U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Nanomaterials and Some Fibres. Lyon (FR): International Agency for Research on Cancer; 2017. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 111.)

Cover of Some Nanomaterials and Some Fibres

Some Nanomaterials and Some Fibres.

Show details

References

  • Abe S, Itoh S, Hayashi D, Kobayashi T, Kiba T, Akasaka T, et al. Biodistribution of aqueous suspensions of carbon nanotubes in mice and their biocompatibility. J Nanosci Nanotechnol. 2012;12(1):700–6. [PubMed: 22524043] [CrossRef]
  • Aiso S, Kubota H, Umeda Y, Kasai T, Takaya M, Yamazaki K, et al. Translocation of intratracheally instilled multiwall carbon nanotubes to lung-associated lymph nodes in rats. Ind Health. 2011;49(2):215–20. [PubMed: 21173528] [CrossRef]
  • Aiso S, Yamazaki K, Umeda Y, Asakura M, Kasai T, Takaya M, et al. Pulmonary toxicity of intratracheally instilled multiwall carbon nanotubes in male Fischer 344 rats. Ind Health. 2010;48(6):783–95. [PubMed: 20616469] [CrossRef]
  • Aitken RJ, Chaudhry MQ, Boxall AB, Hull M. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med (Lond). 2006;56(5):300–6. [PubMed: 16868127] [CrossRef]
  • Al Faraj A, Bessaad A, Cieslar K, Lacroix G, Canet-Soulas E, Crémillieux Y. Long-term follow-up of lung biodistribution and effect of instilled SWCNTs using multiscale imaging techniques. Nanotechnology. 2010;21(17):175103. [PubMed: 20368681] [CrossRef]
  • Al Faraj A, Cieslar K, Lacroix G, Gaillard S, Canet-Soulas E, Crémillieux Y. In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett. 2009;9(3):1023–7. [PubMed: 19199447] [CrossRef]
  • Al Faraj A, Fauvelle F, Luciani N, Lacroix G, Levy M, Crémillieux Y, et al. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. Int J Nanomedicine. 2011;6:351–61. [PMC free article: PMC3075901] [PubMed: 21499425] [CrossRef]
  • Alarifi S, Ali D, Verma A, Almajhdi FN, Al-Qahtani AA. Single-walled carbon nanotubes induce cytotoxicity and DNA damage via reactive oxygen species in human hepatocarcinoma cells. In Vitro Cell Dev Biol Anim. 2014;50(8):714–22. [PubMed: 24789727] [CrossRef]
  • Aldieri E, Fenoglio I, Cesano F, Gazzano E, Gulino G, Scarano D, et al. The role of iron impurities in the toxic effects exerted by short multiwalled carbon nanotubes (MWCNT) in murine alveolar macrophages. J Toxicol Environ Health A. 2013;76(18):1056–71. [PubMed: 24188191] [CrossRef]
  • Alexander AJ (2007). Carbon Nanotube Structures and Composition: Implications for Toxicological Studies. In: Monteiro-Riviere NA, Tran CL, editors. Nanotoxicology: Characterization, Dosing and Health Effects. New York (NY), USA: Informa Healthcare USA; pp. 7–18.
  • Ali-Boucetta H, Al-Jamal KT, Müller KH, Li S, Porter AE, Eddaoudi A, et al. Cellular uptake and cytotoxic impact of chemically functionalized and polymer-coated carbon nanotubes. Small. 2011;7(22):3230–8. [PubMed: 21919194] [CrossRef]
  • Ali-Boucetta H, Kostarelos K. Pharmacology of carbon nanotubes: toxicokinetics, excretion and tissue accumulation. Adv Drug Deliv Rev. 2013;65(15):2111–9. [PubMed: 24184372] [CrossRef]
  • Andersen AJ, Wibroe PP, Moghimi SM. Perspectives on carbon nanotube-mediated adverse immune effects. Adv Drug Deliv Rev. 2012;64(15):1700–5. [PubMed: 22634159] [CrossRef]
  • Andón FT, Fadeel B. Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials. Acc Chem Res. 2013;46(3):733–42. [PubMed: 22720979] [CrossRef]
  • Andón FT, Kapralov AA, Yanamala N, Feng W, Baygan A, Chambers BJ, et al. Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Small. 2013;9(16):2721–9, 2720. [PMC free article: PMC4039041] [PubMed: 23447468] [CrossRef]
  • Anjilvel S, Asgharian B. A multiple-path model of particle deposition in the rat lung. Fundam Appl Toxicol. 1995;28(1):41–50. [PubMed: 8566482] [CrossRef]
  • Antonelli A, Serafini S, Menotta M, Sfara C, Pierigé F, Giorgi L, et al. Improved cellular uptake of functionalized single-walled carbon nanotubes. Nanotechnology. 2010;21(42):425101. [PubMed: 20858931] [CrossRef]
  • ARA. 2011). Multiple-path particle deposition (MPPD 2.1): a model for human and rat airway particle dosimetry. Raleigh (NC), USA: Applied Research Associates, Inc.
  • Arrêté Royal (2014). [Arrêté royal relatif à la mise sur le marché des substances manufacturées à l’état nanoparticulaire.] C-2014/24329, 27 May 2014. Bruxelles, Belgium: Service Public Fédéral Santé Publique, Sécurité de la Chaîne Alimentaire et Environnement. Available from: http://www​.nanotechia​.org/sites/default/files​/files/20140924​_belgian_register_fr_nl.pdf.
  • Asakura M, Sasaki T, Sugiyama T, Takaya M, Koda S, Nagano K, et al. Genotoxicity and cytotoxicity of multi-wall carbon nanotubes in cultured Chinese hamster lung cells in comparison with chrysotile A fibers. J Occup Health. 2010;52(3):155–66. [PubMed: 20379079] [CrossRef]
  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Hankin SM, Peters SA, et al. Review of carbon nanotubes toxicity and exposure–appraisal of human health risk assessment based on open literature. Crit Rev Toxicol. 2010;40(9):759–90. [PubMed: 20860524] [CrossRef]
  • Australian National Industrial Chemical Notification and Assessment Scheme (NICNAS) (2010). NICNAS working definition for 'industrial nanomaterial'. Available from: http://www​.nicnas.gov​.au/communications/issues​/nanomaterials-nanotechnology​/nicnas-working-definition-for-industrial-nanomaterial, accessed 1 October 2014.
  • Azad N, Iyer AKV, Wang L, Liu Y, Lu Y, Rojanasakul Y. Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses. Nanotoxicology. 2013;7(2):157–68. [PMC free article: PMC4089498] [PubMed: 22263913] [CrossRef]
  • Barillet S, Simon-Deckers A, Herlin-Boime N, Mayne-L’Hermite M, Reynaud C, Cassio D, et al. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J Nanopart Res. 2010;12(1):61–73. [CrossRef]
  • Beamer CA, Girtsman TA, Seaver BP, Finsaas KJ, Migliaccio CT, Perry VK, et al. IL-33 mediates multi-walled carbon nanotube (MWCNT)-induced airway hyper-reactivity via the mobilization of innate helper cells in the lung. Nanotoxicology. 2013;7(6):1070–81. [PMC free article: PMC4080677] [PubMed: 22686327] [CrossRef]
  • Becker ML, Fagan JA, Gallant ND, Bauer BJ, Bajpai V, Hobbie EK, et al. Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv Mater. 2007;19(7):939–45. [CrossRef]
  • Bello D, Hart AJ, Ahn K, Hallock M, Yamamoto N, Garcia EJ, et al. Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon. 2008;46(6):974–7. [CrossRef]
  • Bello D, Hsieh SF, Schmidt DF, Rogers EJ. Nanomaterials properties vs. biological oxidative damage: Implications for toxicity screening and exposure assessment. Nanotoxicology. 2009;3(3):249–61. a. [CrossRef]
  • Bello D, Wardle BL, Yamamoto N, Guzman deVilloria R, Garcia EJ, Hart AJ, et al. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanopart Res. 2009;11(1):231–49. b. [CrossRef]
  • Bello D, Wardle BL, Zhang J, Yamamoto N, Santeufemio C, Hallock M, et al. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Int J Occup Environ Health. 2010;16(4):434–50. [PubMed: 21222387] [CrossRef]
  • Berndt-Weis ML, Kauri LM, Williams A, White P, Douglas G, Yauk C. Global transcriptional characterization of a mouse pulmonary epithelial cell line for use in genetic toxicology. Toxicol In Vitro. 2009;23(5):816–33. [PubMed: 19406224] [CrossRef]
  • Bernholc J, Roland C, Yakobson BI. Nanotubes. Curr Opin Solid State Mater Sci. 1997;2(6):706–15. [CrossRef]
  • Beyer G. Short communication: carbon nanotubes and flame retardants for polymers. Fire Mater. 2002;26(6):291–3. [CrossRef]
  • Bhattacharya S, Zhang Q, Carmichael PL, Boekelheide K, Andersen ME. Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One. 2011;6(6):e20887. [PMC free article: PMC3118802] [PubMed: 21701582] [CrossRef]
  • Bhirde AA, Patel S, Sousa AA, Patel V, Molinolo AA, Ji Y, et al. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine (Lond). 2010;5(10):1535–46. [PMC free article: PMC3175610] [PubMed: 21143032] [CrossRef]
  • Bhushan B. 2004). Springer handbook of nanotechnology. Berlin, Germany: Springer.
  • Bianco A, Kostarelos K, Prato M. Making carbon nanotubes biocompatible and biodegradable. Chem Commun (Camb). 2011;47(37):10182–8. [PubMed: 21776531] [CrossRef]
  • Birch ME, Ku BK, Evans DE, Ruda-Eberenz TA. Exposure and emissions monitoring during carbon nanofiber production–Part I: elemental carbon and iron-soot aerosols. Ann Occup Hyg. 2011;55(9):1016–36. [PMC free article: PMC4689224] [PubMed: 21965464] [CrossRef]
  • Biswas R, Bunderson-Schelvan M, Holian A. Potential role of the inflammasome-derived inflammatory cytokines in pulmonary fibrosis. Pulm Med. 2011;2011:105707. [PMC free article: PMC3109309] [PubMed: 21660282] [CrossRef]
  • Bonner JC, Silva RM, Taylor AJ, Brown JM, Hilderbrand SC, Castranova V, et al. Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: the NIEHS Nano GO Consortium. Environ Health Perspect. 2013;121(6):676–82. [PMC free article: PMC3672912] [PubMed: 23649427] [CrossRef]
  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett. 2006;160(2):121–6. [PubMed: 16125885] [CrossRef]
  • Boyles MSP, Stoehr LC, Schlinkert P, Himly M, Duschl A. The significance and insignificance of carbon nanotube-induced inflammation. Fibers. 2014;2(1):45–74. [CrossRef]
  • Brody AR, Roe MW. Deposition pattern of inorganic particles at the alveolar level in the lungs of rats and mice. Am Rev Respir Dis. 1983;128(4):724–9. [PubMed: 6625350]
  • Brouwer D, Berges M, Virji MA, Fransman W, Bello D, Hodson L, et al. Harmonization of measurement strategies for exposure to manufactured nano-objects; report of a workshop. Ann Occup Hyg. 2012;56(1):1–9. [PubMed: 22156566] [CrossRef]
  • Brouwer DH, Links IH, De Vreede SA, Christopher Y. Size selective dustiness and exposure; simulated workplace comparisons. Ann Occup Hyg. 2006;50(5):445–52. [PubMed: 16524926] [CrossRef]
  • Brown DM, Donaldson K, Stone V. Nuclear translocation of Nrf2 and expression of antioxidant defence genes in THP-1 cells exposed to carbon nanotubes. J Biomed Nanotechnol. 2010;6(3):224–33. [PubMed: 21179939] [CrossRef]
  • Brown JS, Gordon T, Price O, Asgharian B. Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol. 2013;10(1):12. [PMC free article: PMC3640939] [PubMed: 23575443] [CrossRef]
  • Brown JS, Wilson WE, Grant LD. Dosimetric comparisons of particle deposition and retention in rats and humans. Inhal Toxicol. 2005;17(7–8):355–85. [PubMed: 16020034] [CrossRef]
  • BSI. 2007). Nanotechnologies – Part 2: Guide to safe handling and disposal of manufactured nanomaterials. PD 6699–2:2008. London, United Kingdom: British Standardization Institution.
  • BSI. 2010). Nanotechnologies – Part 3: Guide to assessing airborne exposure in occupational settings relevant to nanomaterials. London, United Kingdom: British Standardization Institution.
  • Bussy C, Pinault M, Cambedouzou J, Landry MJ, Jegou P, Mayne-L’hermite M, et al. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Part Fibre Toxicol. 2012;9(46):46. [PMC free article: PMC3515433] [PubMed: 23181604] [CrossRef]
  • Canadian Environment Protection Act (2014). Proposed Regulatory Framework for nanomaterials under the Canadian Environmental Protection Act, 1999. Available from: http://www​.ec.gc.ca/subsnouvelles-newsubs/default​.asp?lang=En&n​=FD117B60-1, accessed 9 April 2014.
