U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Chemicals Used as Solvents and in Polymer Manufacture. Lyon (FR): International Agency for Research on Cancer; 2017. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 110.)

Cover of Some Chemicals Used as Solvents and in Polymer Manufacture

Some Chemicals Used as Solvents and in Polymer Manufacture.

Show details

References

  • ACGIH (2012). TLVs and BEIs: threshold limit values for chemical substances and biological exposure indices. Cincinnati (OH): American Conference of Governmental Industrial Hygienists.
  • Ahmed AE, Anders MW. Metabolism of dihalomethanes to formaldehyde and inorganic halide – I. In vitro studies. Drug Metab Dispos. 1976;4(4):357–61. [PubMed: 8290]
  • Ahmed AE, Anders MW. Metabolism of dihalomethanes to formaldehyde and inorganic halide–II. Studies on the mechanism of the reaction. Biochem Pharmacol. 1978;27(16):2021–5. [PubMed: 214088] [CrossRef]
  • Air Resources Board (2001). Regulation relating to aerosol coatings regulatory. Sacramento (CA): California Environmental Protection Agency, Air Resources Board. Available from: http://www​.arb.ca.gov​/regact/conspro/aerocoat/aerocoat.htm.
  • Aiso S, Take M, Kasai T, Senoh H, Umeda Y, Matsumoto M, et al. Inhalation carcinogenicity of dichloromethane in rats and mice. Inhal Toxicol. 2014;26(8):435–51. [PubMed: 24909451] [CrossRef]
  • Allen J, Kligerman A, Campbell J, Westbrook-Collins B, Erexson G, Kari F, et al. Cytogenetic analyses of mice exposed to dichloromethane. Environ Mol Mutagen. 1990;15(4):221–8. [PubMed: 2357975] [CrossRef]
  • Anders MW, Andersen ME, Clewell HJ 3rd, Gargas ML, Guengerich FP, Reitz RH. Comment on M.V. Evans and J.C. Caldwell: evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling of in vivo gas uptake data exposure in female B6C3F1 mice, Toxicol. Appl. Pharmacol., 244, 280–290, 2010. Toxicol Appl Pharmacol. 2010;248(1):63–4, author reply 65–7. [PubMed: 20655322] [CrossRef]
  • Anders MW, Sunram JM. Transplacental passage of dichloromethane and carbon monoxide. Toxicol Lett. 1982;12(4):231–4. [PubMed: 7135421] [CrossRef]
  • Andersen ME, Clewell HJ 3rd, Gargas ML, MacNaughton MG, Reitz RH, Nolan RJ, et al. Physiologically based pharmacokinetic modeling with dichloromethane, its metabolite, carbon monoxide, and blood carboxyhemoglobin in rats and humans. Toxicol Appl Pharmacol. 1991;108(1):14–27. [PubMed: 1900959] [CrossRef]
  • Andersen ME, Clewell HJ 3rd, Gargas ML, Smith FA, Reitz RH. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol Appl Pharmacol. 1987;87(2):185–205. [PubMed: 3824380] [CrossRef]
  • Anderson BE, Zeiger E, Shelby MD, Resnick MA, Gulati DK, Ivett JL, et al. Chromosome aberration and sister chromatid exchange test results with 42 chemicals. Environ Mol Mutagen. 1990;16(S18) Suppl 18:55–137. [PubMed: 2091924] [CrossRef]
  • Angelo MJ, Pritchard AB, Hawkins DR, Waller AR, Roberts A. The pharmacokinetics of dichloromethane. I. Disposition in B6C3F1 mice following intravenous and oral administration. Food Chem Toxicol. 1986;24(9):965–74. a. [PubMed: 3096853] [CrossRef]
  • Angelo MJ, Pritchard AB, Hawkins DR, Waller AR, Roberts A. The pharmacokinetics of dichloromethane. II. Disposition in Fischer 344 rats following intravenous and oral administration. Food Chem Toxicol. 1986;24(9):975–80. b. [PubMed: 3096854] [CrossRef]
  • Astrand I, Ovrum P, Carlsson A. Exposure to methylene chloride. I Its concentration in alveolar air and blood during rest and exercise and its metabolism. Scand J Work Environ Health. 1975;1(2):78–94. [PubMed: 1226509] [CrossRef]
  • ATSDR (2000). Toxicological profile for methylene chloride. Atlanta (GA): Agency for Toxic Substances and Disease Registry. Available from: http://www​.atsdr.cdc​.gov/ToxProfiles/tp.asp?id​=234&tid=42, accessed 17 September 2014.
  • Balmer MF, Smith FA, Leach LJ, Yuile CL. Effects in the liver of methylene chloride inhaled alone and with ethyl alcohol. Am Ind Hyg Assoc J. 1976;37(6):345–52. [PubMed: 937173] [CrossRef]
  • Barrowcliff DF, Knell AJ. Cerebral damage due to endogenous chronic carbon monoxide poisoning caused by exposure to methylene chloride. J Soc Occup Med. 1979;29(1):12–4. [PubMed: 423541] [CrossRef]
  • Barry KH, Zhang Y, Lan Q, Zahm SH, Holford TR, Leaderer B, et al. Genetic variation in metabolic genes, occupational solvent exposure, and risk of non-hodgkin lymphoma. Am J Epidemiol. 2011;173(4):404–13. [PMC free article: PMC3032803] [PubMed: 21228414] [CrossRef]
  • Blair A, Hartge P, Stewart PA, McAdams M, Lubin J. Mortality and cancer incidence of aircraft maintenance workers exposed to trichloroethylene and other organic solvents and chemicals: extended follow up. Occup Environ Med. 1998;55(3):161–71. [PMC free article: PMC1757564] [PubMed: 9624267] [CrossRef]
  • Bogaards JJP, van Ommen B, van Bladeren PJ. Interindividual differences in the in vitro conjugation of methylene chloride with glutathione by cytosolic glutathione S-transferase in 22 human liver samples. Biochem Pharmacol. 1993;45(10):2166–9. [PubMed: 8512599] [CrossRef]
  • Bos PMJ, Zeilmaker MJ, van Eijkeren JCH. Application of physiologically based pharmacokinetic modeling in setting acute exposure guideline levels for methylene chloride. Toxicol Sci. 2006;91(2):576–85. [PubMed: 16569727] [CrossRef]
  • Burek JD, Nitschke KD, Bell TJ, Wackerle DL, Childs RC, Beyer JE, et al. Methylene chloride: a two-year inhalation toxicity and oncogenicity study in rats and hamsters. Fundam Appl Toxicol. 1984;4(1):30–47. [PMC free article: PMC7131452] [PubMed: 6693002] [CrossRef]
  • Callen DF, Wolf CR, Philpot RM. Cytochrome P-450 mediated genetic activity and cytotoxicity of seven halogenated aliphatic hydrocarbons in Saccharomyces cerevisiae. Mutat Res. 1980;77(1):55–63. [PubMed: 6767185] [CrossRef]
  • Cantor KP, Stewart PA, Brinton LA, Dosemeci M. Occupational exposures and female breast cancer mortality in the United States. J Occup Environ Med. 1995;37(3):336–48. [PubMed: 7796202] [CrossRef]
  • Carlsson A, Hultengren M. Exposure to methylene chloride. III. Metabolism of 14C-labelled methylene chloride in rat. Scand J Work Environ Health. 1975;1(2):104–8. [PubMed: 1226505] [CrossRef]
  • Casanova M, Bell DA, Heck HD. Dichloromethane metabolism to formaldehyde and reaction of formaldehyde with nucleic acids in hepatocytes of rodents and humans with and without glutathione S-transferase T1 and M1 genes. Fundam Appl Toxicol. 1997;37(2):168–80. [PubMed: 9242590] [CrossRef]
  • Casanova M, Conolly RB, Heck HD. DNA-protein cross-links (DPX) and cell proliferation in B6C3F1 mice but not Syrian golden hamsters exposed to dichloromethane: pharmacokinetics and risk assessment with DPX as dosimeter. Fundam Appl Toxicol. 1996;31(1):103–16. [PubMed: 8998946] [CrossRef]
  • Casanova M, Deyo DF, Heck HD. Dichloromethane (methylene chloride): metabolism to formaldehyde and formation of DNA-protein cross-links in B6C3F1 mice and Syrian golden hamsters. Toxicol Appl Pharmacol. 1992;114(1):162–5. [PubMed: 1585369] [CrossRef]
  • CDC (2009). National Health and Nutrition Examination Survey. 2003–2004 data documentation, codebook and frequencies. Volatile organic compounds – blood & water (L04VOC_C). Atlanta (GA): Centers for Disease Control and Prevention. Available from: http://wwwn​.cdc.gov/Nchs​/Nhanes/2003-2004/L04VOC_C.htm, accessed 6 January 2015.
