 .92 .67 .85 .92

1.15 1.10 .61 .84 .92 .61 .84 .92

1.15 1.15 .75 .92 .97 .75 .92 .96

1.15 1.20 .65 .87 .94 .66 .85 .94

1.20 1.00 .75 1.0 1.0 .75 1.0 1.0

1.20 1.05 .73 1.0 1.0 .75 1.0 1.0

1.20 1.10 .81 1.0 1.0 .80 1.0 1.0

1.20 1.15 .81 1.0 1.0 .81 1.0 1.0

1.20 1.20 .85 1.0 1.0 .85 1.0 1.0

Φ = genetic inheritance (GI) risk level; Π = environmental exposure (EE) risk level;  
gene models: Rec = recessive, Dom = dominant, Add = additive.

Note: ^ = ME from equation 7; * = ME from equation 7a; α ≤ 10-8.  
Bold indicates the optimal model.
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Conclusions
In summary, the chances of predicting an association 
in a genome-wide association study are reduced if 
an environmental effect is present and the statistical 
model does not adjust for it. This is especially true if 
the environmental effect and genetic marker do not 
have an interaction effect. The functional form of the 
model also matters. The more accurately the form 
of the environmental influence is portrayed by the 
statistical model, the more accurate the prediction 
will be. Even with very large sample sizes, association 
predictions involving recessive markers are low.

This study focused on one important methodological 
step involved in conducting a GWAS: selecting a 
statistical method and a supporting model that 
reliably predict associations. This study does 
not address the broader issue of the supporting 
experimental design that employs the statistical 
methods as part of an overall solution strategy. Those 
combined issues and their mutual interconnections 
are described by Cordell.31

The specific scenarios we address here involve genetic 
associations that have environmental influences. Our 
assumption is that the environmental influence that 
contributes to a given phenotype is in question and 
the precise form of that influence is unknown. A 
separate analysis to characterize the functional form 
to proxy the mechanism behind the environmental 
exposure is required. These approaches should focus 
on case-only data similar to the methods described 
in the Cornelis et al. study.21 These approaches 
involve investigating different environmentally related 
functional relationships between the suspected 
environmental influence and the phenotype in the 
cases-only subpopulation. For example, if gene 
effects and environmental effects are independently 
significant with respect to disease prevalence, a 
polynomial model could be used to characterize the 
relationship between environmental effects and the 
log-odds of disease prevalence. This would allow 
testing whether the nonlinear parameterization was 
required to characterize the environmental effect. 
Alternatively, if the environmental effect has multiple 
levels such as age, researchers could investigate a 
cubic polynomial to assess whether the effect stayed 
low initially then rose at some point and flattened out 

toward the end of the environmental effects range. 
If this analysis suggests an appropriate polynomial 
level for environmental effects, researchers should 
also investigate a similar assessment using the gene-
environment interaction variable.

We have used this simulation scenario in previous 
studies. We reviewed single gene models and 
evaluated a wide class of statistical methods.2 Our 
results indicated that researchers should consider 
a multi-test procedure that combines individual 
gene-based (dominant, recessive, additive) core tests 
as a composite statistical method for conducting the 
initial screen in a GWAS. The tests can be combined 
into a single operational test in a number of ways. 
Two such tests are the Bonferroni procedure32 and 
the MAX procedure,33 which produce very similar 
statistical power profiles. Of course, if the gene 
model under investigation is known, a single test that 
assumes the implied form is better than a combined 
test. However, for this study all patterns across gene 
models are consistent and only vary by degree.

Elsewhere, we have also evaluated the effect of 
phenotype errors that resulted from inaccurate 
diagnoses and genotype errors that resulted from 
gene-chip errors or occurrences of DNA methylation 
altering gene expression that associate a wild-type 
gene with the wrong phenotype outcome.29 Our 
results quantify the relationship between genotype 
and diagnosis error measures and sample size to 
achieve a .80 statistical power level. Our results 
also demonstrate that researchers should not 
underestimate the need to increase sample size to 
compensate for power loss due to the presence of 
genotype and diagnosis errors. 

We also investigated epistatic scenarios involving two 
genes.34 The results showed that the most powerful 
statistical methods for predicting associations 
between phenotypes and genotypes in epistatic 
scenarios are statistical models that simultaneously 
test for associations involving both interacting loci. 
This is consistent with the results we present here. 
This result is not surprising and has been reported 
by others. We reported that if two genes contribute 
to a phenotype, the weaker gene will be obscured 
by the stronger gene and often not be identified as 
a contributor to the phenotype when a single gene 
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model is used. Again, this result is similar to showing 
that the effect of an environmental exposure can 
obscure the influence of a genotype-phenotype 
association if the model does not account for the GI 
and the EE simultaneously. In this sense, two-gene 
models (or alternatively a gene-environment model) 
produce better predictions of association than single-
gene models do. 

We acknowledge that our results could possibly 
depend on the particular experiments we devised 
to investigate how the statistical models performed. 
In light of this, we are reviewing other scenarios to 
establish the robustness of our findings. Nevertheless, 
establishing the genotype-to-phenotype connections 
without using a simulation approach is limited. 

For the gene-environment interaction scenarios 
addressed here, the results across all gene models 
lead us to conclude that using a composite test that 
supports distinct underlying statistical models, 
that is, a “main effects–only” model and a “main 
effects with interactions” model, is likely to be more 
effective than single model tests; this result does not 
depend on the gene model and thus differs from 
the single gene and epistatic scenarios, where each 
different gene model assumption (i.e., recessive, 
dominant, and additive) requires representation in 
the composite test.2,32
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