  • Cao Y, Jacobsen NR, Danielsen PH, Lenz AG, Stoeger T, Loft S, et al. Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE−/− mice and cultured endothelial cells. Toxicol Sci. 2014;138(1):104–16. [PubMed: 24431218] [CrossRef]
  • Casey A, Herzog E, Lyng FM, Byrne HJ, Chambers G, Davoren M. Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett. 2008;179(2):78–84. [PubMed: 18502058] [CrossRef]
  • Catalán J, Järventaus H, Vippola M, Savolainen K, Norppa H. Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. Nanotoxicology. 2012;6(8):825–36. [PubMed: 21995283] [CrossRef]
  • Cavallo D, Fanizza C, Ursini CL, Casciardi S, Paba E, Ciervo A, et al. Multi-walled carbon nanotubes induce cytotoxicity and genotoxicity in human lung epithelial cells. J Appl Toxicol. 2012;32(6):454–64. [PubMed: 22271384] [CrossRef]
  • Cena LG, Peters TM. Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites. J Occup Environ Hyg. 2011;8(2):86–92. [PMC free article: PMC4778245] [PubMed: 21253981] [CrossRef]
  • Cesta MF, Ryman-Rasmussen JP, Wallace DG, Masinde T, Hurlburt G, Taylor AJ, et al. Bacterial lipopolysaccharide enhances PDGF signalling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol. 2010;43(2):142–51. [PMC free article: PMC2937228] [PubMed: 19738159] [CrossRef]
  • Chakravarty P, Marches R, Zimmerman NS, Swafford AD, Bajaj P, Musselman IH, et al. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci USA. 2008;105(25):8697–702. [PMC free article: PMC2438394] [PubMed: 18559847] [CrossRef]
  • Chang CC, Tsai ML, Huang HC, Chen CY, Dai SX. Epithelial-mesenchymal transition contributes to SWCNT-induced pulmonary fibrosis. Nanotoxicology. 2012;6(6):600–10. [PubMed: 21711127] [CrossRef]
  • Chang LY, Overby LH, Brody AR, Crapo JD. Progressive lung cell reactions and extracellular matrix production after a brief exposure to asbestos. Am J Pathol. 1988;131(1):156–70. [PMC free article: PMC1880568] [PubMed: 2833103]
  • Charlier JC. Defects in carbon nanotubes. Acc Chem Res. 2002;35(12):1063–9. [PubMed: 12484794] [CrossRef]
  • Chen BT, Schwegler-Berry D, McKinney W, Stone S, Cumpston JL, Friend S, et al. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization. Inhal Toxicol. 2012;24(12):798–820. [PMC free article: PMC4664058] [PubMed: 23033994] [CrossRef]
  • Cheng J, Fernando KA, Veca LM, Sun YP, Lamond AI, Lam YW, et al. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano. 2008;2(10):2085–94. [PubMed: 19206455] [CrossRef]
  • Cheng WW, Lin ZQ, Ceng Q, Wei BF, Fan XJ, Zhang HS, et al. Single-wall carbon nanotubes induce oxidative stress in rat aortic endothelial cells. Toxicol Mech Methods. 2012;22(4):268–76. [PubMed: 22500782] [CrossRef]
  • Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA. 2006;103(50):18882–6. [PMC free article: PMC1665645] [PubMed: 17135351] [CrossRef]
  • Cheung W, Pontoriero F, Taratula O, Chen AM, He H. DNA and carbon nanotubes as medicine. Adv Drug Deliv Rev. 2010;62(6):633–49. [PubMed: 20338203] [CrossRef]
  • Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML. Pure carbon nanoscale devices: Nanotube heterojunctions. Phys Rev Lett. 1996;76(6):971–4. [PubMed: 10061598] [CrossRef]
  • Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, et al. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 2008;8(2):437–45. [PubMed: 18225938] [CrossRef]
  • Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG. The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applicaiton in US Ari quality studies. Atmos Environ. 1993;27A(8):1185–201. [CrossRef]
  • Chung KT, Sabo A, Pica AP. Electrical permittivity and conductivity of carbon black-polyvinyl chloride composites. J Appl Phys. 1982;53(10):6867–79. [CrossRef]
  • Cicchetti R, Divizia M, Valentini F, Argentin G. Effects of single-wall carbon nanotubes in human cells of the oral cavity: geno-cytotoxic risk. Toxicol In Vitro. 2011;25(8):1811–9. [PubMed: 21968257] [CrossRef]
  • CIIT and RIVM (2006). Multiple-path particle dosimetry (MPPD, version 2.0): a model for human and rat airway particle dosimetry. Research Triangle Park (NC), USA: Centers for Health Research (CIIT) and the Netherlands: National Institute for Public Health and the Environment (RIVM).
  • Clichici S, Biris AR, Tabaran F, Filip A. Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats. Toxicol Appl Pharmacol. 2012;259(3):281–92. [PubMed: 22280989] [CrossRef]
  • Clift MJ, Endes C, Vanhecke D, Wick P, Gehr P, Schins RP, et al. A comparative study of different in vitro lung cell culture systems to assess the most beneficial tool for screening the potential adverse effects of carbon nanotubes. Toxicol Sci. 2014;137(1):55–64. [PubMed: 24284789] [CrossRef]
  • Creighton MA, Rangel-Mendez JR, Huang J, Kane AB, Hurt RH. Graphene-induced adsorptive and optical artifacts during in vitro toxicology assays. Small. 2013;9(11):1921–7. [PMC free article: PMC4088950] [PubMed: 25018686] [CrossRef]
  • Crouzier D, Follot S, Gentilhomme E, Flahaut E, Arnaud R, Dabouis V, et al. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology. 2010;272(1–3):39–45. [PubMed: 20381574] [CrossRef]
  • Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett. 2005;155(1):73–85. [PubMed: 15585362] [CrossRef]
  • Cveticanin J, Joksic G, Leskovac A, Petrovic S, Sobot AV, Neskovic O. Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells. Nanotechnology. 2010;21(1):015102. [PubMed: 19946169] [CrossRef]
  • Czarny B, Georgin D, Berthon F, Plastow G, Pinault M, Patriarche G, et al. Carbon nanotube translocation to distant organs after pulmonary exposure: insights from in situ (14)C-radiolabeling and tissue radioimaging. ACS Nano. 2014;8(6):5715–24. [PubMed: 24853551] [CrossRef]
  • Dahl AR, Schlesinger RB, Heck HD, Medinsky MA, Lucier GW. Comparative dosimetry of inhaled materials: differences among animal species and extrapolation to man. Fundam Appl Toxicol. 1991;16(1):1–13. [PubMed: 2019334] [CrossRef]
  • Dahm MM, Evans DE, Schubauer-Berigan MK, Birch ME, Deddens JA. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: mobile direct-reading sampling. Ann Occup Hyg. 2013;57(3):328–44. [PMC free article: PMC4557693] [PubMed: 23100605] [CrossRef]
  • Dahm MM, Evans DE, Schubauer-Berigan MK, Birch ME, Fernback JE. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers. Ann Occup Hyg. 2012;56(5):542–56. [PMC free article: PMC4522689] [PubMed: 22156567]
  • Dahm MM, Yencken MS, Schubauer-Berigan MK. Exposure control strategies in the carbonaceous nanomaterial industry. J Occup Environ Med. 2011;53(6) Suppl:S68–73. [PubMed: 21654421] [CrossRef]
  • Danish Environment Protection (2014). Danish Mandatory Nano-Register. Available from: https://www​.retsinformation​.dk/Forms/R0710.aspx?id=163367, accessed 10 January 2014.
  • Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, et al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro. 2007;21(3):438–48. [PubMed: 17125965] [CrossRef]
  • Delogu LG, Stanford SM, Santelli E, Magrini A, Bergamaschi A, Motamedchaboki K, et al. Carbon nanotube-based nanocarriers: the importance of keeping it clean. J Nanosci Nanotechnol. 2010;10(8):5293–301. [PubMed: 21125885] [CrossRef]
  • Delogu LG, Venturelli E, Manetti R, Pinna GA, Carru C, Madeddu R, et al. Ex vivo impact of functionalized carbon nanotubes on human immune cells. Nanomedicine (Lond). 2012;7(2):231–43. [PubMed: 22106855] [CrossRef]
  • Delorme MP, Muro Y, Arai T, Banas DA, Frame SR, Reed KL, et al. Ninety-day inhalation toxicity study with a vapor grown carbon nanofiber in rats. Toxicol Sci. 2012;128(2):449–60. [PubMed: 22581831] [CrossRef]
  • Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, et al. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon. 2007;45(7):1419–24. [CrossRef]
  • DGCIS (2012). [Les réalités industrielles dans le domaine des nanomatériaux en France – Analyse de la réalité du poids des nanomatériaux dans la filière industrielle concernée.] Paris, France: Direction générale de la compétitivité, de l'industrie et des services. Available from: http://www.entreprises.gouv.fr/files/files/guides/realites-industrielles-nanomateriaux-france.pdf [French]
  • Di Giorgio ML, Di Bucchianico S, Ragnelli AM, Aimola P, Santucci S, Poma A. Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res. 2011;722(1):20–31. [PubMed: 21382506] [CrossRef]
  • Di Sotto A, Chiaretti M, Carru GA, Bellucci S, Mazzanti G. Multi-walled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett. 2009;184(3):192–7. [PubMed: 19063954] [CrossRef]
  • Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue JP, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett. 2005;5(12):2448–64. [PMC free article: PMC2733876] [PubMed: 16351195] [CrossRef]
  • Dinu CZ, Bale SS, Zhu G, Dordick JS. Tubulin encapsulation of carbon nanotubes into functional hybrid assemblies. Small. 2009;5(3):310–5. [PubMed: 19148890] [CrossRef]
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, et al. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92(1):5–22. [PubMed: 16484287] [CrossRef]
  • Donaldson K, Murphy F, Schinwald A, Duffin R, Poland CA. Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine (Lond). 2011;6(1):143–56. [PubMed: 21182425] [CrossRef]
  • Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010;7(1):5. [PMC free article: PMC2857820] [PubMed: 20307263] [CrossRef]
  • Dong PX, Wan B, Guo LH. In vitro toxicity of acid-functionalized single-walled carbon nanotubes: effects on murine macrophages and gene expression profiling. Nanotoxicology. 2012;6(3):288–303. [PubMed: 21486190] [CrossRef]
  • Dutch Social and Economic Council. 2012). Provisional nano reference values for engineered nanomaterials. The Hague, the Netherlands: Social Economic Council.
  • Ebbesen TW, Takada T. Topological and sp3 defect structures in nanotubes. Carbon. 1995;33(7):973–8. [CrossRef]
  • Elder A, Gelein R, Finkelstein JN, Driscoll KE, Harkema J, Oberdörster G. Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. Toxicol Sci. 2005;88(2):614–29. [PubMed: 16177241] [CrossRef]
  • Elgrabli D, Abella-Gallart S, Robidel F, Rogerieux F, Boczkowski J, Lacroix G. Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology. 2008;253(1–3):131–6. [PubMed: 18834917] [CrossRef]
  • Ellinger-Ziegelbauer H, Pauluhn J. Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period. Toxicology. 2009;266(1–3):16–29. [PubMed: 19836432] [CrossRef]
  • Ema M, Imamura T, Suzuki H, Kobayashi N, Naya M, Nakanishi J. Genotoxicity evaluation for single-walled carbon nanotubes in a battery of in vitro and in vivo assays. J Appl Toxicol. 2013;33(9):933–9. b. [PubMed: 22763644] [CrossRef]
  • Ema M, Masumori S, Kobayashi N, Naya M, Endoh S, Maru J, et al. In vivo comet assay of multi-walled carbon nanotubes using lung cells of rats intratracheally instilled. J Appl Toxicol. 2013;33(10):1053–60. a. [PubMed: 22936419] [CrossRef]
  • ENRHES (2009). Engineered nanoparticles – Review of health and environmental safety (ENRHES). ENRHES project. Available from: http://ihcp​.jrc.ec.europa​.eu/whats-new/enhres-final-report, accessed 30 May 2013.
  • EPA (1988). Reference physiological parameters in pharmacokinetic modeling. Washington (DC), USA: Office of Health and Environment Assessment, Exposure Assessment Group, United States Environmental Protection Agency. EPA report no. EPA/600/6–88/004.
  • EPA (2006). Approaches for the application of physiologically based pharmacokinetic (PBPK) models and supporting data in risk assessment. Washington (DC), USA: National Center for Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency. EPA/600/R.05/043F.
  • EPA (2011).Multi-walled carbon nanotubes: significant new use rule, 40 CFR Parts 9 and 721 [EPA–HQ–OPPT–2009–0686; FRL–8865–4] RIN 2070–AB27 Fed Regist 76(88)Washington (DC), USA: United States Environmental Protection Agency.
  • EPA (2014). Control of nanoscale materials under the Toxic Substance Control Act. Washington (DC), USA: United States Environmental Protection Agency. Available from: http://www​.epa.gov/opptintr/nano/, accessed 9 April 2014.
  • Erdely A, Dahm M, Chen BT, Zeidler-Erdely PC, Fernback JE, Birch ME, et al. Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Part Fibre Toxicol. 2013;10(1):53. [PMC free article: PMC4015290] [PubMed: 24144386] [CrossRef]
  • Erdely A, Hulderman T, Salmen R, Liston A, Zeidler-Erdely PC, Schwegler-Berry D, et al. Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett. 2009;9(1):36–43. [PubMed: 19049393] [CrossRef]
  • EU Commission (2011). EU Commission recommendation on the definition of nanomaterial (2011/696/EU). Official Journal of the European Union. 20.10.2011: L 275/38–40. Available from: http://eur-lex​.europa​.eu/legal-content/EN​/TXT/PDF/?uri=CELEX​:32011H0696&from=EN, accessed 1 October 2014.