  • Chester D, Rosenman KD, Grimes GR, Gagan K, Castillo DN., Centers for Disease Control and Prevention (CDC). Fatal exposure to methylene chloride among bathtub refinishers - United States, 2000–2011. MMWR Morb Mortal Wkly Rep. 2012;61(7):119–22. [PubMed: 22357403]
  • Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB. Expression patterns of mouse and human CYP orthologs (families 1–4) during development and in different adult tissues. Arch Biochem Biophys. 2005;436(1):50–61. [PubMed: 15752708] [CrossRef]
  • Christensen KY, Vizcaya D, Richardson H, Lavoué J, Aronson K, Siemiatycki J. Risk of selected cancers due to occupational exposure to chlorinated solvents in a case-control study in Montreal. J Occup Environ Med. 2013;55(2):198–208. [PubMed: 23147555] [CrossRef]
  • Clewell HJ 3rd. Incorporating biological information in quantitative risk assessment: an example with methylene chloride. Toxicology. 1995;102(1-2):83–94. [PubMed: 7482564] [CrossRef]
  • Clewell HJ 3rd, Gearhart JM, Andersen ME (1993). Analysis of the metabolism of methylene chloride in the B6C3F1 mouse and its implications for human carcinogenic risk. Submission to OSHA Docket #H-071, Exhibit #96. 15 January 1993.
  • Cocco P, Heineman EF, Dosemeci M. Occupational risk factors for cancer of the central nervous system (CNS) among US women. Am J Ind Med. 1999;36(1):70–4. [PubMed: 10361589] [CrossRef]
  • Condie LW, Smallwood CL, Laurie RD. Comparative renal and hepatotoxicity of halomethanes: bromodichloromethane, bromoform, chloroform, dibromochloromethane and methylene chloride. Drug Chem Toxicol. 1983;6(6):563–78. [PubMed: 6653442] [CrossRef]
  • Costantini AS, Benvenuti A, Vineis P, Kriebel D, Tumino R, Ramazzotti V, et al. Risk of leukemia and multiple myeloma associated with exposure to benzene and other organic solvents: evidence from the Italian Multicenter Case-control study. Am J Ind Med. 2008;51(11):803–11. [PubMed: 18651579] [CrossRef]
  • Cui JY, Choudhuri S, Knight TR, Klaassen CD. Genetic and epigenetic regulation and expression signatures of glutathione S-transferases in developing mouse liver. Toxicol Sci. 2010;116(1):32–43. [PMC free article: PMC2886863] [PubMed: 20395309] [CrossRef]
  • Czekaj P, Bryzek A, Czekaj TM, Koryciak-Komarska H, Wiaderkiewicz A, Plewka D, et al. Cytochrome P450 mRNA expressions along with in vitro differentiation of hepatocyte precursor cells from fetal, young and old rats. Folia Histochem Cytobiol. 2010;48(1):46–57. [PubMed: 20529815] [CrossRef]
  • De Roos AJ, Olshan AF, Teschke K, Poole C, Savitz DA, Blatt J, et al. Parental occupational exposures to chemicals and incidence of neuroblastoma in offspring. Am J Epidemiol. 2001;154(2):106–14. [PubMed: 11447042] [CrossRef]
  • DeMarini DM, Shelton ML, Warren SH, Ross TM, Shim J-Y, Richard AM, et al. Glutathione S-transferase-mediated induction of GC–>AT transitions by halomethanes in Salmonella. Environ Mol Mutagen. 1997;30(4):440–7. [PubMed: 9435885] [CrossRef]
  • DFG (2012). Carcinogenic substances. Chapter XIII. In: Deutsche Forschungsgemeinschaft (DFG), editor. List of MAK and BAT values 2012: maximum concentrations and biological tolerance values at the workplace. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Available from: http:​//onlinelibrary​.wiley.com/doi/10.1002/9783527666034​.ch13/summary, accessed 18 September 2014.
  • Dhillon S, Von Burg R. Methylene chloride. J Appl Toxicol. 1995;15(4):329–35. [PubMed: 7594205] [CrossRef]
  • Dillon D, Edwards I, Combes R, McConville M, Zeiger E. The role of glutathione in the bacterial mutagenicity of vapour phase dichloromethane. Environ Mol Mutagen. 1992;20(3):211–7. [PubMed: 1396612] [CrossRef]
  • DiVincenzo GD, Kaplan CJ. Uptake, metabolism, and elimination of methylene chloride vapor by humans. Toxicol Appl Pharmacol. 1981;59(1):130–40. [PubMed: 7256750] [CrossRef]
  • DiVincenzo GD, Yanno FJ, Astill BD. The gas chromatographic analysis of methylene chloride in breath, blood, and urine. Am Ind Hyg Assoc J. 1971;32(6):387–91. [PubMed: 5089834] [CrossRef]
  • DiVincenzo GD, Yanno FJ, Astill BD. Human and canine exposures to methylene chloride vapor. Am Ind Hyg Assoc J. 1972;33(3):125–35. [PubMed: 5074669] [CrossRef]
  • Doherty AT, Ellard S, Parry EM, Parry JM. An investigation into the activation and deactivation of chlorinated hydrocarbons to genotoxins in metabolically competent human cells. Mutagenesis. 1996;11(3):247–74. [PubMed: 8671747] [CrossRef]
  • Dosemeci M, Cocco P, Chow WH. Gender differences in risk of renal cell carcinoma and occupational exposures to chlorinated aliphatic hydrocarbons. Am J Ind Med. 1999;36(1):54–9. [PubMed: 10361587] [CrossRef]
  • Dow Chemical Co. (1995). Methylene chloride. The high performance solvent. Product data booklet. Midland (MI): The Dow Chemical Company.
  • ECHA (2016). Dichloromethane. Helsinki: European Chemicals Agency. Available from: https://www​.echa.europa​.eu/fr/web/guest/substance-information​/-/substanceinfo/100.000.763, accessed 5 December September 2016.
  • El-Masri HA, Bell DA, Portier CJ. Effects of glutathione transferase theta polymorphism on the risk estimates of dichloromethane to humans. Toxicol Appl Pharmacol. 1999;158(3):221–30. [PubMed: 10438655] [CrossRef]
  • Enander RT, Cohen HJ, Gute DM, Brown LC, Desmaris AM, Missaghian R. Lead and methylene chloride exposures among automotive repair technicians. J Occup Environ Hyg. 2004;1(2):119–25. [PubMed: 15204886] [CrossRef]
  • Engström J, Bjurström R. Exposure to methylene chloride. Content in subcutaneous adipose tissue. Scand J Work Environ Health. 1977;3(4):215–24. [PubMed: 594729] [CrossRef]
  • EPA (1985). Health assessment document for dichloromethane (methylene chloride). Final report (EPA/600/8-82/004F). Washington (DC): Office of Health and Environmental Assessment, United States Environmental Protection Agency. Available from: http://cfpub​.epa.gov​/ncea/cfm/recordisplay.cfm?deid=42569, accessed September 2014.
  • EPA (1988). Methods for the determination of organic compounds in drinking water. EPA/600/4-88/039 (revised July 1991). Cincinnati (OH): Environmental Monitoring Systems Laboratory, Office of Research and Development, United States Environmental Protection Agency.
  • EPA (1995a). Volatile organic compounds in water by purge and trap capillary column gas chromatography with photoionization and electrolytic conductivity detectors in series. Method 502.2, Rev 2.1. Cincinnati (OH): Environmental Monitoring Systems Laboratory, United States Environmental Protection Agency.
  • EPA (1996a). Test methods for evaluating solid waste, physical/chemical methods. No. SW-846, Method 8260B. Cincinnati (OH): Environmental Monitoring Systems Laboratory, United States Environmental Protection Agency.
  • EPA (1996b). Test methods for evaluating solid waste, physical/chemical methods. No. SW-846, Method 8021B. Cincinnati (OH): Environmental Monitoring Systems Laboratory, United States Environmental Protection Agency.
  • EPA (1996c). Method 1624 Revision B – volatile organic compounds by isotope dilution GC/MS. Methods for organic chemical analysis of municipal and industrial wastewater. United States Code Federal Regulations, Title 40, Part 136. Appendix A; Cincinnati (OH): Environmental Monitoring Systems Laboratory, United States Environmental Protection Agency. pp. 188–202.
  • EPA (1999a). Determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by gas chromatography/mass spectrometry (GC/MS). Compendium method TO-15. In: Compendium of methods for the determination of toxic organic compounds in ambient air, 2nd Edition, EPA/625/R-96/010b. Cincinnati (OH): Centre for Environmental Research Information, Office of Research and Development, United States Environmental Protection Agency; pp. 1–67.
  • EPA (1999b). Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes. Compendium method TO-17. In: Compendium of methods for the determination of toxic organic compounds in ambient air, 2nd Edition, EPA/625/R-96/010b. Cincinnati (OH): Centre for Environmental Research Information, Office of Research and Development, United States Environmental Protection Agency; pp. 1–53.