  • European Standards Committee on Oxidative DNA Damage (ESCODD). Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Biol Med. 2003;34(8):1089–99. [PubMed: 12684094] [CrossRef]
  • Evans DE, Turkevich LA, Roettgers CT, Deye GJ, Baron PA. Dustiness of fine and nanoscale powders. Ann Occup Hyg. 2013;57(2):261–77. [PMC free article: PMC3750099] [PubMed: 23065675] [CrossRef]
  • Fenoglio I, Aldieri E, Gazzano E, Cesano F, Colonna M, Scarano D, et al. Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem Res Toxicol. 2012;25(1):74–82. [PubMed: 22128750] [CrossRef]
  • Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo-Piñero E, Béguin F, et al. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol. 2008;21(9):1690–7. [PubMed: 18636755] [CrossRef]
  • Fenoglio I, Tomatis M, Lison D, Muller J, Fonseca A, Nagy JB, et al. Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic Biol Med. 2006;40(7):1227–33. [PubMed: 16545691] [CrossRef]
  • Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect. 2009;117(5):703–8. [PMC free article: PMC2685830] [PubMed: 19479010] [CrossRef]
  • Fröhlich E, Meindl C, Höfler A, Leitinger G, Roblegg E. Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes. Nanotoxicology. 2013;7(7):1211–24. [PMC free article: PMC3572189] [PubMed: 22963691] [CrossRef]
  • Fubini B, Fenoglio I, Tomatis M, Turci F. Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials. Nanomedicine (Lond). 2011;6(5):899–920. [PubMed: 21793679] [CrossRef]
  • Fubini B, Ghiazza M, Fenoglio I. Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology. 2010;4(4):347–63. [PubMed: 20858045] [CrossRef]
  • Fujita K, Fukuda M, Fukui H, Horie M, Endoh S, Uchida K, et al. Intratracheal instillation of single-wall carbon nanotubes in the rat lung induces time-dependent changes in gene expression. Nanotoxicology. 2015;9(3):290–301. [PMC free article: PMC4487535] [PubMed: 24911292] [CrossRef]
  • Galano A. Carbon nanotubes: promising agents against free radicals. Nanoscale. 2010;2(3):373–80. [PubMed: 20644818] [CrossRef]
  • Galano A, Francisco-Marquez M, Martinez A. Influence of point defects on the free-radical scavenging capability of single-walled carbon nanotubes. J Phys Chem C. 2010;114(18):8302–8. [CrossRef]
  • Gangwal S, Brown JS, Wang A, Houck KA, Dix DJ, Kavlock RJ, et al. Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential. Environ Health Perspect. 2011;119(11):1539–46. [PMC free article: PMC3226507] [PubMed: 21788197] [CrossRef]
  • Gasser M, Wick P, Clift MJD, Blank F, Diener L, Yan B, et al. Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Part Fibre Toxicol. 2012;9(1):17. [PMC free article: PMC3496593] [PubMed: 22624622] [CrossRef]
  • Ghiazza M, Vietti G, Fenoglio I (2014). Carbon nanotubes: properties, applications and toxicity. In: Pielichowski K, Zhu H, editors. Health and environmental risks of nanomaterials: Polymer nancomposites and other materials containing nanoparticles Woodhead Publishing Series in Composites Science and Engineering No. 49 Njuguna J. Woodhead Publishing U.K.; Chapter 8, pp. 147–74. 10.1533/9780857096678.3.147 10.1533/9780857096678.3.147. [CrossRef]
  • Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A. Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. J Hazard Mater. 2011;197:327–36. [PubMed: 21999988] [CrossRef]
  • Gottschalk F, Kost E, Nowack B. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem. 2013;32(6):1278–87. [PubMed: 23418073] [CrossRef]
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol. 2009;43(24):9216–22. [PubMed: 20000512] [CrossRef]
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem. 2010;29(5):1036–48. [PubMed: 20821538]
  • Grecco ACP, Paula RFO, Mizutani E, Sartorelli JC, Milani AM, Longhini AL, et al. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes. Nanotechnology. 2011;22(26):265103. [PubMed: 21576788] [CrossRef]
  • Guo L, Morris DG, Liu X, Vaslet C, Hurt RH, Kane AB. Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem Mater. 2007;19(14):3472–8. [CrossRef]
  • Guo NL, Wan YW, Denvir J, Porter DW, Pacurari M, Wolfarth MG, et al. Multiwalled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis. J Toxicol Environ Health A. 2012;75(18):1129–53. [PMC free article: PMC3422779] [PubMed: 22891886] [CrossRef]
  • Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE. Self-assembly of tubular fullerenes. J Phys Chem B. 1995;99(27):10694–7. a. [CrossRef]
  • Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE. Catalytic growth of single-walled carbon nanotubes by laser vaporization. Chem Phys Lett. 1995;243(1–2):49–54. b. [CrossRef]
  • Guo YY, Zhang J, Zheng YF, Yang J, Zhu XQ. Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat Res. 2011;721(2):184–91. [PubMed: 21296185] [CrossRef]
  • Guseva Canu I, Bateson TF, Bouvard V, Debia M, Dion C, Savolainen K, et al. Human exposure to carbon-based fibrous nanomaterials: A review. Int J Hyg Environ Health. 2016;219(2):166–75. [PubMed: 26752069] [CrossRef]
  • Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS Nano. 2010;4(11):6629–38. [PubMed: 21028845] [CrossRef]
  • Hamilton RF Jr, Buford M, Xiang C, Wu N, Holian A. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol. 2012;24(14):995–1008. [PMC free article: PMC4092209] [PubMed: 23216160] [CrossRef]
  • Hamilton RF Jr, Buford MC, Wood MB, Arnone B, Morandi M, Holian A. Engineered carbon nanoparticles alter macrophage immune function and initiate airway hyper-responsiveness in the BALB/c mouse model. Nanotoxicology. 2007;1(2):104–17. [CrossRef]
  • Hamilton RF Jr, Wu N, Porter D, Buford M, Wolfarth M, Holian A. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol. 2009;6(1):35. [PMC free article: PMC2806338] [PubMed: 20043844] [CrossRef]
  • Hamilton RF Jr, Wu Z, Mitra S, Shaw PK, Holian A. Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Part Fibre Toxicol. 2013;10(1):57. b. [PMC free article: PMC3830505] [PubMed: 24225053] [CrossRef]
  • Hamilton RF Jr, Xiang C, Li M, Ka I, Yang F, Ma D, et al. Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models. Inhal Toxicol. 2013;25(4):199–210. a. [PMC free article: PMC4127292] [PubMed: 23480196] [CrossRef]
  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, et al. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol. 2008;20(8):741–9. [PubMed: 18569096] [CrossRef]
  • Han SG, Andrews R, Gairola CG. Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhal Toxicol. 2010;22(4):340–7. [PubMed: 20064106] [CrossRef]
  • Han YG, Xu J, Li ZG, Ren GG, Yang Z. In vitro toxicity of multi-walled carbon nanotubes in C6 rat glioma cells. Neurotoxicology. 2012;33(5):1128–34. [PubMed: 22728153] [CrossRef]
  • Haniu H, Matsuda Y, Takeuchi K, Kim YA, Hayashi T, Endo M. Proteomics-based safety evaluation of multi-walled carbon nanotubes. Toxicol Appl Pharmacol. 2010;242(3):256–62. [PubMed: 19874835] [CrossRef]
  • Haniu H, Saito N, Matsuda Y, Kim YA, Park KC, Tsukahara T, et al. Elucidation mechanism of different biological responses to multi-walled carbon nanotubes using four cell lines. Int J Nanomedicine. 2011;6:3487–97. [PMC free article: PMC3260041] [PubMed: 22267932] [CrossRef]
  • Hedmer M, Isaxon C, Nilsson PT, Ludvigsson L, Messing ME, Genberg J, et al. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Ann Occup Hyg. 2014;58(3):355–79. [PubMed: 24389082] [CrossRef]
  • Hedmer M, Kåredal M, Gustavsson P, Rissler J (2013). 148 Carbon nanotubes. Report - The Nordic Expert Group for Criteria Documentation of Health Risks of Chemicals. Arbete och hälsa. 47(5):1-252. Available from: https://gupea​.ub.gu.se​/bitstream/2077/34499​/1/gupea_2077_34499_1.pdf.
  • Hirano S, Fujitani Y, Furuyama A, Kanno S. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2010;249(1):8–15. [PubMed: 20800606] [CrossRef]
  • Hirano S, Kanno S, Furuyama A. Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol. 2008;232(2):244–51. [PubMed: 18655803] [CrossRef]
  • Hirsch A, Vostronowsky O. 2005). Functionalization of carbon nanotubes. In: Schluter AD, editor. Functional molecular nanostructures. Topics in current chemistry. Volume 245. Berlin, Heidelberg: Springer-Verlag; pp. 193–237.
  • Hitoshi K, Katoh M, Suzuki T, Ando Y, Nadai M. Single-walled carbon nanotubes downregulate stress-responsive genes in human respiratory tract cells. Biol Pharm Bull. 2012;35(4):455–63. [PubMed: 22466547] [CrossRef]
  • Honnert B, Grzebyk M. Manufactured nano-objects: an occupational survey in five industries in France. Ann Occup Hyg. 2014;58(1):121–35. [PubMed: 24142930] [CrossRef]
  • Horie M, Kato H, Iwahashi H. Cellular effects of manufactured nanoparticles: effect of adsorption ability of nanoparticles. Arch Toxicol. 2013;87(5):771–81. [PubMed: 23503611] [CrossRef]
  • Hou P-X, Xu S-T, Ying Z, Yang Q-H, Liu C, Cheng H-M. Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon. 2003;41(13):2471–6. [CrossRef]
  • Hu H, Zhao B, Itkis ME, Haddon RC. Nitric acid purification of single-walled carbon nanotubes. J Phys Chem B. 2003;107(50):13838–42. [CrossRef]
  • Huang X, Zhang F, Sun X, Choi KY, Niu G, Zhang G, et al. The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development. Biomaterials. 2014;35(2):856–65. [PMC free article: PMC4091802] [PubMed: 24344357] [CrossRef]
  • Huizar I, Malur A, Patel J, McPeek M, Dobbs L, Wingard C, et al. The role of PPARγ in carbon nanotube-elicited granulomatous lung inflammation. Respir Res. 2013;14(1):7. [PMC free article: PMC3560264] [PubMed: 23343389] [CrossRef]
  • Hussain F, Hojjati M, Okomoto M, Gorga RE. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and applications: An overview. J Compos Mater. 2006;40(17):1511–75. [CrossRef]
  • IARC (2012). Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum, 100C:1–499. . Available from: http://monographs​.iarc​.fr/ENG/Monographs/vol100C/index.php. [PMC free article: PMC4781271] [PubMed: 23189751]
  • ICRP (International Commission on Radiological Protection). 1994). Human respiratory tract model for radiological protection. Annals of the ICRP, Publication 66. Tarrytown (NY), USA: Elsevier Science Ltd.
  • Iijima S. Helical microtubules of graphite carbon. Nature. 1991;354(6348):56–8. [CrossRef]
  • Iijima S, Brabec C, Maiti A, Bernholc C. Structural flexibility of carbon nanotubes. J Chem Phys. 1996;104(5):2089–92. [CrossRef]
  • Ingle T, Dervishi E, Biris AR, Mustafa T, Buchanan RA, Biris AS. Raman spectroscopy analysis and mapping the biodistribution of inhaled carbon nanotubes in the lungs and blood of mice. J Appl Toxicol. 2013;33(10):1044–52. [PMC free article: PMC5777132] [PubMed: 23047664] [CrossRef]
  • Inoue K, Koike E, Yanagisawa R, Hirano S, Nishikawa M, Takano H. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol Appl Pharmacol. 2009;237(3):306–16. [PubMed: 19371758] [CrossRef]
  • Inoue K, Yanagisawa R, Koike E, Nishikawa M, Takano H. Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: Possible role of oxidative stress. Free Radic Biol Med. 2010;48(7):924–34. [PubMed: 20093178] [CrossRef]
  • Ishigami M, Choi HJ, Aloni S, Louie SG, Cohen ML, Zettl A. Identifying defects in nanoscale materials. Phys Rev Lett. 2004;93(19):196803. [PubMed: 15600863] [CrossRef]
  • ISO (2008). ISO/TS 27687. Nanotechnologies – Terminology and definitions for nano-objects — Nanoparticle, nanofibre and nanoplate. Geneva, Switzerland: International Organization for Standardization.
  • ISO (2010a). ISO/TS 80004–1. Nanotechnologies – Vocabulary Part 1: Core terms. Geneva, Switzerland: International Organization for Standardization.
  • ISO (2010b). ISO/TS 80004–3. Nanotechnologies – Vocabulary Part 3: Carbon nano-objects. Geneva, Switzerland: International Organization for Standardization.
  • ISO (2010c). ISO/TS 10867. Nanotechnologies – Characterization of single-wall carbon nanotubes using near infrared photoluminescence spectroscopy. Geneva, Switzerland: International Organization for Standardization.
  • ISO (2010d). ISO/TS 11251. Nanotechnologies – Characterization of volatile components in single-wall carbon nanotube samples using evolved gas analysis/gas chromatograph-mass spectrometry. Geneva, Switzerland: International Organization for Standardization.
  • ISO (2010e). ISO 29701. Nanotechnologies – Endotoxin test on nanomaterial samples in vitro systems-Liumulus amebocyte lysis (LAL) test. Geneva, Switzerland: International Organization for Standardization.
  • ISO (2011a). ISO/TS 10798. Nanotechnologies – Characterization of single-wall carbon nanotubes using scanning electron microscopy and energy dispersive X-ray spectrometry analysis. Geneva, Switzerland: International Organization for Standardization.
  • ISO (2011b). ISO/TS 11308. Nanotechnologies – Characterization of single-wall carbon nanotubes using thermogravimetric analysis. Geneva, Switzerland: International Organization for Standardization.
  • ISO (2012a). ISO/TR 13014. Nanotechnologies – Guidance on physico-chemical characterization of engineered nanoscale materials for toxicologic assessment. Geneva, Switzerland: International Organization for Standardization.
  • ISO (2012b). ISO/TS 10797. Nanotechnologies – Characterization of single-wall carbon nanotubes using transmission electron microscopy. Geneva, Switzerland: International Organization for Standardization.
  • IUPAC (2014). Compendium of Chemical Terminology – Gold book. 1622 pp. Research Triangle Park (NC), USA: International Union of Pure and Applied Chemistry (IUPAC). Available from: http://goldbook​.iupac​.org/PDF/goldbook.pdf.
  • Jacobsen NR, Møller P, Jensen KA, Vogel U, Ladefoged O, Loft S, et al. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE−/− mice. Part Fibre Toxicol. 2009;6(1):2. [PMC free article: PMC2636756] [PubMed: 19138394] [CrossRef]
  • Jacobsen NR, Pojana G, White P, Møller P, Cohn CA, Korsholm KS, et al. Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells. Environ Mol Mutagen. 2008;49(6):476–87. [PubMed: 18618583] [CrossRef]
  • Jain S, Thakare VS, Das M, Godugu C, Jain AK, Mathur R, et al. Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol. 2011;24(11):2028–39. [PubMed: 21978239] [CrossRef]
  • Jaurand MCF, Renier A, Daubriac J. Mesothelioma: Do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol. 2009;6(1):16. [PMC free article: PMC2706793] [PubMed: 19523217] [CrossRef]
  • Ji JH, Woo D, Lee SB, Kim T, Kim D, Kim JH, et al. Detection and characterization of nanomaterials released in low concentrations during multi-walled carbon nanotube spraying process in a cleanroom. Inhal Toxicol. 2013;25(14):759–65. [PubMed: 24304302] [CrossRef]
  • Jin H, Heller DA, Sharma R, Strano MS. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano. 2009;3(1):149–58. [PubMed: 19206261] [CrossRef]
  • Johnson DR, Methner MM, Kennedy AJ, Steevens JA. Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ Health Perspect. 2010;118(1):49–54. [PMC free article: PMC2831966] [PubMed: 20056572]
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, et al. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Nanotoxicology. 2010;4(2):207–46. [PubMed: 20795897] [CrossRef]
  • Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, et al. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys Rev Lett. 2001;86(6):1118–21. [PubMed: 11178024] [CrossRef]
  • Journal Officiel (2012). [Décret No 2012_232 du 17 février 2012 relatif à la déclaration annuelle des substances à l'état nanoparticulaire pris en application de l'article L. 523–4 du code de l'environnement.] Paris, France: Journal officiel de la République Française.[French]
  • Ju L, Zhang G, Zhang X, Jia Z, Gao X, Jiang Y, et al. Proteomic analysis of cellular response induced by multi-walled carbon nanotubes exposure in A549 cells. PLoS One. 2014;9(1):e84974. [PMC free article: PMC3891800] [PubMed: 24454774] [CrossRef]
  • Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol. 2010;5(5):354–9. [PMC free article: PMC6714564] [PubMed: 20364135] [CrossRef]
  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, et al. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett. 2006;165(1):88–100. [PubMed: 16527436] [CrossRef]
  • Kam NW, O’Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA. 2005;102(33):11600–5. [PMC free article: PMC1187972] [PubMed: 16087878] [CrossRef]
  • Kanno S, Hirano S, Chiba S, et al. The role of Rho-kinases in IL-1β release through phagocytosis of fibrous particles in human monocytes. Arch Toxicol. 2014 [PubMed: 24760326]
  • Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir. 2004;20(26):11594–9. [PubMed: 15595788] [CrossRef]
  • Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21(9):1726–32. [PubMed: 18710264] [CrossRef]
  • Karthikeyan S, Mahalingam P, Karthik M. Large scale synthesis of carbon nanotubes. E-J Chem. 2009;6(1):1–12. [CrossRef]
  • Kasai T, Umeda Y, Ohnishi M, Kondo H, Takeuchi T, Aiso S, et al. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology. 2015;9(4):413–22. [PubMed: 25030099] [CrossRef]
  • Kato T, Totsuka Y, Ishino K, Matsumoto Y, Tada Y, Nakae D, et al. Genotoxicity of multi-walled carbon nanotubes in both in vitro and in vivo assay systems. Nanotoxicology. 2013;7(4):452–61. [PubMed: 22397533] [CrossRef]
  • Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, et al. A carbon nanotube toxicity paradigm driven by mast cells and the IL-33/ST2 axis. Small. 2012;8(18):2904–12. [PMC free article: PMC3445726] [PubMed: 22777948] [CrossRef]
  • Kermanizadeh A, Gaiser BK, Hutchison GR, Stone V. An in vitro liver model–assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part Fibre Toxicol. 2012;9(1):28. [PMC free article: PMC3546021] [PubMed: 22812506] [CrossRef]
  • Kermanizadeh A, Vranic S, Boland S, Moreau K, Baeza-Squiban A, Gaiser BK, et al. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol. 2013;14(1):96. [PMC free article: PMC3648395] [PubMed: 23617532] [CrossRef]
  • Kim JE, Lim HT, Minai-Tehrani A, Kwon JT, Shin JY, Woo CG, et al. Toxicity and clearance of intratracheally administered multiwalled carbon nanotubes from murine lung. J Toxicol Environ Health A. 2010;73(21–22):1530–43. [PubMed: 20954079] [CrossRef]
  • Kim JS, Lee K, Lee YH, Cho HS, Kim KH, Choi KH, et al. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes. Arch Toxicol. 2011;85(7):775–86. [PubMed: 20617304] [CrossRef]
  • Kim JS, Song KS, Lee JK, Choi YC, Bang IS, Kang CS, et al. Toxicogenomic comparison of multi-wall carbon nanotubes (MWCNTs) and asbestos. Arch Toxicol. 2012;86(4):553–62. b. [PubMed: 22076105] [CrossRef]
  • Kim JS, Sung JH, Choi BG, Ryu HY, Song KS, Shin JH, et al. In vivo genotoxicity evaluation of lung cells from Fischer 344 rats following 28 days of inhalation exposure to MWCNTs, plus 28 days and 90 days post-exposure. Inhal Toxicol. 2014;26(4):222–34. [PubMed: 24568578] [CrossRef]
  • Kim JS, Sung JH, Song KS, Lee JH, Kim SM, Lee GH, et al. Persistent DNA damage measured by comet assay of Sprague Dawley rat lung cells after five days of inhalation exposure and 1 month post-exposure to dispersed multi-wall carbon nanotubes (MWCNTs) generated by new MWCNT aerosol generation system. Toxicol Sci. 2012;128(2):439–48. a. [PubMed: 22543278] [CrossRef]
  • Kim JS, Yu IJ. Single-wall carbon nanotubes (SWCNT) induce cytotoxicity and genotoxicity produced by reactive oxygen species (ROS) generation in phytohemagglutinin (PHA)-stimulated male human peripheral blood lymphocytes. J Toxicol Environ Health A. 2014;77(19):1141–53. [PubMed: 25119736] [CrossRef]
  • Kim YA, Hayashi T, Endo M, Dresselhaus MS. 2013). 7. Carbon Nanofibers. In: Vajtai R, editor. Springer handbook of nanomaterials. 10.1007/978-3-642-20595-8_7. [CrossRef]
  • Kisin ER, Murray AR, Keane MJ, Shi XC, Schwegler-Berry D, Gorelik O, et al. Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J Toxicol Environ Health A. 2007;70(24):2071–9. [PubMed: 18049996] [CrossRef]
  • Kisin ER, Murray AR, Sargent L, Lowry D, Chirila M, Siegrist KJ, et al. Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol. 2011;252(1):1–10. [PMC free article: PMC5014234] [PubMed: 21310169] [CrossRef]
  • Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem Phys Lett. 2000;317(3–5):497–503. [CrossRef]
  • Kobayashi N, Naya M, Ema M, Endoh S, Maru J, Mizuno K, et al. Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology. 2010;276(3):143–53. [PubMed: 20696199] [CrossRef]
  • Kobayashi N, Naya M, Mizuno K, Yamamoto K, Ema M, Nakanishi J. Pulmonary and systemic responses of highly pure and well-dispersed single-wall carbon nanotubes after intratracheal instillation in rats. Inhal Toxicol. 2011;23(13):814–28. [PMC free article: PMC3251003] [PubMed: 22004357] [CrossRef]
  • Köhler AR, Som C, Helland A, Gottschalk F. Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod. 2008;16(8–9):927–37. [CrossRef]
  • Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, Ananta JS, Morgant G, Szwarc H, et al. In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano. 2010;4(3):1481–92. [PubMed: 20175510] [CrossRef]
  • Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol. 2009;4(10):627–33. [PubMed: 19809452] [CrossRef]
  • Ku BK, Maynard AD, Baron OA, Deye GJ. Observation and measurement of anomalous responses in a differential mobility analyser caused by ultrafine fibrous carbon aerosols. J Electrost. 2007;65(8):542–8. [CrossRef]
  • Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol. 2010;10(6):3739–58. [PubMed: 20355365] [CrossRef]
  • Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta. 2011;1810(3):361–73. [PubMed: 20435096] [CrossRef]
  • Lacerda L, Ali-Boucetta H, Herrero MA, Pastorin G, Bianco A, Prato M, et al. Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine (Lond). 2008;3(2):149–61. b. [PubMed: 18373422] [CrossRef]
  • Lacerda L, Herrero MA, Venner K, Bianco A, Prato M, Kostarelos K. Carbon-nanotube shape and individualization critical for renal excretion. Small. 2008;4(8):1130–2. c. [PubMed: 18666166] [CrossRef]
  • Lacerda L, Soundararajan A, Singh R, Pastorin G, Al-Jamal KT, Turton J, et al. Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv Mater. 2008;20(2):225–30. a. [CrossRef]
  • Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 2006;36(3):189–217. [PubMed: 16686422] [CrossRef]
  • Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77(1):126–34. [PubMed: 14514958] [CrossRef]
  • Lee JH, Lee SB, Bae GN, Jeon KS, Yoon JU, Ji JH, et al. Exposure assessment of carbon nanotube manufacturing workplaces. Inhal Toxicol. 2010;22(5):369–81. [PubMed: 20121582] [CrossRef]
  • Lee JH, Sohn EK, Ahn JS, Ahn K, Kim KS, Lee JH, et al. Exposure assessment of workers in printed electronics workplace. Inhal Toxicol. 2013;25(8):426–34. [PubMed: 23808635] [CrossRef]
  • Lee JK, Sayers BC, Chun KS, Lao HC, Shipley-Phillips JK, Bonner JC, et al. Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP kinase-dependent and -independent mechanisms in mouse RAW264.7 macrophages. Part Fibre Toxicol. 2012;9(1):14. [PMC free article: PMC3485091] [PubMed: 22571318] [CrossRef]
  • Li J, Li L, Chen H, Chang Q, Liu X, Wu Y, et al. Application of vitamin E to antagonize SWCNTs-induced exacerbation of allergic asthma. Sci Rep. 2014;4:4275. [PMC free article: PMC3940970] [PubMed: 24589727]
  • Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, et al. Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol. 2007;22(4):415–21. a. [PubMed: 17607736] [CrossRef]
  • Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, et al. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano. 2013;7(3):2352–68. [PMC free article: PMC4012619] [PubMed: 23414138] [CrossRef]
  • Li X, Peng Y, Qu X. Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res. 2006;34(13):3670–6. [PMC free article: PMC1540735] [PubMed: 16885240] [CrossRef]
  • Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, et al. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect. 2007;115(3):377–82. b. [PMC free article: PMC1849906] [PubMed: 17431486] [CrossRef]
  • Liao HY, Chung YT, Lai CH, Lin MH, Liou SH. Sneezing and allergic dermatitis were increased in engineered nanomaterial handling workers. Ind Health. 2014;52(3):199–215. b. [PMC free article: PMC4209579] [PubMed: 24492762] [CrossRef]
  • Liao HY, Chung YT, Lai CH, Wang SL, Chiang HC, Li LA, et al. Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials. Nanotoxicology. 2014;8(S1) Suppl 1:100–10. a. [PubMed: 24295335] [CrossRef]
  • Lindberg HK, Falck GC, Singh R, Suhonen S, Järventaus H, Vanhala E, et al. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Toxicology. 2013;313(1):24–37. [PubMed: 23266321] [CrossRef]
  • Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalán J, et al. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett. 2009;186(3):166–73. [PubMed: 19114091] [CrossRef]
  • Ling WL, Biro A, Bally I, Tacnet P, Deniaud A, Doris E, et al. Proteins of the innate immune system crystallize on carbon nanotubes but are not activated. ACS Nano. 2011;5(2):730–7. [PubMed: 21214219] [CrossRef]
  • Liou SH, Tsou TC, Wang SL, Li LA, Chiang HC, Li WF, et al. Epidemiological study of health hazards among workers handling engineered nanomaterials. J Nanopart Res. 2012;14(8):878. [CrossRef]
  • Lioy PJ, Lippmann M, Phalen RF. 1984Rationale for particle size-selective air sampling. InParticle size-selective sampling in the workplace: report of the ACGIH Technical Committee on Air Sampling Procedures Ann Am Conf Ind Hyg 1127–34.