  • EPA (2008). National emission standards for hazardous air pollutants compliance monitoring. Cincinnati (OH): United States Environmental Protection Agency. Available from: http://www​.epa.gov/compliance​/monitoring​/programs/caa/neshaps.html, accessed 17 September 2014.
  • EPA (2009). Method 524.3, Version 1.0. Measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry. EPA document #EPA 815-B-09-009. Cincinnati (OH): Technical Support Center, Office of Ground Water and Drinking Water, United States Environmental Protection Agency.
  • EPA (2012). TSCA workplan chemical risk assessment for methylene chloride: paint stripping use. CASRN: 75-09-2. Cincinnati (OH): United States Environmental Protection Agency. Available from: http://www​.epa.gov/oppt​/existingchemicals​/pubs/TSCA_Workplan​_Chemical_Risk_Assessment_of_DCM.pdf, accessed 17 September 2014.
  • EPA. 2013). Method 524.4. Measurement of purgeable organic compounds in water by gas chromatography/mass spectrometry using nitrogen purge gas. Cincinnati (OH): Office of Water, United States Environmental Protection Agency.
  • Estill CF, Watkins DS, Shulman SA, Kurimo RW, Kovein RJ. Engineering controls for furniture strippers to meet the OSHA methylene chloride PEL. AIHA J (Fairfax, Va). 2002;63(3):326–33. [PubMed: 12174809] [CrossRef]
  • European Commission (1999). The VOC solvents emissions Directive. Summary of the Directive 1999/13/EC on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations. Brussels: European Commission. Available from: http://ec​.europa.eu/environment​/archives​/air/stationary/solvents/legislation.htm, accessed 17 September 2014.
  • European Commission (2009). Adopted amendments to Directive 76/769/EEC. Dichloromethane in paint strippers (amendment of Council Directive 76/79/EEC). Brussels: European Commission. Available from: http://ec​.europa.eu/enterprise​/sectors/chemicals​/documents/reach​/archives/market-restrictions​/amendments_en.htm, accessed 17 September 2014.
  • Evans ML, Caldwell JC. Response to Letter to the Editor by Anders et al. Toxicol Appl Pharmacol. 2010;248(1):65–7. b. [CrossRef]
  • Evans MV, Caldwell JC. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice. Toxicol Appl Pharmacol. 2010;244(3):280–90. a. [PubMed: 20153349] [CrossRef]
  • Fairfax R, Grevenkamp A., Occupational Safety and Health Administration (OSHA). Overexposure and control of methylene chloride in a furniture stripping operation. J Occup Environ Hyg. 2007;4(5):D39–41. [PubMed: 17365502] [CrossRef]
  • Fairfax R, Porter E. Evaluation of worker exposure to TDI, MOCA, and methylene chloride. J Occup Environ Hyg. 2006;3(6):D50–3. [PubMed: 16621764] [CrossRef]
  • FDA (1989). Cosmetics; ban on the use of methylene chloride as an ingredient of cosmetic products. Silverspring (MD): Food and Drug Administration. 21 CFR Part 700. Federal Register, 54(124):27328–42.
  • Foley JF, Tuck PD, Ton TV, Frost M, Kari F, Anderson MW, et al. Inhalation exposure to a hepatocarcinogenic concentration of methylene chloride does not induce sustained replicative DNA synthesis in hepatocytes of female B6C3F1 mice. Carcinogenesis. 1993;14(5):811–7. [PubMed: 8099314] [CrossRef]
  • Foster JR, Green T, Smith LL, Lewis RW, Hext PM, Wyatt I. Methylene chloride–an inhalation study to investigate pathological and biochemical events occurring in the lungs of mice over an exposure period of 90 days. Fundam Appl Toxicol. 1992;18(3):376–88. [PubMed: 1375920] [CrossRef]
  • Foster JR, Green T, Smith LL, Tittensor S, Wyatt I. Methylene chloride: an inhalation study to investigate toxicity in the mouse lung using morphological, biochemical and Clara cell culture techniques. Toxicology. 1994;91(3):221–34. [PubMed: 8079362] [CrossRef]
  • Friedlander BR, Hearne T, Hall S. Epidemiologic investigation of employees chronically exposed to methylene chloride. Mortality analysis. J Occup Med. 1978;20(10):657–66. [PubMed: 722350]
  • Gamberale F, Annwall G, Hultengren M. Exposure to methylene chloride. II. Psychological functions. Scand J Work Environ Health. 1975;1(2):95–103. [PubMed: 1226510] [CrossRef]
  • Gargas ML, Burgess RJ, Voisard DE, Cason GH, Andersen ME. Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues. Toxicol Appl Pharmacol. 1989;98(1):87–99. [PubMed: 2929023] [CrossRef]
  • Gargas ML, Clewell HJ 3rd, Andersen ME. Metabolism of inhaled dihalomethanes in vivo: differentiation of kinetic constants for two independent pathways. Toxicol Appl Pharmacol. 1986;82(2):211–23. [PubMed: 3945949] [CrossRef]
  • Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H, Autrup JL, et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev. 2001;10(12):1239–48. [PubMed: 11751440]
  • Gehring PJ. Hepatotoxic potency of various chlorinated hydrocarbon vapours relative to their narcotic and lethal potencies in mice. Toxicol Appl Pharmacol. 1968;13(3):287–98. [PubMed: 5726658] [CrossRef]
  • GESTIS (2014). International limit values for chemical agents. Available from: http://limitvalue​.ifa.dguv.de/, accessed 17 September 2014.
  • Gibbs GW, Amsel J, Soden K. A cohort mortality study of cellulose triacetate-fiber workers exposed to methylene chloride. J Occup Environ Med. 1996;38(7):693–7. [PubMed: 8823660] [CrossRef]
  • Gocke E, King MT, Eckhardt K, Wild D. Mutagenicity of cosmetics ingredients licensed by the European Communities. Mutat Res. 1981;90(2):91–109. [PubMed: 6799819] [CrossRef]
  • Goelzer B, O’Neill IK (1985). Workplace air sampling. Environmental carcinogens. Selected methods of analysis. In: Fishbein L, O’Neill IK, editors. IARC Scientific Publications No. 68. Some volatile halogenated hydrocarbons. Lyon: International Agency for Research on Cancer; pp. 107–140.
  • Gold LS, Stewart PA, Milliken K, Purdue M, Severson R, Seixas N, et al. The relationship between multiple myeloma and occupational exposure to six chlorinated solvents. Occup Environ Med. 2011;68(6):391–9. [PMC free article: PMC3094509] [PubMed: 20833760] [CrossRef]
  • Goullé JP, Lacroix C, Vaz E, Rouvier P, Proust B. Fatal case of dichloromethane poisoning. J Anal Toxicol. 1999;23(5):380–3. [PubMed: 10488927] [CrossRef]
  • Government of Canada (1993). Dichloromethane. Priority substances list assessment report. Canadian Environmental Protection Act. Ottawa: Canada Communication Group Publishing, Minister of Supply and Services. Available from: http://www​.hc-sc.gc.ca​/ewh-semt/alt_formats​/hecs-sesc/pdf/pubs​/contaminants/psl1-lsp1​/dichloromethane​/dichloromethane-eng.pdf, accessed 18 September 2014.
  • Graves RJ, Callander RD, Green T. The role of formaldehyde and S-chloromethylglutathione in the bacterial mutagenicity of methylene chloride. Mutat Res. 1994;320(3):235–43. a. [PubMed: 7508089] [CrossRef]
  • Graves RJ, Coutts C, Eyton-Jones H, Green T. Relationship between hepatic DNA damage and methylene chloride-induced hepatocarcinogenicity in B6C3F1 mice. Carcinogenesis. 1994;15(5):991–6. b. [PubMed: 8200106] [CrossRef]
  • Graves RJ, Coutts C, Green T. Methylene chloride-induced DNA damage: an interspecies comparison. Carcinogenesis. 1995;16(8):1919–26. [PubMed: 7634422] [CrossRef]
  • Graves RJ, Green T. Mouse liver glutathione S-transferase mediated metabolism of methylene chloride to a mutagen in the CHO/HPRT assay. Mutat Res. 1996;367(3):143–50. [PubMed: 8600370] [CrossRef]
  • Graves RJ, Trueman P, Jones S, Green T. DNA sequence analysis of methylene chloride-induced HPRT mutations in Chinese hamster ovary cells: comparison with the mutation spectrum obtained for 1,2-dibromoethane and formaldehyde. Mutagenesis. 1996;11(3):229–33. [PubMed: 8671744] [CrossRef]
  • Green T. The metabolic activation of dichloromethane and chlorofluoromethane in a bacterial mutation assay using Salmonella typhimurium. Mutat Res. 1983;118(4):277–88. [PubMed: 6353217] [CrossRef]
  • Green T. Species differences in carcinogenicity: the role of metabolism in human risk evaluation. Teratog Carcinog Mutagen. 1990;10(2):103–13. [PubMed: 1973849] [CrossRef]
  • Green T. Methylene chloride induced mouse liver and lung tumours: an overview of the role of mechanistic studies in human safety assessment. Hum Exp Toxicol. 1997;16(1):3–13. [PubMed: 9023569] [CrossRef]
  • Guengerich FP, Kim D-H, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol. 1991;4(2):168–79. [PubMed: 1664256] [CrossRef]
  • Guo H, Lee SC, Chan LY, Li WM. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res. 2004;94(1):57–66. [PubMed: 14643287] [CrossRef]
  • Guo S-Z, Gosselin F, Guerin N, Lanouette AM, Heuzey MC, Therriault D. Solvent-cast three-dimensional printing of multifunctional microsystems. Small. 2013;9(24):4118–22. [PubMed: 23824963] [CrossRef]
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–9. [PubMed: 4436300]
  • Hallier E, Langhof T, Dannappel D, Leutbecher M, Schröder K, Goergens HW, et al. Polymorphism of glutathione conjugation of methyl bromide, ethylene oxide and dichloromethane in human blood: influence on the induction of sister chromatid exchanges (SCE) in lymphocytes. Arch Toxicol. 1993;67(3):173–8. [PubMed: 8494496] [CrossRef]
  • Hallier E, Schröder KR, Asmuth K, Dommermuth A, Aust B, Goergens HW. Metabolism of dichloromethane (methylene chloride) to formaldehyde in human erythrocytes: influence of polymorphism of glutathione transferase theta (GST T1–1). Arch Toxicol. 1994;68(7):423–7. [PubMed: 7979958] [CrossRef]
  • Hansch C, Leo A, Hoekman DH. 1995). Exploring QSAR. Hydrophobic, electronic and steric constants. Fundamentals and applications in chemistry and biology. Volume 2. Washington (DC): American Chemical Society; pp. 1–580.