  • Lison D, Muller J. Lung and systemic responses to carbon nanotubes (CNT) in mice. Toxicol Sci. 2008;101(1):179–80, author reply 181–2. [PubMed: 17897971] [CrossRef]
  • Liu HL, Zhang YL, Yang N, Zhang YX, Liu XQ, Li CG, et al. A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signalling. Cell Death Dis. 2011;2(5):e159. [PMC free article: PMC3122114] [PubMed: 21593791] [CrossRef]
  • Liu X, Guo L, Morris D, Kane AB, Hurt RH. Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon N Y. 2008;46(3):489–500. b. [PMC free article: PMC2614279] [PubMed: 19255622] [CrossRef]
  • Liu X, Hurt RH, Kane AB. Biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon N Y. 2010;48(7):1961–9. [PMC free article: PMC2844903] [PubMed: 20352066] [CrossRef]
  • Liu X, Sen S, Liu J, Kulaots I, Geohegan D, Kane A, et al. Antioxidant deactivation on graphenic nanocarbon surfaces. Small. 2011;7(19):2775–85. b. [PMC free article: PMC3634619] [PubMed: 21818846] [CrossRef]
  • Liu X, Tao H, Yang K, Zhang S, Lee S-T, Liu Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials. 2011;32(1):144–51. a. [PubMed: 20888630] [CrossRef]
  • Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA. 2008;105(5):1410–5. a. [PMC free article: PMC2234157] [PubMed: 18230737] [CrossRef]
  • Lohcharoenkal W, Wang L, Stueckle TA, Park J, Tse W, Dinu CZ, et al. Role of H-Ras/ERK signalling in carbon nanotube-induced neoplastic-like transformation of human mesothelial cells. Front Physiol. 2014;5:222. [PMC free article: PMC4054652] [PubMed: 24971065] [CrossRef]
  • Lu X, Chen Z. Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes. Chem Rev. 2005;105(10):3643–96. [PubMed: 16218563] [CrossRef]
  • Lucente-Schultz RM, Moore VC, Leonard AD, Price BK, Kosynkin DV, Lu M, et al. Antioxidant single-walled carbon nanotubes. J Am Chem Soc. 2009;131(11):3934–41. [PubMed: 19243186] [CrossRef]
  • Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, et al. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci. 2009;112(2):468–81. [PubMed: 19584127] [CrossRef]
  • Mahar B, Laslau C, Yip R, Sun Y. Development of carbon nanotube-based sensors – A rview. IEEE Sens J. 2007;7(2):266–84. [CrossRef]
  • Manshian BB, Jenkins GJS, Williams PM, Wright C, Barron AR, Brown AP, et al. Single-walled carbon nanotubes: differential genotoxic potential associated with physico-chemical properties. Nanotoxicology. 2013;7(2):144–56. [PubMed: 22263934] [CrossRef]
  • Matthews IP, Gregory CJ, Aljayyoussi G, Morris CJ, McDonald I, Hoogendoorn B, et al. Maximal extent of translocation of single-walled carbon nanotubes from lung airways of the rat. Environ Toxicol Pharmacol. 2013;35(3):461–4. [PubMed: 23501606] [CrossRef]
  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A. 2004;67(1):87–107. [PubMed: 14668113] [CrossRef]
  • Maynard AD, Ku BK, Emery M, Stolzenburg M, McMurry PH. Measuring particle size-dependent physicochemical structure in airborne single walled carbon nanotube agglomerates. J Nanopart Res. 2007;9(1):85–92. [CrossRef]
  • McDonald J, Mitchell L. Lung and systemic responses to carbon nanotubes (CNT) in mice. Toxicol Sci. 2008;101(1):181–2. [PubMed: 17897971] [CrossRef]
  • McShan D, Yu H. DNA damage in human skin keratinocytes caused by multiwalled carbon nanotubes with carboxylate functionalization. Toxicol Ind Health. 2014;30(6):489–98. [PMC free article: PMC3912206] [PubMed: 23012341] [CrossRef]
  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, et al. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol. 2011;8(1):21. [PMC free article: PMC3152886] [PubMed: 21781304] [CrossRef]
  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Schwegler-Berry D, et al. Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol. 2010;7(1):28. [PMC free article: PMC2958975] [PubMed: 20920331] [CrossRef]
  • Mercer RR, Scabilloni J, Wang L, Kisin E, Murray AR, Schwegler-Berry D, et al. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol. 2008;294(1):L87–97. [PubMed: 18024722] [CrossRef]
  • Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, et al. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 2013;10(1):33. b. [PMC free article: PMC3733770] [PubMed: 23895460] [CrossRef]
  • Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, et al. Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol. 2013;10(1):38. a. [PMC free article: PMC3750633] [PubMed: 23927530] [CrossRef]
  • Methner M, Beaucham C, Crawford C, Hodson L, Geraci C. Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities. J Occup Environ Hyg. 2012;9(9):543–55. [PubMed: 22816668] [CrossRef]
  • Methner M, Hodson L, Dames A, Geraci C. Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials–Part B: Results from 12 field studies. J Occup Environ Hyg. 2010;7(3):163–76. [PubMed: 20063229] [CrossRef]
  • Meunier E, Coste A, Olagnier D, Authier H, Lefèvre L, Dardenne C, et al. Double-walled carbon nanotubes trigger IL-1β release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine. 2012;8(6):987–95. [PubMed: 22100755] [CrossRef]
  • Migliore L, Saracino D, Bonelli A, Colognato R, D’Errico MR, Magrini A, et al. Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells. Environ Mol Mutagen. 2010;51(4):294–303. [PubMed: 20091701]
  • Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci. 2007;100(1):203–14. [PubMed: 17660506] [CrossRef]
  • Mitchell LA, Lauer FT, Burchiel SW, McDonald JD. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol. 2009;4(7):451–6. [PMC free article: PMC3641180] [PubMed: 19581899] [CrossRef]
  • Mizutani N, Nabe T, Yoshino S. Exposure to multiwalled carbon nanotubes and allergen promotes early- and late-phase increases in airway resistance in mice. Biol Pharm Bull. 2012;35(12):2133–40. [PubMed: 23207765] [CrossRef]
  • Moghimi SM, Andersen AJ, Hashemi SH, Lettiero B, Ahmadvand D, Hunter AC, et al. Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J Control Release. 2010;146(2):175–81. [PubMed: 20388529] [CrossRef]
  • Mohiuddin, Keka IS, Evans TJ, Hirota K, Shimizu H, Kono K, et al. A novel genotoxicity assay of carbon nanotubes using functional macrophage receptor with collagenous structure (MARCO)-expressing chicken B lymphocytes. Arch Toxicol. 2014;88(1):145–60. [PubMed: 23963510] [CrossRef]
  • Monteiro-Riviere NA, Inman AO, Zhang LW. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol. 2009;234(2):222–35. [PubMed: 18983864] [CrossRef]
  • Morimoto Y, Hirohashi M, Horie M, Ogami A, Oyabu T, Myojo T, et al. Pulmonary toxicity of well-dispersed single-wall carbon nanotubes following intratracheal instillation. J Nano Res. 2012;18–19:9–25. c. [CrossRef]
  • Morimoto Y, Hirohashi M, Kobayashi N, Ogami A, Horie M, Oyabu T, et al. Pulmonary toxicity of well-dispersed single-wall carbon nanotubes after inhalation. Nanotoxicology. 2012;6(7):766–75. a. [PubMed: 21942532] [CrossRef]
  • Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Todoroki M, et al. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology. 2012;6(6):587–99. b. [PubMed: 21714591] [CrossRef]
  • Morimoto Y, Izumi H, Kuroda E. Significance of persistent inflammation in respiratory disorders induced by nanoparticles. J Immunol Res. 2014;2014(962871):962871. [PMC free article: PMC4109676] [PubMed: 25097864]
  • Morrow PE. Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol. 1988;10(3):369–84. [PubMed: 3286345] [CrossRef]
  • Morrow PE (1994). Mechanisms and significance of “particle overload”. In: Toxic and Carcinogenic Effects of Solid Particles in the Respiratory Tract. Proceedings of the 4th International Inhalation Symposium, March 1993, Hanover, Germany, pp. 17–25. Washington (DC), USA: International Life Sciences Institute Press.
  • Movia D, Prina-Mello A, Bazou D, Volkov Y, Giordani S. Screening the cytotoxicity of single-walled carbon nanotubes using novel 3D tissue-mimetic models. ACS Nano. 2011;5(11):9278–90. [PubMed: 22017733] [CrossRef]
  • Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, et al. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis. 2008;29(2):427–33. b. [PubMed: 18174261] [CrossRef]
  • Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci. 2009;110(2):442–8. [PubMed: 19429663] [CrossRef]
  • Muller J, Huaux F, Fonseca A, Nagy JB, Moreau N, Delos M, et al. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol. 2008;21(9):1698–705. a. [PubMed: 18636756] [CrossRef]
  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207(3):221–31. [PubMed: 16129115] [CrossRef]
  • Müller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B. Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface. 2010;7 Suppl 1:S27–40. [PMC free article: PMC2843981] [PubMed: 19586954] [CrossRef]
  • Murphy FA, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, Nunes A, et al. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol. 2011;178(6):2587–600. [PMC free article: PMC3124020] [PubMed: 21641383] [CrossRef]
  • Murphy FA, Schinwald A, Poland CA, Donaldson K. The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol. 2012;9(1):8. [PMC free article: PMC3352110] [PubMed: 22472194] [CrossRef]
  • Murr LE, Bang JJ, Esquivel EV, Guerrero PA, Lopez A. Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. J Nanopart Res. 2004;6(2/3):241–51. b. [CrossRef]
  • Murr LE, Esquivel EV, Bang JJ, de la Rosa G, Gardea-Torresdey JL. Chemistry and nanoparticulate compositions of a 10,000 year-old ice core melt water. Water Res. 2004;38(19):4282–96. a. [PubMed: 15491674] [CrossRef]
  • Murr LE, Guerrero PA. Carbon nanotubes in wood soot. Atmosph Sci Lett. 2006:793–95.
  • Murr LE, Soto KF. A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources. Mater Charact. 2005;55(1):50–65. [CrossRef]
  • Murr LE, Soto KF, Garza KM, Guerrero PA, Martinez F, Esquivel EV, et al. Combustion-generated nanoparticulates in the El Paso, TX, USA / Juarez, Mexico Metroplex: their comparative characterization and potential for adverse health effects. Int J Environ Res Public Health. 2006;3(1):48–66. [PMC free article: PMC3785680] [PubMed: 16823077] [CrossRef]
  • Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, et al. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology. 2009;257(3):161–71. [PubMed: 19150385] [CrossRef]
  • Murray AR, Kisin ER, Tkach AV, Yanamala N, Mercer R, Young SH, et al. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol. 2012;9(1):10. [PMC free article: PMC3379937] [PubMed: 22490147] [CrossRef]
  • Nagai H, Okazaki Y, Chew SH, Misawa N, Miyata Y, Shinohara H, et al. Intraperitoneal administration of tangled multiwalled carbon nanotubes of 15 nm in diameter does not induce mesothelial carcinogenesis in rats. Pathol Int. 2013;63(9):457–62. [PubMed: 24200157] [CrossRef]
  • Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci USA. 2011;108(49):E1330–8. [PMC free article: PMC3241783] [PubMed: 22084097] [CrossRef]
  • Nanocyl (2009). Responsible care and nanomaterials case study Nanocyl. Presentation at European Responsible Care Conference, 21–23 October 2009, Prague, Czech Republic. Brussels, Belgium: The European Chemical Industry Council (CEFIC). Available from: http://www​.cefic.org​/Documents/ResponsibleCare/04_Nanocyl​.pdf.
  • Naya M, Kobayashi N, Endoh S, Maru J, Honda K, Ema M, et al. In vivo genotoxicity study of single-wall carbon nanotubes using comet assay following intratracheal instillation in rats. Regul Toxicol Pharmacol. 2012;64(1):124–9. [PubMed: 22735368] [CrossRef]
  • Naya M, Kobayashi N, Mizuno K, Matsumoto K, Ema M, Nakanishi J. Evaluation of the genotoxic potential of single-wall carbon nanotubes by using a battery of in vitro and in vivo genotoxicity assays. Regul Toxicol Pharmacol. 2011;61(2):192–8. [PubMed: 21821090] [CrossRef]
  • NIOSH (1994a). NIOSH Manual of Analytical Methods. 4th Edition, Method No. 7402. Cincinnati (OH), USA: United States Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.
  • NIOSH (1994b). NIOSH Manual of Analytical Methods. 4th Edition, Method No. 0500. Cincinnati (OH), USA: United States Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.
  • NIOSH (1999). NIOSH Manual of Analytical Methods. 4th Edition, Method No. 5040. Cincinnati (OH), USA: United States Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.
  • NIOSH (2003a). NIOSH Manual of Analytical Methods. 4th Edition, Method No. 7300. Cincinnati (OH), USA: United States Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH).