  • Harrelson JP, Atkins WM, Nelson SD. Multiple-ligand binding in CYP2A6: probing mechanisms of cytochrome P450 cooperativity by assessing substrate dynamics. Biochemistry. 2008;47(9):2978–88. [PubMed: 18247580] [CrossRef]
  • Harrelson JP, Henne KR, Alonso DO, Nelson SD. A comparison of substrate dynamics in human CYP2E1 and CYP2A6. Biochem Biophys Res Commun. 2007;352(4):843–9. [PMC free article: PMC2728047] [PubMed: 17156750] [CrossRef]
  • Hatch GG, Mamay PD, Ayer ML, et al. Methods for detecting gaseous and volatile carcinogens using cell transformation assays. Environ Sci Res. 1982;25:75–90.
  • Haynes WM.editor (2010). CRC Handbook of Chemistry and Physics. 91st edition. Boca Raton (FL): CRC Press; pp. 3-158.
  • Hearne FT, Friedlander BR. Follow-up of methylene chloride study. J Occup Med. 1981;23(10):660. [PubMed: 7299501] [CrossRef]
  • Hearne FT, Grose F, Pifer JW, Friedlander BR, Raleigh RL. Methylene chloride mortality study: dose-response characterization and animal model comparison. J Occup Med. 1987;29(3):217–28. [PubMed: 3559766]
  • Hearne FT, Pifer JW. Mortality study of two overlapping cohorts of photographic film base manufacturing employees exposed to methylene chloride. J Occup Environ Med. 1999;41(12):1154–69. [PubMed: 10609238] [CrossRef]
  • Hearne FT, Pifer JW, Grose F. Absence of adverse mortality effects in workers exposed to methylene chloride: an update. J Occup Med. 1990;32(3):234–40. [PubMed: 2319356] [CrossRef]
  • Heikes DL. Purge and trap method for determination of volatile halocarbons and carbon disulfide in table-ready foods. J Assoc Off Anal Chem. 1987;70(2):215–26. [PubMed: 3571114]
  • Heineman EF, Cocco P, Gómez MR, Dosemeci M, Stewart PA, Hayes RB, et al. Occupational exposure to chlorinated aliphatic hydrocarbons and risk of astrocytic brain cancer. Am J Ind Med. 1994;26(2):155–69. [PubMed: 7977393] [CrossRef]
  • Holbrook MT. 1993). Dichloromethane. In: Kroschwitz JI, Howe-Grant M, editors. Kirk-Othmer encyclopedia of chemical technology. New York: John Wiley; pp. 1041–50.
  • HSDB (2012). Dichloromethane. Hazardous Substances Data Bank. Bethesda (MD): United States National Library of Medicine. Available from: http://toxnet​.nlm.nih​.gov/cgi-bin/sis/search​/r?dbs+hsdb:@term+@DOCNO+66, accessed 17 September 2014.
  • Hu Y, Kabler SL, Tennant AH, Townsend AJ, Kligerman AD. Induction of DNA-protein crosslinks by dichloromethane in a V79 cell line transfected with the murine glutathione-S-transferase theta 1 gene. Mutat Res. 2006;607(2):231–9. [PubMed: 16765633] [CrossRef]
  • Hughes NJ, Tracey JA. A case of methylene chloride (nitromors) poisoning, effects on carboxyhaemoglobin levels. Hum Exp Toxicol. 1993;12(2):159–60. [PubMed: 8096715] [CrossRef]
  • Hughes TJ, Simmons DM, Monteith LG, Claxton LD. Vaporization technique to measure mutagenic activity of volatiles organic chemicals in the Ames/Salmonella assay. Environ Mutagen. 1987;9(4):421–41. [PubMed: 3556157] [CrossRef]
  • IARC (1986). Some halogenated hydrocarbons and pesticide exposures. IARC Monogr Eval Carcinog Risk Chem Hum, 41:1–407.. Available from: http://monographs​.iarc​.fr/ENG/Monographs/vol1-42/mono41.pdf. [PubMed: 3473020]
  • IARC (1987). Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. IARC Monogr Eval Carcinog Risks Hum Suppl, 7:1–440.. Available from: http://monographs​.iarc​.fr/ENG/Monographs/suppl7/index.php. [PubMed: 3482203]
  • IARC (1999). Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. IARC Monogr Eval Carcinog Risks Hum, 71:1–315.. Available from: http://monographs​.iarc​.fr/ENG/Monographs/vol71/index.php. [PMC free article: PMC7681305] [PubMed: 10507919]
  • JBRC (2000a). Summary of inhalation carcinogenicity study of dichloromethane in BDF1 mice. Hadano: Japan Bioassay Research Center, Japan Industrial Safety and Health Association. Available from: http://anzeninfo​.mhlw​.go.jp/user/anzen/kag​/pdf/gan/DichloromethaneMice.pdf, accessed 12 February 2014.
  • JBRC (2000b). Summary of inhalation carcinogenicity study of dichloromethane in F344 rats. Hadano: Japan Bioassay Research Center, Japan Industrial Safety and Health Association. Available from: http://anzeninfo​.mhlw​.go.jp/user/anzen/kag​/pdf/gan/DichloromethaneRat.pdf, accessed 12 February 2014.
  • JETOC (1997). Mutagenicity test data of existing chemical substances. Tokyo: Japan Chemical Industry Ecology-Toxicology & Information Center; pp. 188–190.
  • JISHA (2000a). Summary of inhalation carcinogenicity study of dichloromethane in F344 rats. Tokyo: Japan Industrial Safety and Health Association; pp. 1–28.
  • JISHA (2000b). Summary of inhalation carcinogenicity study of dichloromethane in BDF1 mice. Tokyo: Japan Industrial Safety and Health Association; pp. 1–30.
  • JNIOSH (2012). Report on site investigation at a printing firm in Osaka. A2012-02. Tokyo: National Institute for Occupational Safety and Health, Japan. Available from: https://www​.jniosh.go​.jp/publication/pdf/houkoku.pdf, accessed 17 September 2014.
  • Joe L, Harrison R, Shusterman D, et al. (2013). Dichloromethane (methylene chloride) in paint strippers: survey of retail stores. Richmond (CA): California Department of Public Health, Occupational Health Branch; pp. 1–10.