  • NIOSH (2003b). NIOSH Manual of Analytical Methods. 4th Edition, Method No. 7303. Cincinnati (OH), USA: United States Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.
  • NIOSH (2003c). NIOSH Manual of Analytical Methods. 4th Edition, Method No. 7404. Cincinnati (OH), USA: United States Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.
  • NIOSH (2013). Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers. Publication No. 2013–145. Cincinnati (OH), USA: United States Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Available from: http://www​.cdc.gov/niosh​/review/peer/HISA/nano-pr.html.
  • Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M, et al. Potential release scenarios for carbon nanotubes used in composites. Environ Int. 2013;59:1–11. [PubMed: 23708563] [CrossRef]
  • NSTC (2011). The First Nanosafety Management Master Plan (2012–2016), National Science and Technology Commission. [in Korean]. Seoul, Republic of Korea: National Science and Technology Commission. Available from: http://www​.nnpc.re.kr​/knowledge/nano_policy​/19/view?p_page=1&p_pagesize​=10&o_field​=&o_direction​=&s_t_type​=&s_keyword​=&s_category, accessed 23 January 2016.
  • Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Løvik M. Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci. 2009;109(1):113–23. [PubMed: 19293371] [CrossRef]
  • Nymark P, Jensen KA, Suhonen S, Kembouche Y, Vippola M, Kleinjans J, et al. Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells. Part Fibre Toxicol. 2014;11(1):4. [PMC free article: PMC3933237] [PubMed: 24438343] [CrossRef]
  • Oberdörster G. Lung particle overload: implications for occupational exposures to particles. Regul Toxicol Pharmacol. 1995;21(1):123–35. [PubMed: 7784625] [CrossRef]
  • Oberdörster G. Nanotoxicology: in vitro-in vivo dosimetry. Environ Health Perspect. 2012;120(1):A13–, author reply A13. [PMC free article: PMC3261953] [PubMed: 22214547] [CrossRef]
  • Oberdörster G, Kane AB, Klaper RD, Hurt RH. 2013). Nanotoxicology. In: Casarett and Doull's toxicology. Columbus (OH), USA: McGraw-Hill Companies, inc.
  • Observatory Nano (2011). Briefing No. 23: Transport — Nanotechnology in automotive tyres. European Commission. Available from: http://nanopinion​.eu​/sites/default/files/briefing_no​.23_nanotechnology​_in_automotive_tyres.pdf.
  • OECD. 2009a). Series on the safety of manufactured nanomaterials, preliminary analysis of exposure measurement and exposure mitigation in occupational settings: manufactured nanomaterials. Paris, France: Organisation for Economic Co-operation and Development.
  • OECD. 2009b). Emission assessment for identification of sources and release of airborne manufactured nanomaterials in the workplace: compilation of existing guidance. Paris, France: Organisation for Economic Co-operation and Development.
  • OECD. 2009c). Identification, compilation and analysis of guidance information for exposure measurement and exposure mitigation: manufactured nanomaterials. Paris, France: Organisation for Economic Co-operation and Development.
  • OECD. 2009d). Report of an OECD Workshop on Exposure Assessment and Exposure Mitigation: Manufactured Nanomaterials. Paris, France: Organisation for Economic Co-operation and Development.
  • OECD. 2010). Compilation and comparison of guidelines related to exposure to nanomaterials in laboratories. Paris, France: Organisation for Economic Co-operation and Development.
  • Ogasawara Y, Umezu N, Ishii K. [DNA damage in human pleural mesothelial cells induced by exposure to carbon nanotubes] Nippon Eiseigaku Zasshi. 2012;67(1):76–83. [PubMed: 22449827] [CrossRef]
  • Ogura I, Kotake M, Hashimoto N, Gotoh K, Kishimoto A. Release characteristics of single-wall carbon nanotubes during manufacturing and handling. J Phys Conf Ser. 2013;429:012057. b. [CrossRef]
  • Ogura I, Kotake M, Shigeta M, Uejima M, Saito K, Hashimoto N, et al. Potential release of carbon nanotubes from their composites during grinding. J Phys Conf Ser. 2013;429:012049. a. [CrossRef]
  • Ono-Ogasawara M, Myojo T. Characteristics of multi-walled carbon nanotubes and background aerosols by carbon analysis; particle size and oxidation temperature. Adv Powder Technol. 2013;24(1):263–9. [CrossRef]
  • OSHA (2013). Fact Sheet: Working Safely with Nanomaterials. Washington (DC), USA: Occupational Safety and Health Administration, US Department of Labor. Available from: https://www​.osha.gov​/Publications/OSHA_FS-3634.pdf, accessed 9 September 2014.
  • Oyabu T, Myojo T, Morimoto Y, Ogami A, Hirohashi M, Yamamoto M, et al. Biopersistence of inhaled MWCNT in rat lungs in a 4-week well-characterized exposure. Inhal Toxicol. 2011;23(13):784–91. [PubMed: 22035120] [CrossRef]
  • Pacurari M, Qian Y, Porter DW, Wolfarth M, Wan Y, Luo D, et al. Multi-walled carbon nanotube-induced gene expression in the mouse lung: association with lung pathology. Toxicol Appl Pharmacol. 2011;255(1):18–31. [PMC free article: PMC3148292] [PubMed: 21624382] [CrossRef]
  • Pacurari M, Yin XJ, Ding M, Leonard SS, Schwegler-berry D, Ducatman BS, et al. Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells. Nanotoxicology. 2008;2(3):155–70. a. [CrossRef]
  • Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, et al. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect. 2008;116(9):1211–7. b. [PMC free article: PMC2535624] [PubMed: 18795165] [CrossRef]
  • Paik SY, Zalk DM, Swuste P. Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg. 2008;52(6):419–28. [PubMed: 18632731] [CrossRef]
  • Palomäki J, Karisola P, Pylkkänen L, Savolainen K, Alenius H. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology. 2010;267(1–3):125–31. [PubMed: 19897006] [CrossRef]
  • Palomäki J, Välimäki E, Sund J, Vippola M, Clausen PA, Jensen KA, et al. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano. 2011;5(9):6861–70. [PubMed: 21800904] [CrossRef]
  • Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl. 2004;43(39):5242–6. [PubMed: 15455428] [CrossRef]
  • Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology. 2009;259(3):113–21. [PubMed: 19428951] [CrossRef]
  • Park EJ, Roh J, Kim SN, Kang MS, Han YA, Kim Y, et al. A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice. Arch Toxicol. 2011;85(9):1121–31. b. [PubMed: 21472445] [CrossRef]
  • Park EJ, Roh J, Kim SN, Kang MS, Lee BS, Kim Y, et al. Biological toxicity and inflammatory response of semi-single-walled carbon nanotubes. PLoS One. 2011;6(10):e25892. a. [PMC free article: PMC3189226] [PubMed: 22016783] [CrossRef]
  • Park EJ, Roh J, Kim SN, Kim Y, Han SB, Hong JT. CCR5 plays an important role in resolving an inflammatory response to single-walled carbon nanotubes. J Appl Toxicol. 2013;33(8):845–53. [PubMed: 22438032] [CrossRef]
  • Patel HJ, Kwon S. Length-dependent effect of single-walled carbon nanotube exposure in a dynamic cell growth environment of human alveolar epithelial cells. J Expo Sci Environ Epidemiol. 2013;23(1):101–8. [PubMed: 22854519] [CrossRef]
  • Patlolla AK, Hussain SM, Schlager JJ, Patlolla S, Tchounwou PB. Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice. Environ Toxicol. 2010;25(6):608–21. [PMC free article: PMC2944913] [PubMed: 20549644] [CrossRef]
  • Pauluhn J. Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit. Regul Toxicol Pharmacol. 2010;57(1):78–89. a. [PubMed: 20074606] [CrossRef]
  • Pauluhn J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci. 2010;113(1):226–42. b. [PubMed: 19822600] [CrossRef]
  • Pelka J, Gehrke H, Rechel A, Kappes M, Hennrich F, Hartinger CG, et al. DNA damaging properties of single walled carbon nanotubes in human colon carcinoma cells. Nanotoxicology. 2013;7(1):2–20. [PubMed: 22007624] [CrossRef]
  • Petersen EJ, Zhang L, Mattison NT, O’Carroll DM, Whelton AJ, Uddin N, et al. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol. 2011;45(23):9837–56. [PubMed: 21988187] [CrossRef]
  • Pfuhler S, Elespuru R, Aardema MJ, Doak SH, Maria Donner E, Honma M, et al. Genotoxicity of nanomaterials: refining strategies and tests for hazard identification. Environ Mol Mutagen. 2013;54(4):229–39. [PubMed: 23519787] [CrossRef]
  • Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and in the world. J Nanopart Res. 2012;14(9):1109. [CrossRef]
  • Pichardo S, Gutiérrez-Praena D, Puerto M, Sánchez E, Grilo A, Cameán AM, et al. Oxidative stress responses to carboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2. Toxicol In Vitro. 2012;26(5):672–7. [PubMed: 22449549] [CrossRef]
  • Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano. 2011;5(6):4624–33. [PubMed: 21615177] [CrossRef]
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3(7):423–8. [PubMed: 18654567] [CrossRef]
  • Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006;6(1):96–100. [PubMed: 16402794] [CrossRef]
  • Popov VN. Carbon nanotubes: properties and applications. Mater Sci Eng Rep. 2004;43(3):61–102. [CrossRef]
  • Porter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, Wolfarth MG, et al. Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes. Nanotoxicology. 2013;7(7):1179–94. [PMC free article: PMC4687396] [PubMed: 22881873] [CrossRef]
  • Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, et al. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 2010;269(2–3):136–47. [PubMed: 19857541] [CrossRef]
  • Prencipe G, Tabakman SM, Welsher K, Liu Z, Goodwin AP, Zhang L, et al. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc. 2009;131(13):4783–7. [PMC free article: PMC2827329] [PubMed: 19173646] [CrossRef]
  • Pulskamp K, Diabaté S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett. 2007;168(1):58–74. [PubMed: 17141434] [CrossRef]
  • Raabe OG, Al-Bayati MA, Teague SV, Rasolt A. Regional deposition of inhaled monodisperse coarse and fine aerosol particles in small laboratory animals. Ann Occup Hyg. 1988;32 inhaled particles VI:53–63. [CrossRef]
  • Rama Narsimha Reddy A, Narsimha Reddy Y, Himabindu V, Rama Krishna D. Induction of oxidative stress and cytotoxicity by carbon nanomaterials is dependent on physical properties. Toxicol Ind Health. 2011;27(1):3–10. [PubMed: 20639279] [CrossRef]
  • Ravichandran P, Baluchamy S, Gopikrishnan R, Biradar S, Ramesh V, Goornavar V, et al. Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice. J Biol Chem. 2011;286(34):29725–33. [PMC free article: PMC3191014] [PubMed: 21705330] [CrossRef]
  • Ravichandran P, Baluchamy S, Sadanandan B, Gopikrishnan R, Biradar S, Ramesh V, et al. Multiwalled carbon nanotubes activate NF-κB and AP-1 signalling pathways to induce apoptosis in rat lung epithelial cells. Apoptosis. 2010;15(12):1507–16. [PubMed: 20694747] [CrossRef]
  • Reddy AR, Rao MV, Krishna DR, Himabindu V, Reddy YN. Evaluation of oxidative stress and anti-oxidant status in rat serum following exposure of carbon nanotubes. Regul Toxicol Pharmacol. 2011;59(2):251–7. [PubMed: 20955749] [CrossRef]
  • Reddy AR, Reddy YN, Krishna DR, Himabindu V. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology. 2010;272(1-3):11–6. b. [PubMed: 20371264] [CrossRef]
  • Reddy ARN, Krishna DR, Reddy YN, Himabindu V. Translocation and extra pulmonary toxicities of multi wall carbon nanotubes in rats. Toxicol Mech Methods. 2010;20(5):267–72. a. [PubMed: 20482408] [CrossRef]
  • Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodriguez-Macias FJ, et al. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys, A Mater Sci Process. 1998;67(1):29–37. [CrossRef]
  • Roda E, Coccini T, Acerbi D, Barni S, Vaccarone R, Manzo L. Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes intratracheally instilled in rats: morphohistochemical evaluations. Histol Histopathol. 2011;26(3):357–67. [PubMed: 21210349]
  • Romero G, Rojas E, Estrela-Lopis I, Donath E, Moya SE. Spontaneous confocal Raman microscopy–a tool to study the uptake of nanoparticles and carbon nanotubes into cells. Nanoscale Res Lett. 2011;6(1):429. [PMC free article: PMC3211846] [PubMed: 21711493] [CrossRef]
  • Ronzani C, Casset A, Pons F. Exposure to multi-walled carbon nanotubes results in aggravation of airway inflammation and remodeling and in increased production of epithelium-derived innate cytokines in a mouse model of asthma. Arch Toxicol. 2014;88(2):489–99. [PubMed: 23948970] [CrossRef]
  • Ruoff RS, Thersoff J, Lorents DC, Subramoney S, Chan B. Radial deformation of carbon nanotubes by van-der-Waals forces. Nature. 1993;364(6437):514–6. [CrossRef]
  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 2009;4(11):747–51. a. [PMC free article: PMC2783215] [PubMed: 19893520] [CrossRef]
  • Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol. 2009;40(3):349–58. b. [PMC free article: PMC2645533] [PubMed: 18787175] [CrossRef]
  • Safe Work Australia. 2010). Human health hazard assessment and classification of carbon nanotubes. Canberra, Australia: Safe Work Australia.