  • Jongen WM, Alink GM, Koeman JH. Mutagenic effect of dichloromethane on Salmonella typhimurium. Mutat Res. 1978;56(3):245–8. [PubMed: 342942] [CrossRef]
  • Jongen WM, Harmsen EG, Alink GM, Koeman JH. The effect of glutathione conjugation and microsomal oxidation on the mutagenicity of dichloromethane in S. typhimurium. Mutat Res. 1982;95(2-3):183–9. [PubMed: 6811886] [CrossRef]
  • Jongen WM, Lohman PH, Kottenhagen MJ, Alink GM, Berends F, Koeman JH. Mutagenicity testing of dichloromethane in short-term mammalian tests systems. Mutat Res. 1981;81(2):203–13. [PubMed: 7242542] [CrossRef]
  • Kanno J, Foley JF, Kari F, Anderson MW, Maronpot RR. Effect of methylene chloride inhalation on replicative DNA synthesis in the lungs of female B6C3F1 mice. Environ Health Perspect. 1993;101 Suppl 5:271–6. [PMC free article: PMC1519431] [PubMed: 8013420]
  • Kari FW, Foley JF, Seilkop SK, Maronpot RR, Anderson MW. Effect of varying exposure regimens on methylene chloride-induced lung and liver tumors in female B6C3F1 mice. Carcinogenesis. 1993;14(5):819–26. [PubMed: 8504473] [CrossRef]
  • Kernan GJ, Ji BT, Dosemeci M, Silverman DT, Balbus J, Zahm SH. Occupational risk factors for pancreatic cancer: a case-control study based on death certificates from 24 U.S. states. Am J Ind Med. 1999;36(2):260–70. [PubMed: 10398934] [CrossRef]
  • Kim NY, Park SW, Suh JK. Two fatal cases of dichloromethane or chloroform poisoning. J Forensic Sci. 1996;41(3):527–9. [PubMed: 8656200] [CrossRef]
  • Kim SK, Kim YC. Effect of a single administration of benzene, toluene or m-xylene on carboxyhaemoglobin elevation and metabolism of dichloromethane in rats. J Appl Toxicol. 1996;16(5):437–44. [PubMed: 8889796] [CrossRef]
  • Kitchin KT, Brown JL. Biochemical effects of three carcinogenic chlorinated methanes in rat liver. Teratog Carcinog Mutagen. 1989;9(1):61–9. [PubMed: 2567070] [CrossRef]
  • Kitchin KT, Brown JL. Dose-response relationship for rat liver DNA damage caused by 49 rodent carcinogens. Toxicology. 1994;88(1-3):31–49. [PubMed: 8160204] [CrossRef]
  • Klaassen CD, Plaa GL. Relative effects of various chlorinated hydrocarbons on liver and kidney function in mice. Toxicol Appl Pharmacol. 1966;9(1):139–51. [PubMed: 5967557] [CrossRef]
  • Klaassen CD, Plaa GL. Relative effects of various chlorinated hydrocarbons on liver and kidney function in dogs. Toxicol Appl Pharmacol. 1967;10(1):119–31. [PubMed: 6031921] [CrossRef]
  • Kluwe WM, Harrington FW, Cooper SE. Toxic effects of organohalide compounds on renal tubular cells in vivo and in vitro. J Pharmacol Exp Ther. 1982;220(3):597–603. [PubMed: 7062270]
  • Kramers PG, Mout HC, Bissumbhar B, Mulder CR. Inhalation exposure in Drosophila mutagenesis assays: experiments with aliphatic halogenated hydrocarbons, with emphasis on the genetic activity profile of 1,2-dichloroethane. Mutat Res. 1991;252(1):17–33. [PubMed: 1996129] [CrossRef]
  • Kubic VL, Anders MW. Metabolism of dihalomethanes to carbon monoxide. II. In vitro studies. Drug Metab Dispos. 1975;3(2):104–12. [PubMed: 236156]
  • Kubic VL, Anders MW. Metabolism of dihalomethanes to carbon monoxide–III. Studies on the mechanism of the reaction. Biochem Pharmacol. 1978;27(19):2349–55. [PubMed: 728186] [CrossRef]
  • Kubic VL, Anders MW, Engel RR, Barlow CH, Caughey WS. Metabolism of dihalomethanes to carbon monoxide. I. In vivo studies. Drug Metab Dispos. 1974;2(1):53–7. [PubMed: 4150134]
  • Kumagai S. Two offset printing workers with cholangiocarcinoma. J Occup Health. 2014;56(2):164–8. [PubMed: 24553624] [CrossRef]
  • Kumagai S, Kurumatani N, Arimoto A, Ichihara G. Cholangiocarcinoma among offset colour proof-printing workers exposed to 1,2-dichloropropane and/or dichloromethane. Occup Environ Med. 2013;70(7):508–10. [PubMed: 23493378] [CrossRef]
  • Kurppa K, Vainio H. Effects of intermittent dichloromethane inhalation on blood carboxyhemoglobin concentration and drug metabolizing enzymes in rat. Res Commun Chem Pathol Pharmacol. 1981;32(3):535–44. [PubMed: 7268197]
  • Lanes SF, Cohen A, Rothman KJ, Dreyer NA, Soden KJ. Mortality of cellulose fiber production workers. Scand J Work Environ Health. 1990;16(4):247–51. [PubMed: 2389131] [CrossRef]
  • Lanes SF, Rothman KJ, Dreyer NA, Soden KJ. Mortality update of cellulose fiber production workers. Scand J Work Environ Health. 1993;19(6):426–8. [PubMed: 8153596] [CrossRef]
  • Lee EG, Harper M, Bowen RB, Slaven J. Evaluation of COSHH essentials: methylene chloride, isopropanol, and acetone exposures in a small printing plant. Ann Occup Hyg. 2009;53(5):463–74. [PubMed: 19435980] [CrossRef]
  • Lefevre PA, Ashby J. Evaluation of dichloromethane as an inducer of DNA synthesis in the B6C3F1 mouse liver. Carcinogenesis. 1989;10(6):1067–72. [PubMed: 2720901] [CrossRef]
  • Leikin JB, Kaufman D, Lipscomb JW, Burda AM, Hryhorczuk DO. Methylene chloride: report of five exposures and two deaths. Am J Emerg Med. 1990;8(6):534–7. [PubMed: 2222600] [CrossRef]
  • Liu T, Xu QE, Zhang CH, Zhang P. Occupational exposure to methylene chloride and risk of cancer: a meta-analysis. Cancer Causes Control. 2013;24(12):2037–49. [PubMed: 24026192] [CrossRef]
  • Mahle DA, Gearhart JM, Grigsby CC, Mattie DR, Barton HA, Lipscomb JC, et al. Age-dependent partition coefficients for a mixture of volatile organic solvents in Sprague-Dawley rats and humans. J Toxicol Environ Health A. 2007;70(20):1745–51. [PubMed: 17885931] [CrossRef]
  • Mainwaring GW, Williams SM, Foster JR, Tugwood J, Green T. The distribution of theta-class glutathione S-transferases in the liver and lung of mouse, rat and human. Biochem J. 1996;318(Pt 1):297–303. [PMC free article: PMC1217621] [PubMed: 8761485] [CrossRef]
  • Maltoni C, Cotti G, Perino G. Long-term carcinogenicity bioassays on methylene chloride administered by ingestion to Sprague-Dawley rats and Swiss mice and by inhalation to Sprague-Dawley rats. Ann N Y Acad Sci. 1988;534 1 Living in a C:352–66. [PubMed: 3389665] [CrossRef]
  • Manno M, Chirillo R, Daniotti G, Cocheo V, Albrizio F. Carboxyhaemoglobin and fatal methylene chloride poisoning. Lancet. 1989;2(8657):274. [PubMed: 2569077] [CrossRef]
  • Marino DJ, Clewell HJ, Gentry PR, Covington TR, Hack CE, David RM, et al. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice. Regul Toxicol Pharmacol. 2006;45(1):44–54. [PubMed: 16442684] [CrossRef]
  • Marzotko D, Pankow D. Renal lesions following dichloromethane intoxication. Z Mikrosk Anat Forsch. 1988;102(3):461–9. [PubMed: 3195186]
  • McCarthy MC, Hafner HR, Montzka SA. Background concentrations of 18 air toxics for North America. J Air Waste Manag Assoc. 2006;56(1):3–11. [PubMed: 16499141] [CrossRef]
  • McGregor DB. 1979). Practical experience in testing unknowns in vitro. In: Paget GE, editor. Mutagenesis in sub-mammalian systems, status and significance. Baltimore: University Park Press; pp. 53–71. 10.1007/978-94-011-6639-3_4. [CrossRef]
  • McKenna MJ, Zempel JA. The dose-dependent metabolism of [14C]methylene chloride following oral administration to rats. Food Cosmet Toxicol. 1981;19(1):73–8. [PubMed: 7262735] [CrossRef]
  • McKenna MJ, Zempel JA, Braun WH. The pharmacokinetics of inhaled methylene chloride in rats. Toxicol Appl Pharmacol. 1982;65(1):1–10. [PubMed: 6815830] [CrossRef]
  • McLean D, Fleming S, Turner MC, Kincl L, Richardson L, Benke G, et al. Occupational solvent exposure and risk of meningioma: results from the INTEROCC multicentre case-control study. Occup Environ Med. 2014;71(4):253–8. [PubMed: 24474387] [CrossRef]
  • Mennear JH, McConnell EE, Huff JE, Renne RA, Giddens E. Inhalation toxicity and carcinogenesis studies of methylene chloride (dichloromethane) in F344/N rats and B6C3F1 mice. Ann N Y Acad Sci. 1988;534 1 Living in a C:343–51. [PubMed: 3389664] [CrossRef]
  • METI. 2013). Volumes of production and import of priority assessment chemical substances reported based on the act on the evaluation of chemical substances and regulation of their manufacture, etc. FY2011, announced on 25 March 2013. Tokyo: Ministry of Economy, Trade and Industry.
  • Meulenberg CJ, Vijverberg HP. Empirical relations predicting human and rat tissue:air partition coefficients of volatile organic compounds. Toxicol Appl Pharmacol. 2000;165(3):206–16. [PubMed: 10873711] [CrossRef]
  • Miligi L, Costantini AS, Benvenuti A, Kriebel D, Bolejack V, Tumino R, et al. Occupational exposure to solvents and the risk of lymphomas. Epidemiology. 2006;17(5):552–61. [PubMed: 16878041] [CrossRef]
  • Ministry of the Environment Government of Japan (2014). Environmental quality standards in Japan - air quality. Tokyo: Ministry of the Environment Government of Japan. Available from: http://www​.env.go.jp/en/air/aq/aq.html, accessed 17 September 2014.
  • Mohamed MF, Kang D, Aneja VP. Volatile organic compounds in some urban locations in United States. Chemosphere. 2002;47(8):863–82. [PubMed: 12079081] [CrossRef]
  • Moran MJ, Zogorski JS, Squillace PJ. Chlorinated solvents in groundwater of the United States. Environ Sci Technol. 2007;41(1):74–81. [PubMed: 17265929] [CrossRef]
  • Morita T, Asano N, Awogi T, Sasaki YF, Sato S, Shimada H, et al. ; Collaborative study of the micronucleus group test. Mammalian Mutagenicity Study Group. 1997Evaluation of the rodent micronucleus assay in the screening of IARC carcinogens (groups 1, 2A and 2B) the summary report of the 6th collaborative study by CSGMT/JEMS MMS. Mutat Res 389(1):3–122. 10.1016/S1383-5718(96)00070-8. [PubMed: 9062586] [CrossRef]
  • Morris JB, Smith FA, Garman RH. Studies on methylene chloride-induced fatty liver. Exp Mol Pathol. 1979;30(3):386–93. [PubMed: 221241] [CrossRef]
  • Moskowitz S, Shapiro H. Fatal exposure to methylene chloride vapor. AMA Arch Ind Hyg Occup Med. 1952;6(2):116–23. [PubMed: 14943286]
  • Myhr B, McGregor D, Bowers L, Riach C, Brown AG, Edwards I, et al. L5178Y mouse lymphoma cell mutation assay results with 41 compounds. Environ Mol Mutagen. 1990;16(S18) Suppl 18:138–67. [PubMed: 2128695] [CrossRef]
  • Neta G, Stewart PA, Rajaraman P, Hein MJ, Waters MA, Purdue MP, et al. Occupational exposure to chlorinated solvents and risks of glioma and meningioma in adults. Occup Environ Med. 2012;69(11):793–801. [PMC free article: PMC3850418] [PubMed: 22864249] [CrossRef]
  • NIOSH (1998). Methylene chloride. Method 1005, Issue 3. NIOSH manual of analytical methods, Atlanta (GA): National Institute for Occupational Safety and Health. Available from: http://www​.cdc.gov/niosh​/topics/methylenechloride/, accessed 17 September 2014.
  • NIOSH (2013). National Occupational Exposure Survey. Atlanta (GA): National Institute for Occupational Safety and Health. Available from: http://www​.cdc.gov/noes/noes2/47270occ​.html, accessed 05 January 2015.
  • Nitschke KD, Burek JD, Bell TJ, Kociba RJ, Rampy LW, McKenna MJ. Methylene chloride: a 2-year inhalation toxicity and oncogenicity study in rats. Fundam Appl Toxicol. 1988;11(1):48–59. [PubMed: 3209017] [CrossRef]
  • Niu Z, Zhang H, Xu Y, Liao X, Xu L, Chen J. Pollution characteristics of volatile organic compounds in the atmosphere of Haicang District in Xiamen City, Southeast China. J Environ Monit. 2012;14(4):1145–52. [PubMed: 22344681] [CrossRef]
  • Nomura T, Mizutani S, Suzuki Y, Watanabe N, Takatsuki H. Estimation and control of atmospheric emissions of chloroform and dichloromethane due to laboratory activity. Environ Sci. 2006;13(4):219–34. [PubMed: 17095995]
  • NTP. NTP toxicology and carcinogenesis studies of dichloromethane (methylene chloride) (CAS No. 75-09-2) in F344/N rats and B6C3F1 mice (inhalation studies). Natl Toxicol Program Tech Rep Ser. 1986;306:1–208. [PubMed: 12748723]
  • NTP (2011). Report on Carcinogens, Twelfth Edition, Dichloromethane. Research Triangle Park (NC): National Toxicology Program, Department of Health and Human Services, Public Health Service. Available from: http://ntp​.niehs.nih​.gov/ntp/roc/twelfth​/profiles/Dichloromethane.pdf, accessed 17 September 2014.
  • O’Neil MJ, Heckelman PE, Roman CB (2006). Monograph Number 09639. The Merck Index, 14th Edition. Whitehouse Station (NJ): Merck & Co.
  • OECD (1994). Risk reduction monograph No. 2: methylene chloride, background and national experience with reducing risk. OECD Environment Monograph Series No. 101. Paris: Environment Directorate, Organisation for Economic Co-operation and Development. Available from: http://search​.oecd.org​/officialdocuments​/displaydocumentpdf/?cote=OCDE​/GD(94)95&docLanguage​=En, accessed 17 September 2014.
  • OECD SIDS (2011). Dichloromethane. SIDS initial assessment profile. Approved at the Cooperative Chemicals Assessment Meeting, October 2011. Organisation for Economic Co-operation and Development screening information dataset. Available from: http://webnet​.oecd.org/hpv/UI/handler​.axd?id​=B8EA971C-0C2C-4976-8706-A9A68033DAA0, accessed 17 September 2014.
  • Olvera-Bello AE, Estrada-Muñiz E, Elizondo G, Vega L. Susceptibility to the cytogenetic effects of dichloromethane is related to the glutathione S-transferase theta phenotype. Toxicol Lett. 2010;199(3):218–24. [PubMed: 20837120] [CrossRef]
  • OSHA. 1990). OSHA Analytical Methods Manual, Part 1. In: Organic substances. Salt Lake City (UT): Occupational Safety and Health Administration.
  • Osterman-Golkar S, Hussain S, Walles S, Anderstam B, Sigvardsson K. Chemical reactivity and mutagenicity of some dihalomethanes. Chem Biol Interact. 1983;46(1):121–30. [PubMed: 6352069] [CrossRef]
  • Ott MG, Carlo GL, Steinberg S, Bond GG. Mortality among employees engaged in chemical manufacturing and related activities. Am J Epidemiol. 1985;122(2):311–22. [PubMed: 4014214]
  • Ott MG, Skory LK, Holder BB, Bronson JM, Williams PR. Health evaluation of employees occupationally exposed to methylene chloride. Scand J Work Environ Health. 1983;9 Suppl 1:1–38. [PubMed: 6857191]
  • Ott MG, Skory LK, Holder BB, Bronson JM, Williams PR. Health evaluation of employees occupationally exposed to methylene chloride. Clinical laboratory evaluation. Scand J Work Environ Health. 1983;9 Suppl. 1:17–25. a. [PubMed: 6857191]
  • Ott MG, Skory LK, Holder BB, Bronson JM, Williams PR. Health evaluation of employees occupationally exposed to methylene chloride. Twenty-four hour electrocardiographic monitoring. Scand J Work Environ Health. 1983;9 Suppl. 1:26–30. b. [PubMed: 6857191]
  • Ottenwälder H, Jäger R, Thier R, Bolt HM. Influence of cytochrome P-450 inhibitors on the inhalative uptake of methyl chloride and methylene chloride in male B6C3F1 mice. Arch Toxicol Suppl. 1989;13:258–61. [PubMed: 2549914] [CrossRef]
  • Ottenwälder H, Peter H. DNA binding assay of methylene chloride in rats and mice. Arch Toxicol. 1989;63(2):162–3. [PubMed: 2730343] [CrossRef]
  • Page BD, Charbonneau CF. Headspace gas chromatographic determination of methylene chloride in decaffeinated tea and coffee, with electrolytic conductivity detection. J Assoc Off Anal Chem. 1984;67(4):757–61. [PubMed: 6469909]