  • Sager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen TH, et al. Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology. 2014;8(3):317–27. [PMC free article: PMC4669410] [PubMed: 23432020] [CrossRef]
  • Sager TM, Wolfarth MW, Battelli LA, Leonard SS, Andrew M, Steinbach T, et al. Investigation of the pulmonary bioactivity of double-walled carbon nanotubes. J Toxicol Environ Health A. 2013;76(15):922–36. [PubMed: 24156695] [CrossRef]
  • Saito S, Zettl A. 2008). Carbon nanotubes: Quantum cylinders and graphene. In: Burstein E, Cohen ML, Mills DL, Stiles PJ, editors. Series: Contemporary concepts of condensed matter science. Volume 3. Oxford, United Kingdom: Elsevier; pp. 1–215.
  • Sakamoto Y, Nakae D, Fukumori N, Tayama K, Maekawa A, Imai K, et al. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci. 2009;34(1):65–76. [PubMed: 19182436] [CrossRef]
  • Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB. Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):511–29. [PMC free article: PMC2864601] [PubMed: 20049814] [CrossRef]
  • Sanchez VC, Weston P, Yan A, Hurt RH, Kane AB. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials. Part Fibre Toxicol. 2011;8(1):17. [PMC free article: PMC3120675] [PubMed: 21592387] [CrossRef]
  • Sargent LM, Hubbs AF, Young SH, Kashon ML, Dinu CZ, Salisbury JL, et al. Single-walled carbon nanotube-induced mitotic disruption. Mutat Res. 2012;745(1–2):28–37. a. [PMC free article: PMC4696046] [PubMed: 22178868] [CrossRef]
  • Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, et al. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 2014;11(1):3. [PMC free article: PMC3895742] [PubMed: 24405760] [CrossRef]
  • Sargent LM, Reynolds SH, Lowry D, Kashon ML, Benkovic SA, Salisbury JL, et al. Abstract 5464. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. Cancer Res. 2012;72(8) Suppl 1 b. [CrossRef]
  • Sargent LM, Shvedova AA, Hubbs AF, Salisbury JL, Benkovic SA, Kashon ML, et al. Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol Mutagen. 2009;50(8):708–17. [PubMed: 19774611] [CrossRef]
  • Sarkar S, Sharma C, Yog R, Periakaruppan A, Jejelowo O, Thomas R, et al. Analysis of stress responsive genes induced by single-walled carbon nanotubes in BJ Foreskin cells. J Nanosci Nanotechnol. 2007;7(2):584–92. [PMC free article: PMC2758086] [PubMed: 17450800]
  • Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst. 2005;1(2):176–82. [PubMed: 16880981] [CrossRef]
  • Sayers BC, Taylor AJ, Glista-Baker EE, Shipley-Phillips JK, Dackor RT, Edin ML, et al. Role of cyclooxygenase-2 in exacerbation of allergen-induced airway remodeling by multiwalled carbon nanotubes. Am J Respir Cell Mol Biol. 2013;49(4):525–35. [PMC free article: PMC3824045] [PubMed: 23642096] [CrossRef]
  • Schinwald A, Murphy FA, Prina-Mello A, Poland CA, Byrne F, Movia D, et al. The threshold length for fiber-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol Sci. 2012;128(2):461–70. [PubMed: 22584686] [CrossRef]
  • Schlesinger RB. Interaction of gaseous and particulate pollutants in the respiratory tract: mechanisms and modulators. Toxicology. 1995;105(2–3):315–25. [PubMed: 8571368] [CrossRef]
  • Schneider T, Jansson A, Alstrup JK, Kristjanson V, Luotamo M, Nygren O, et al. (2007). Evaluation and control of occupational health risks from nanoparticles. TemaNord: 581. Copenhagen, Denmark: Nordic Council of Ministers. 10.6027/tn2007-581 10.6027/tn2007-581. [CrossRef]
  • Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, et al. Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol. 2007;7(7):2466–72. [PMC free article: PMC2740378] [PubMed: 17663266] [CrossRef]
  • Shimizu K, Uchiyama A, Yamashita M, Hirose A, Nishimura T, Oku N. Biomembrane damage caused by exposure to multi-walled carbon nanotubes. J Toxicol Sci. 2013;38(1):7–12. [PubMed: 23358135] [CrossRef]
  • Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A. 2003;66(20):1909–26. [PubMed: 14514433] [CrossRef]
  • Shvedova AA, Kapralov AA, Feng WH, Kisin ER, Murray AR, Mercer RR, et al. Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS One. 2012;7(3):e30923. a. [PMC free article: PMC3316527] [PubMed: 22479306] [CrossRef]
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. 2008;295(4):L552–65. [PMC free article: PMC2575941] [PubMed: 18658273] [CrossRef]
  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L698–708. [PubMed: 15951334] [CrossRef]
  • Shvedova AA, Kisin ER, Murray AR, Gorelik O, Arepalli S, Castranova V, et al. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol Appl Pharmacol. 2007;221(3):339–48. [PMC free article: PMC2266092] [PubMed: 17482224] [CrossRef]
  • Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol. 2012;261(2):121–33. b. [PMC free article: PMC4686133] [PubMed: 22513272] [CrossRef]
  • Shvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, et al. Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol. 2014;306(2):L170–82. [PMC free article: PMC3920208] [PubMed: 24213921] [CrossRef]
  • Siegrist KJ, Reynolds SH, Kashon ML, Lowry DT, Dong C, Hubbs AF, et al. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. Part Fibre Toxicol. 2014;11(6):6. [PMC free article: PMC3923549] [PubMed: 24479647] [CrossRef]
  • Silva RM, Doudrick K, Franzi LM, TeeSy C, Anderson DS, Wu Z, et al. Instillation versus inhalation of multiwalled carbon nanotubes: exposure-related health effects, clearance, and the role of particle characteristics. ACS Nano. 2014;8(9):8911–31. [PMC free article: PMC4174094] [PubMed: 25144856] [CrossRef]
  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, et al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. 2009;30(23–24):3891–914. [PubMed: 19427031] [CrossRef]
  • Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA. 2006;103(9):3357–62. [PMC free article: PMC1413890] [PubMed: 16492781] [CrossRef]
  • Sinha S, Barjami S, Iannacchione G, Schwab A, Muench G. Off-axis thermal properties of carbon nanotube films. J Nanopart Res. 2005;7(6):651–7. [CrossRef]
  • Sinnott SB. Chemical functionalization of carbon nanotubes. J Nanosci Nanotechnol. 2002;2(2):113–23. [PubMed: 12908295] [CrossRef]
  • Slikker W Jr, Andersen ME, Bogdanffy MS, Bus JS, Cohen SD, Conolly RB, et al. Dose-dependent transitions in mechanisms of toxicity: case studies. Toxicol Appl Pharmacol. 2004;201(3):226–94. [PubMed: 15582646] [CrossRef]
  • Snipes MB. Long-term retention and clearance of particles inhaled by mammalian species. Crit Rev Toxicol. 1989;20(3):175–211. [PubMed: 2692607] [CrossRef]
  • Snyder-Talkington BN, Dymacek J, Porter DW, Wolfarth MG, Mercer RR, Pacurari M, et al. System-based identification of toxicity pathways associated with multi-walled carbon nanotube-induced pathological responses. Toxicol Appl Pharmacol. 2013;272(2):476–89. a. [PMC free article: PMC4017347] [PubMed: 23845593] [CrossRef]
  • Snyder-Talkington BN, Pacurari M, Dong C, Leonard SS, Schwegler-Berry D, Castranova V, et al. Systematic analysis of multiwalled carbon nanotube-induced cellular signalling and gene expression in human small airway epithelial cells. Toxicol Sci. 2013;133(1):79–89. b. [PMC free article: PMC3627550] [PubMed: 23377615] [CrossRef]
  • Snyder-Talkington BN, Qian Y, Castranova V, Guo NL. New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: application of coculture and bioinformatics. J Toxicol Environ Health B Crit Rev. 2012;15(7):468–92. [PMC free article: PMC3513758] [PubMed: 23190270] [CrossRef]
  • Søs Poulsen S, Jacobsen NR, Labib S, Wu D, Husain M, Williams A, et al. Transcriptomic analysis reveals novel mechanistic insight into murine biological responses to multi-walled carbon nanotubes in lungs and cultured lung epithelial cells. PLoS One. 2013;8(11):e80452. [PMC free article: PMC3834097] [PubMed: 24260392] [CrossRef]
  • Srivastava RK, Pant AB, Kashyap MP, Kumar V, Lohani M, Jonas L, et al. Multi-walled carbon nanotubes induce oxidative stress and apoptosis in human lung cancer cell line-A549. Nanotoxicology. 2011;5(2):195–207. [PubMed: 20804439] [CrossRef]
  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Wu y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–65. [CrossRef]
  • Stone V, Johnston H, Schins RPF. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol. 2009;39(7):613–26. [PubMed: 19650720] [CrossRef]
  • Sun YP, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications. Acc Chem Res. 2002;35(12):1096–104. [PubMed: 12484798] [CrossRef]
  • Sun Z, Liu Z, Meng J, Meng J, Duan J, Xie S, et al. Carbon nanotubes enhance cytotoxicity mediated by human lymphocytes in vitro. PLoS One. 2011;6(6):e21073. [PMC free article: PMC3120825] [PubMed: 21731651] [CrossRef]
  • Szendi K, Varga C. Lack of genotoxicity of carbon nanotubes in a pilot study. Anticancer Res. 2008;28 1A:349–52. [PubMed: 18383868]
  • Takagi A, Hirose A, Futakuchi M, Tsuda H, Kanno J. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci. 2012;103(8):1440–4. [PMC free article: PMC3569866] [PubMed: 22537085] [CrossRef]
  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, et al. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci. 2008;33(1):105–16. [PubMed: 18303189] [CrossRef]
  • Takanashi S, Hara K, Aoki K, Usui Y, Shimizu M, Haniu H, et al. Carcinogenicity evaluation for the application of carbon nanotubes as biomaterials in rasH2 mice. Sci Rep. 2012;2:498. [PMC free article: PMC3391660] [PubMed: 22787556] [CrossRef]
  • Takaya M, Ono-Ogasawara M, Shinohara Y, Kubota H, Tsuruoka S, Koda S. Evaluation of exposure risk in the weaving process of MWCNT-coated yarn with real-time particle concentration measurements and characterization of dust particles. Ind Health. 2012;50(2):147–55. [PubMed: 22293727] [CrossRef]
  • Tavares AM, Louro H, Antunes S, Quarré S, Simar S, De Temmerman PJ, et al. Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro. 2014;28(1):60–9. [PubMed: 23811260] [CrossRef]
  • Thomas T, Bahadori T, Savage N, Thomas K. Moving toward exposure and risk evaluation of nanomaterials: challenges and future directions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(4):426–33. [PubMed: 20049808] [CrossRef]
  • Thostenson ET, Li CY, Chou TW. Nanocomposites in context. Compos Sci Technol. 2005;65(3–4):491–516. [CrossRef]
  • Thostenson ET, Ren ZF, Chou TW. Advances if the science and technology of carbon nanotubes and human fibroblasts and their composites: a review. Compos Sci Technol. 2001;61:1899–912. [CrossRef]
  • Thurnherr T, Brandenberger C, Fischer K, Diener L, Manser P, Maeder-Althaus X, et al. A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett. 2011;200(3):176–86. [PubMed: 21112381] [CrossRef]
  • Tilton SC, Karin NJ, Tolic A, Xie Y, Lai X, Hamilton RF Jr, et al. Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns. Nanotoxicology. 2014;8(5):533–48. [PMC free article: PMC4226242] [PubMed: 23659652] [CrossRef]
  • Tkach AV, Shurin GV, Shurin MR, Kisin ER, Murray AR, Young SH, et al. Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano. 2011;5(7):5755–62. [PMC free article: PMC3170729] [PubMed: 21657201] [CrossRef]
  • Tournebize J, Sapin-Minet A, Bartosz G, Leroy P, Boudier A. Pitfalls of assays devoted to evaluation of oxidative stress induced by inorganic nanoparticles. Talanta. 2013;116:753–63. [PubMed: 24148470] [CrossRef]
  • Treumann S, Ma-Hock L, Gröters S, Landsiedel R, van Ravenzwaay B. Additional histopathologic examination of the lungs from a 3-month inhalation toxicity study with multiwall carbon nanotubes in rats. Toxicol Sci. 2013;134(1):103–10. [PubMed: 23570993] [CrossRef]
  • Tsai SJ, Hofmann M, Hallock M, Ada E, Kong J, Ellenbecker M. Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Environ Sci Technol. 2009;43(15):6017–23. [PubMed: 19731712] [CrossRef]
  • Tsukahara T, Haniu H. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells. Mol Cell Biochem. 2011;352(1–2):57–63. [PubMed: 21298324] [CrossRef]
  • Val S, Hussain S, Boland S, Hamel R, Baeza-Squiban A, Marano F. Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: need for multiparametric evaluation due to adsorption artifacts. Inhal Toxicol. 2009;21(s1) Suppl 1:115–22. [PubMed: 19558243] [CrossRef]