  • Pan Y, Liu Q, Liu FF, Qian GR, Xu ZP. Regional assessment of ambient volatile organic compounds from biopharmaceutical R&D complex. Sci Total Environ. 2011;409(20):4289–96. [PubMed: 21831409] [CrossRef]
  • Pegram RA, Andersen ME, Warren SH, Ross TM, Claxton LD. Glutathione S-transferase-mediated mutagenicity of trihalomethanes in Salmonella typhimurium: contrasting results with bromodichloromethane off chloroform. Toxicol Appl Pharmacol. 1997;144(1):183–8. [PubMed: 9169083] [CrossRef]
  • Price PJ, Hassett CM, Mansfield JI. Transforming activities of trichloroethylene and proposed industrial alternatives. In Vitro. 1978;14(3):290–3. [PubMed: 669729] [CrossRef]
  • Putz VR, Johnson BL, Setzer JV. A comparative study of the effects of carbon monoxide and methylene chloride on human performance. J Environ Pathol Toxicol. 1979;2(5):97–112. [PubMed: 512567]
  • Quondamatteo F, Schulz TG, Bunzel N, Hallier E, Herken R. Immunohistochemical localization of glutathione S-transferase-T1 in murine kidney, liver, and lung. Histochem Cell Biol. 1998;110(4):417–23. [PubMed: 9792420] [CrossRef]
  • Radican L, Blair A, Stewart P, Wartenberg D. Mortality of aircraft maintenance workers exposed to trichloroethylene and other hydrocarbons and chemicals: extended follow-up. J Occup Environ Med. 2008;50(11):1306–19. [PMC free article: PMC2763375] [PubMed: 19001957] [CrossRef]
  • Ratney RS, Wegman DH, Elkins HB. In vivo conversion of methylene chloride to carbon monoxide. Arch Environ Health. 1974;28(4):223–6. [PubMed: 4814958] [CrossRef]
  • Reitz RH, Mendrala AL, Guengerich FP. In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically based pharmacokinetic models. Toxicol Appl Pharmacol. 1989;97(2):230–46. [PubMed: 2922756] [CrossRef]
  • Reitz RH, Mendrala AL, Park CN, Andersen ME, Guengerich FP. Incorporation of in vitro enzyme data into the physiologically-based pharmacokinetic (PB-PK) model for methylene chloride: implications for risk assessment. Toxicol Lett. 1988;43(1-3):97–116. [PubMed: 3176073] [CrossRef]
  • Riley EC, Fassett DW, Sutton WL. Methylene chloride vapor in expired air of human subjects. Am Ind Hyg Assoc J. 1966;27(4):341–8. [PubMed: 5967616] [CrossRef]
  • Roldán-Arjona T, Pueyo C. Mutagenic and lethal effects of halogenated methanes in the Ara test of Salmonella typhimurium: quantitative relationship with chemical reactivity. Mutagenesis. 1993;8(2):127–31. [PubMed: 8464381] [CrossRef]
  • Rosengren LE, Kjellstrand P, Aurell A, Haglid KG. Irreversible effects of dichloromethane on the brain after long term exposure: a quantitative study of DNA and the glial cell marker proteins S-100 and GFA. Br J Ind Med. 1986;43(5):291–9. [PMC free article: PMC1007652] [PubMed: 3707866]
  • Rossberg M, Lendle M, Lendle M. 1986). Chlorinated hydrocarbons. 1. Chloromethanes. In: Gerhartz W, Se YY, editors. Ullmann’s Encyclopedia of Industrial Chemistry. New York: VCH Publishers; pp. 235–57.
  • Ruder AM, Yiin JH, Waters MA, Carreón T, Hein MJ, Butler MA, et al. Brain Cancer Collaborative Study Group. The Upper Midwest Health Study: gliomas and occupational exposure to chlorinated solvents. Occup Environ Med. 2013;70(2):73–80. [PMC free article: PMC4563805] [PubMed: 23104734] [CrossRef]
  • Sarma SN, Kim YJ, Ryu JC. Gene expression profiles of human promyelocytic leukemia cell lines exposed to volatile organic compounds. Toxicology. 2010;271(3):122–30. [PubMed: 20359517] [CrossRef]
  • Sasaki YF, Saga A, Akasaka M, Ishibashi S, Yoshida K, Su YQ, et al. Detection of in vivo genotoxicity of haloalkanes and haloalkenes carcinogenic to rodents by the alkaline single cell gel electrophoresis (comet) assay in multiple mouse organs. Mutat Res. 1998;419(1-3):13–20. [PubMed: 9804871] [CrossRef]
  • Sato A, Nakajima T. A structure-activity relationship of some chlorinated hydrocarbons. Arch Environ Health. 1979;34(2):69–75. [PubMed: 434934] [CrossRef]
  • Savolainen H, Kurppa K, Pfäffli P, Kivistö H. Dose-related effects of dichloromethane on rat brain in short-term inhalation exposure. Chem Biol Interact. 1981;34(3):315–22. [PubMed: 6161709] [CrossRef]
  • Sax NI. 1984). Dangerous properties of industrial materials. 6th Edition. New York (NY): Van Nostrand Reinhold; p. 1763.
  • Schairer LA, Sautkulis RC. Detection of ambient levels of mutagenic atmospheric pollutants with the higher plant. Tradescantia Environ Mutag Carcinog Plant Biol. 1982;2:154–94.
  • Schröder KR, Hallier E, Meyer DJ, Wiebel FA, Müller AM, Bolt HM. Purification and characterization of a new glutathione S-transferase, class theta, from human erythrocytes. Arch Toxicol. 1996;70(9):559–66. [PubMed: 8831906]
  • SCOEL (2009). Recommendation from the Scientific Committee on Occupational Exposure Limits for methylene chloride (dichloromethane). SCOEL/SUM/130. Luxembourg: European Commission.
  • Seidler A, Möhner M, Berger J, Mester B, Deeg E, Elsner G, et al. Solvent exposure and malignant lymphoma: a population-based case-control study in Germany. J Occup Med Toxicol. 2007;2(1):2. [PMC free article: PMC1851965] [PubMed: 17407545] [CrossRef]
  • Serota DG, Thakur AK, Ulland BM, Kirschman JC, Brown NM, Coots RH, et al. A two-year drinking-water study of dichloromethane in rodents. II. Mice. Food Chem Toxicol. 1986;24(9):959–63. a. [PubMed: 3781443] [CrossRef]
  • Serota DG, Thakur AK, Ulland BM, Kirschman JC, Brown NM, Coots RH, et al. A two-year drinking-water study of dichloromethane in rodents. I. Rats. Food Chem Toxicol. 1986;24(9):951–8. b. [PubMed: 3781442] [CrossRef]
  • Shannon HS, Haines T, Bernholz C, Julian JA, Verma DK, Jamieson E, et al. Cancer morbidity in lamp manufacturing workers. Am J Ind Med. 1988;14(3):281–90. [PubMed: 3189346] [CrossRef]
  • Sheldon T, Richardson CR, Elliott BM. Inactivity of methylene chloride in the mouse bone marrow micronucleus assay. Mutagenesis. 1987;2(1):57–9. [PubMed: 3331695] [CrossRef]
  • Sherratt PJ, Pulford DJ, Harrison DJ, Green T, Hayes JD. Evidence that human class theta glutathione S-transferase T1–1 can catalyse the activation of dichloromethane, a liver and lung carcinogen in the mouse. Comparison of the tissue distribution of GST T1–1 with that of classes Alpha, Mu and Pi GST in human. Biochem J. 1997;326(Pt 3):837–46. [PMC free article: PMC1218740] [PubMed: 9307035] [CrossRef]
  • Sherratt PJ, Williams S, Foster J, Kernohan N, Green T, Hayes JD. Direct comparison of the nature of mouse and human GST T1–1 and the implications on dichloromethane carcinogenicity. Toxicol Appl Pharmacol. 2002;179(2):89–97. [PubMed: 11884241] [CrossRef]
  • Shinomiya T, Shinomiya K. 1985[A case of poisoning by methylene chloride during the spraying of a new cargo vessel] Acta Med Leg Soc (Liege) 35(1):135–56.[French] [PubMed: 2979872]
  • Simmon VF, Kauhanen K, Tardiff R. 1977). Mutagenic activity of chemicals identified in drinking water. In: Scott D, Bridges BA, Sobels FH, editors. Progress in genetic toxicology (developments in toxicology and environmental science). Amsterdam: Elsevier; pp. 249–58.
  • Spirtas R, Stewart PA, Lee JS, Marano DE, Forbes CD, Grauman DJ, et al. Retrospective cohort mortality study of workers at an aircraft maintenance facility. I. Epidemiological results. Br J Ind Med. 1991;48(8):515–30. [PMC free article: PMC1035412] [PubMed: 1878308]
  • Starr TB, Matanoski G, Anders MW, Andersen ME. Workshop overview: reassessment of the cancer risk of dichloromethane in humans. Toxicol Sci. 2006;91(1):20–8. [PubMed: 16507920] [CrossRef]
  • Stewart PA, Lee JS, Marano DE, Spirtas R, Forbes CD, Blair A. Retrospective cohort mortality study of workers at an aircraft maintenance facility. II. Exposures and their assessment. Br J Ind Med. 1991;48(8):531–7. [PMC free article: PMC1035414] [PubMed: 1878309]
  • Stewart RD, Fisher TN, Hosko MJ, Peterson JE, Baretta ED, Dodd HC. Carboxyhemoglobin elevation after exposure to dichloromethane. Science. 1972;176(4032):295–6. a. [PubMed: 5019783] [CrossRef]
  • Stewart RD, Fisher TN, Hosko MJ, Peterson JE, Baretta ED, Dodd HC. Experimental human exposure to methylene chloride. Arch Environ Health. 1972;25(5):342–8. b. [PubMed: 4651547] [CrossRef]
  • Suva (2014). Grenzwerte am Arbeitsplatz 2014. Lucerne: Suva. [German]
  • Suzuki T, Yanagiba Y, Suda M, Wang RS. Assessment of the genotoxicity of 1,2-dichloropropane and dichloromethane after individual and co-exposure by inhalation in mice. J Occup Health. 2014;56(3):205–14. [PubMed: 24739373] [CrossRef]
  • Takano T, Miyazaki Y. Metabolism of dichloromethane and the subsequent binding of its product, carbon monoxide, to cytochrome P-450 in perfused rat liver. Toxicol Lett. 1988;40(1):93–6. [PubMed: 3341052] [CrossRef]
  • Theiss JC, Stoner GD, Shimkin MB, Weisburger EK. Test for carcinogenicity of organic contaminants of United States drinking waters by pulmonary tumor response in strain A mice. Cancer Res. 1977;37 8 Pt 1:2717–20. [PubMed: 872098]
  • Thier R, Taylor JB, Pemble SE, Humphreys WG, Persmark M, Ketterer B, et al. Expression of mammalian glutathione S-transferase 5–5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes. Proc Natl Acad Sci USA. 1993;90(18):8576–80. [PMC free article: PMC47400] [PubMed: 8378332] [CrossRef]
  • Thier R, Wiebel FA, Schulz TG, Hinke A, Brüning T, Bolt HM. Comparison of GST theta activity in liver and kidney of four species. Arch Toxicol Suppl. 1998;20:471–4. [PubMed: 9442318] [CrossRef]
  • Thilagar AK, Kumaroo V. Induction of chromosome damage by methylene chloride in CHO cells. Mutat Res. 1983;116(3-4):361–7. [PubMed: 6835252] [CrossRef]
  • Tomenson JA. Update of a cohort mortality study of workers exposed to methylene chloride employed at a plant producing cellulose triacetate film base. Int Arch Occup Environ Health. 2011;84(8):889–97. [PubMed: 21327981] [CrossRef]
  • Tomenson JA, Bonner SM, Heijne CG, Farrar DG, Cummings TF. Mortality of workers exposed to methylene chloride employed at a plant producing cellulose triacetate film base. Occup Environ Med. 1997;54(7):470–6. [PMC free article: PMC1128815] [PubMed: 9282122] [CrossRef]
  • Tong L, Liao X, Chen J, Xiao H, Xu L, Zhang F, et al. Pollution characteristics of ambient volatile organic compounds (VOCs) in the southeast coastal cities of China. Environ Sci Pollut Res Int. 2013;20(4):2603–15. [PubMed: 22972618] [CrossRef]
  • Tracy TS. Atypical cytochrome p450 kinetics: implications for drug discovery. Drugs R D. 2006;7(6):349–63. [PubMed: 17073518] [CrossRef]
  • Trueman RW, Ashby J. Lack of UDS activity in the livers of mice and rats exposed to dichloromethane. Environ Mol Mutagen. 1987;10(2):189–95. [PubMed: 3691491] [CrossRef]
  • Uang SN, Shih TS, Chang CH, Chang SM, Tsai CJ, Deshpande CG. Exposure assessment of organic solvents for aircraft paint stripping and spraying workers. Sci Total Environ. 2006;356(1-3):38–44. [PubMed: 15885752] [CrossRef]
  • Ursin C, Hansen CM, Van Dyk JW, Jensen PO, Christensen IJ, Ebbehoej J. Permeability of commercial solvents through living human skin. Am Ind Hyg Assoc J. 1995;56(7):651–60. [PubMed: 7618604] [CrossRef]
  • Verschueren K. 1996). Handbook of Environmental Data on Organic Chemicals. 3rd edition. New York (NY): Van Nostrand Reinhold.
  • Vetro J, Koutsogiannis Z, Jones DA, Canestra J. A case of methylene chloride poisoning due to ingestion of home-distilled alcohol and potential new treatment with ethanol infusion. Crit Care Resusc. 2012;14(1):60–3. [PubMed: 22404064]
  • Vizcaya D, Christensen KY, Lavoué J, Siemiatycki J. Risk of lung cancer associated with six types of chlorinated solvents: results from two case-control studies in Montreal, Canada. Occup Environ Med. 2013;70(2):81–5. [PubMed: 23104733] [CrossRef]
  • Vulcan Chemicals (1995). Methylene chloride (CH2Cl2). Degreasing grade. Product specification sheet. Form No. 5-2-3. Birmingham (AL): Vulcan Chemicals.
  • Vulcan Chemicals (1996a). Methylene chloride, technical grade. Product specification sheet. Form No. 5-2-0. Birmingham (AL): Vulcan Chemicals.
  • Vulcan Chemicals (1996b). Methylene chloride, aerosol grade. Product specification sheet: Form No. 5-2-2. Birmingham (AL): Vulcan Chemicals.
  • Vulcan Chemicals (1996c). Methylene chloride, special grade. Product specification sheet: Form No. 5-2-4. Birmingham (AL): Vulcan Chemicals.
  • Vulcan Chemicals (1996d). Methylene chloride, decaffeination grade. Product specification sheet: Form No. 5-2-6. Birmingham (AL): Vulcan Chemicals.
  • Wang R, Zhang Y, Lan Q, Holford TR, Leaderer B, Zahm SH, et al. Occupational exposure to solvents and risk of non-Hodgkin lymphoma in Connecticut women. Am J Epidemiol. 2009;169(2):176–85. [PMC free article: PMC2727253] [PubMed: 19056833] [CrossRef]
  • Watanabe K, Guengerich FP. Limited reactivity of formyl chloride with glutathione and relevance to metabolism and toxicity of dichloromethane. Chem Res Toxicol. 2006;19(8):1091–6. [PubMed: 16918250] [CrossRef]
  • Watanabe K, Liberman RG, Skipper PL, Tannenbaum SR, Guengerich FP. Analysis of DNA adducts formed in vivo in rats and mice from 1,2-dibromoethane, 1,2-dichloroethane, dibromomethane, and dichloromethane using HPLC/accelerator mass spectrometry and relevance to risk estimates. Chem Res Toxicol. 2007;20(11):1594–600. [PubMed: 17907789] [CrossRef]
  • Weinstein RS, Boyd DD, Back KC. Effects of continuous inhalation of dichloromethane in the mouse: morphologic and functional observations. Toxicol Appl Pharmacol. 1972;23(4):660–79. [PubMed: 4118878] [CrossRef]
  • Westbrook-Collins B, Allen JW, Sharief Y, Campbell J. Further evidence that dichloromethane does not induce chromosome damage. J Appl Toxicol. 1990;10(2):79–81. [PubMed: 2362082] [CrossRef]
  • WHO. 1996). Methylene chloride (Environmental Health Criteria No. 164). 2nd ed. Geneva: International Programme on Chemical Safety, World Health Organization.
  • WHO (2000). WHO air quality guidelines for Europe, 2nd edition, 2000 (CD ROM version). Copenhagen: World Health Organization Regional Office for Europe. Available from: http://www​.euro.who.int​/en/health-topics​/environment-and-health​/air-quality/publications​/pre2009/who-air-quality-guidelines-for-europe,-2nd-edition,-2000-cd-rom-version, accessed 17 September 2014.
  • Winek CL, Collom WD, Esposito F. Accidental methylene chloride fatality. Forensic Sci Int. 1981;18(2):165–8. [PubMed: 7297968] [CrossRef]
  • Winneke G. The neurotoxicity of dichloromethane. Neurobehav Toxicol Teratol. 1981;3(4):391–5. [PubMed: 7335138]
  • Yamada K, Kumagai S, Nagoya T, Endo G. 2014). Chemical exposure levels in printing workers with cholangiocarcinoma. Tokyo: Occupational Health Research and Development Center, Japan Industrial Safety and Health Association.
  • Zeiger E, Dellarco V. Mutagenicity of 42 chemicals in Salmonella. Environ Mol Mutagen. 1990;16(S18) Suppl 18:32–54. [PubMed: 2091923] [CrossRef]
  • Zielenska M, Ahmed A, Pienkowska M, Anderson M, Glickman BW. Mutational specificities of environmental carcinogens in the lacI gene of Escherichia coli. VI: Analysis of methylene chloride-induced mutational distribution in Uvr+ and UvrB- strains. Carcinogenesis. 1993;14(5):789–94. [PubMed: 8504470] [CrossRef]
© International Agency for Research on Cancer, 2017. For more information contact publications@iarc.fr.
Bookshelf ID: NBK436286

Views

  • PubReader
  • Print View
  • Cite this Page
  • PDF version of this title (5.4M)

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...