  • van Broekhuizen P, van Veelen W, Streekstra WH, Schulte P, Reijnders L. Exposure limits for nanoparticles: report of an international workshop on nano reference values. Ann Occup Hyg. 2012;56(5):515–24. [PubMed: 22752096]
  • Vankoningsloo S, Piret JP, Saout C, Noel F, Mejia J, Coquette A, et al. Pro-inflammatory effects of different MWCNTs dispersions in p16(INK4A)-deficient telomerase-expressing human keratinocytes but not in human SV-40 immortalized sebocytes. Nanotoxicology. 2012;6(1):77–93. [PubMed: 21352087] [CrossRef]
  • Varga C, Szendi K. Carbon nanotubes induce granulomas but not mesotheliomas. In Vivo. 2010;24(2):153–6. [PubMed: 20363987]
  • Velasco-Santos C, Martinez-Hernandez AL, Consultchi A, Rodriguez R, Castano VM. Naturally produced carbon nanotubes. Chem Phys Lett. 2003;373(3–4):272–6. [CrossRef]
  • Vesterdal LK, Danielsen PH, Folkmann JK, Jespersen LF, Aguilar-Pelaez K, Roursgaard M, et al. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles. Toxicol Appl Pharmacol. 2014;274(2):350–60. b. [PubMed: 24121055] [CrossRef]
  • Vesterdal LK, Jantzen K, Sheykhzade M, Roursgaard M, Folkmann JK, Loft S, et al. Pulmonary exposure to particles from diesel exhaust, urban dust or single-walled carbon nanotubes and oxidatively damaged DNA and vascular function in apoE(−/−) mice. Nanotoxicology. 2014;8(1):61–71. a. [PubMed: 23148895] [CrossRef]
  • Vittorio O, Raffa V, Cuschieri A. Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine. 2009;5(4):424–31. [PubMed: 19341817] [CrossRef]
  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58. [PMC free article: PMC3749880] [PubMed: 23539594] [CrossRef]
  • Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA, et al. m Smalley RE. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett. 1999;74(25):3803–5. [CrossRef]
  • Wan B, Wang ZX, Lv QY, Dong PX, Zhao LX, Yang Y, et al. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicol Lett. 2013;221(2):118–27. [PubMed: 23769962] [CrossRef]
  • Wang J, Sun P, Bao Y, Dou B, Song D, Li Y. Vitamin E renders protection to PC12 cells against oxidative damage and apoptosis induced by single-walled carbon nanotubes. Toxicol In Vitro. 2012;26(1):32–41. b. [PubMed: 22020378] [CrossRef]
  • Wang J, Sun P, Bao Y, Liu J, An L. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol In Vitro. 2011;25(1):242–50. b. [PubMed: 21094249] [CrossRef]
  • Wang L, Luanpitpong S, Castranova V, Tse W, Lu Y, Pongrakhananon V, et al. Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. Nano Lett. 2011;11(7):2796–803. a. [PMC free article: PMC3135732] [PubMed: 21657258] [CrossRef]
  • Wang L, Stueckle TA, Mishra A, Derk R, Meighan T, Castranova V, et al. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells. Nanotoxicology. 2014;8(5):485–507. [PMC free article: PMC4599578] [PubMed: 23634900] [CrossRef]
  • Wang P, Nie X, Wang Y, Li Y, Ge C, Zhang L, et al. Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-β/Smad signalling pathway. Small. 2013;9(22):3799–811. [PubMed: 23650105] [CrossRef]
  • Wang R, Mikoryak C, Li S, Bushdiecker D 2nd, Musselman IH, Pantano P, et al. Cytotoxicity screening of single-walled carbon nanotubes: detection and removal of cytotoxic contaminants from carboxylated carbon nanotubes. Mol Pharm. 2011;8(4):1351–61. c. [PMC free article: PMC3148312] [PubMed: 21688794] [CrossRef]
  • Wang X, Jia G, Wang H, Nie H, Yan L, Deng XY, et al. Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J Nanosci Nanotechnol. 2009;9(5):3025–33. [PubMed: 19452965] [CrossRef]
  • Wang X, Xia T, Duch MC, Ji Z, Zhang H, Li R, et al. Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett. 2012;12(6):3050–61. a. [PMC free article: PMC4143198] [PubMed: 22546002] [CrossRef]
  • Wang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, et al. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano. 2011;5(12):9772–87. d. [PMC free article: PMC4136431] [PubMed: 22047207] [CrossRef]
  • Warheit DB. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci. 2008;101(2):183–5. [PubMed: 18300382] [CrossRef]
  • Warheit DB, George G, Hill LH, Snyderman R, Brody AR. Inhaled asbestos activates a complement-dependent chemoattractant for macrophages. Lab Invest. 1985;52(5):505–14. [PubMed: 3990243]
  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77(1):117–25. [PubMed: 14514968] [CrossRef]
  • Warheit DB, Overby LH, George G, Brody AR. Pulmonary macrophages are attracted to inhaled particles through complement activation. Exp Lung Res. 1988;14(1):51–66. [PubMed: 2830106] [CrossRef]
  • Watts PCP, Fearon PK, Hsu WK, Billingham NC, Kroto HW, Walton DRM. Carbon nanotubes as polymer antioxidants. J Mater Chem. 2003;13(3):491–5. [CrossRef]
  • Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett. 2007;168(2):121–31. [PubMed: 17169512] [CrossRef]
  • Wiethoff AJ, Reed KL, Webb TR, Warheit DB. Assessing the role of neutrophil apoptosis in the resolution of particle-induced pulmonary inflammation. Inhal Toxicol. 2003;15(12):1231–46. [PubMed: 14515224] [CrossRef]
  • Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Decker C. Electronic structure of atomically resolved carbon nanotubes. Nature. 1998;391(6662):59–62. [CrossRef]
  • Witasp E, Kagan V, Fadeel B. Programmed cell clearance: molecular mechanisms and role in autoimmune disease, chronic inflammation, and anti-cancer immune responses. Curr Immunol Rev. 2008;4(2):53–69. [CrossRef]
  • Witasp E, Shvedova AA, Kagan VE, Fadeel B. Single-walled carbon nanotubes impair human macrophage engulfment of apoptotic cell corpses. Inhal Toxicol. 2009;21(s1) Suppl 1:131–6. [PubMed: 19558245] [CrossRef]
  • Witzmann FA, Monteiro-Riviere NA. Multi-walled carbon nanotube exposure alters protein expression in human keratinocytes. Nanomedicine. 2006;2(3):158–68. [Lond Print] [PubMed: 17292138] [CrossRef]
  • Wohlleben W, Brill S, Meier MW, Mertler M, Cox G, Hirth S, et al. On the lifecycle of nanocomposites: comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites. Small. 2011;7(16):2384–95. [PubMed: 21671434] [CrossRef]
  • Wörle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 2006;6(6):1261–8. [PubMed: 16771591] [CrossRef]
  • WTEC. 2007). Panel report on international assessment of carbon nanotube manufacturing and applications. Baltimore (MD), USA: World Technology Evaluation Center, Inc.
  • Wu M, Gordon RE, Herbert R, Padilla M, Moline J, Mendelson D, et al. Case report: Lung disease in World Trade Center responders exposed to dust and smoke: carbon nanotubes found in the lungs of World Trade Center patients and dust samples. Environ Health Perspect. 2010;118(4):499–504. [PMC free article: PMC2854726] [PubMed: 20368128] [CrossRef]
  • Wu WT, Liao HY, Chung YT, Li WF, Tsou TC, Li LA, et al. Effect of nanoparticles exposure on fractional exhaled nitric oxide (FENO) in workers exposed to nanomaterials. Int J Mol Sci. 2014;15(1):878–94. [PMC free article: PMC3907844] [PubMed: 24413755] [CrossRef]
  • Xia T, Hamilton RF Jr, Bonner JC, Crandall ED, Elder A, Fazlollahi F, et al. Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: the NIEHS Nano GO Consortium. Environ Health Perspect. 2013;121(6):683–90. [PMC free article: PMC3672931] [PubMed: 23649538] [CrossRef]
  • Xiao Y, Gao X, Taratula O, Treado S, Urbas A, Holbrook RD, et al. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection of brest cancer cells. BMC Cancer. 2009;9:351. [PMC free article: PMC2764730] [PubMed: 19799784] [CrossRef]
  • Xu J, Alexander DB, Futakuchi M, Numano T, Fukamachi K, Suzui M, et al. Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes. Cancer Sci. 2014;105(7):763–9. [PMC free article: PMC4317921] [PubMed: 24815191] [CrossRef]
  • Xu J, Futakuchi M, Shimizu H, Alexander DB, Yanagihara K, Fukamachi K, et al. Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci. 2012;103(12):2045–50. [PMC free article: PMC7659236] [PubMed: 22938569] [CrossRef]
  • Yamashita K, Yoshioka Y, Higashisaka K, Morishita Y, Yoshida T, Fujimura M, et al. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation. 2010;33(4):276–80. [PubMed: 20174859] [CrossRef]
  • Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 2009;29(1):69–78. [PubMed: 18756589] [CrossRef]
  • Yang M, Flavin K, Kopf I, Radics G, Hearnden CH, McManus GJ, et al. Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation. Small. 2013;9(24):4194–206. [PubMed: 23839951] [CrossRef]
  • Yang ST, Guo W, Lin Y, Deng XY, Wang HF, Sun HF, et al. Biodistribution of pristine single-walled carbon nanotubes in vivo. J Phys Chem C. 2007;111(48):17761–4. [CrossRef]
  • Ye R, Wang S, Wang J, Luo Z, Peng Q, Cai X, et al. Pharmacokinetics of CNT-based drug delivery systems. Curr Drug Metab. 2013;14(8):910–20. [PubMed: 24016105] [CrossRef]
  • Ye SF, Wu YH, Hou ZQ, Zhang QQ. ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun. 2009;379(2):643–8. [PubMed: 19121628] [CrossRef]
  • Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rintzer AG, et al. Hydrogen absorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett. 1999;74(16):2307–9. [CrossRef]
  • Yeganeh B, Kull CM, Hull MS, Marr LC. Characterization of airborne particles during production of carbonaceous nanomaterials. Environ Sci Technol. 2008;42(12):4600–6. [PubMed: 18605593] [CrossRef]
  • Yu IJ, Ichihara G, Ahn K (2014). In: Njuguna J, Pielichowski K, Zhu H, editors. Health and Environmental Safety of Nanomaterials: Nanoparticle exposure assessment: methods, sampling techniques, and data analysis. Salt Lake City (UT), USA: Woodland Publishing; pp. 47–62. 10.1533/9780857096678.2.47. [CrossRef]
  • Yu KN, Kim JE, Seo HW, Chae C, Cho MH. Differential toxic responses between pristine and functionalized multiwall nanotubes involve induction of autophagy accumulation in murine lung. J Toxicol Environ Health A. 2013;76(23):1282–92. [PubMed: 24283420] [CrossRef]
  • Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett. 2000;84(24):5552–5. [PubMed: 10990992] [CrossRef]
  • Yuan J, Gao H, Ching CB. Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes: an iTRAQ-coupled 2D LC-MS/MS proteome analysis. Toxicol Lett. 2011;207(3):213–21. [PubMed: 21963432] [CrossRef]
  • Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006;6(3):562–7. [PubMed: 16522063] [CrossRef]
  • Zeni O, Palumbo R, Bernini R, Zeni L, Sarti M, Scarfi MR. Cytotoxicity investigation on cultured human blood cells treated with single-wall carbon nanotubes. Sensors (Basel Switzerland). 2008;8(1):488–99. [PMC free article: PMC3681147] [PubMed: 27879718] [CrossRef]
  • Zhang F, Wang N, Kong J, Dai J, Chang F, Feng G, et al. Multi-walled carbon nanotubes decrease lactate dehydrogenase activity in enzymatic reaction. Bioelectrochemistry. 2011;82(1):74–8. [PubMed: 21612987] [CrossRef]
  • Zhang H, Cao CP, Wang ZY, Yang YS, Shi ZJ, Gu ZA. Carbon nanotube array anodes for high-rate Li-ion batteries. Electrochim Acta. 2010;55(8):2873–7. [CrossRef]
  • Zhang MF, Yudasaka M, Koshio A, Iijima S. Thermogravimetric analysis of single-wall carbon nanotubes ultrasonicated in monochlorobenzene. Chem Phys Lett. 2002;364(3–4):420–6. [CrossRef]
  • Zhang Y, Deng J, Zhang Y, Guo F, Li C, Zou Z, et al. Functionalized single-walled carbon nanotubes cause reversible acute lung injury and induce fibrosis in mice. J Mol Med (Berl). 2013;91(1):117–28. [PubMed: 22878607] [CrossRef]
  • Zhang Y, Yan B. Cell cycle regulation by carboxylated multiwalled carbon nanotubes through p53-independent induction of p21 under the control of the BMP signalling pathway. Chem Res Toxicol. 2012;25(6):1212–21. [PubMed: 22428663] [CrossRef]
  • Zhao Y, Wei J, Vajtai R, Ajayan PM, Barrera EV. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci Rep. 2011;1:83. [PMC free article: PMC3216570] [PubMed: 22355602] [CrossRef]
  • Zhu L, Chang DW, Dai L, Hong Y. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett. 2007;7(12):3592–7. [PubMed: 18044946] [CrossRef]
© International Agency for Research on Cancer, 2017. For more information contact publications@iarc.fr.
Bookshelf ID: NBK436623

Views

  • PubReader
  • Print View
  • Cite this Page
  • PDF version of this title (41M)

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...