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The EPCs systematically review the relevant scientific literature on topics assigned to them 
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Nation. The reports undergo peer review and public comment prior to their release as a final 
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We welcome comments on this evidence report. Comments may be sent by mail to the Task 

Order Officer named in this report to: Agency for Healthcare Research and Quality, 540 Gaither 

Road, Rockville, MD 20850, or by email to epc@ahrq.hhs.gov.  
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Multigene Panels in Prostate Cancer Risk Assessment 

 
Structured Abstract 
 

Objectives: The aim of this review is to identify, synthesize, and appraise the literature on the 

analytic validity, clinical validity, and clinical utility of commercially available single nucleotide 

polymorphism (SNP) panel tests for assessing the risk of prostate cancer.  

 

Data Sources: MEDLINE
®
, Cochrane CENTRAL, Cochrane Database of Systematic Reviews, 

and Embase, from the beginning of each database to October 2011. Search strategies used 

combinations of controlled vocabulary (medical subject headings, keywords) and text words. 

Grey literature was identified. 

 

Review Methods: Three Key Questions (KQs) encompassing broad aspects of the analytic 

validity, clinical validity, and clinical utility of SNP-based panels were developed with the input 

of a Technical Expert Panel assembled by the Evidence-based Practice Center and approved by 

the Agency for Healthcare Research and Quality. Standard systematic review methodology was 

applied, with eligibility criteria developed separately for each KQ.  

 

Results: From 1,998 unique citations, 14 were retained for data abstraction and quality 

assessment following title and abstract screening and full text screening. All focused on clinical 

validity (KQ2), and evaluated 15 individual panels with two to 35 SNPs. All had poor 

discriminative ability for predicting risk of prostate cancer and/or distinguishing between 

aggressive and asymptomatic/latent disease. The risk of bias of the studies was determined to be 

moderate. None of the panels had been evaluated in routine clinical settings. 

 

Conclusions: The evidence on currently available SNP panels does not permit meaningful 

assessment of analytic validity. The limited evidence on clinical validity is insufficient to 

conclude that the panels assessed would perform adequately as screening or risk stratification 

tests. No evidence is available on the clinical utility of current panels.
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Executive Summary 

Background  
Prostate cancer is the fifth most common malignancy in the world,

 1
 with a large variation in 

incidence rates. In 2010, it was estimated that almost a quarter of a million new cases were 

diagnosed in North America, and more than 36,000 men died from the disease.
2,3

 These numbers 

are likely to increase with the aging of the population.
4
 In data from the Surveillance, 

Epidemiology, and End Results Program, more men were diagnosed with prostate cancer at a 

younger age and earlier stage in 2004–2005 than in the mid- to late 1990s, and disparity between 

ethnic groups in cancer stage at diagnosis decreased.
5
  

Apart from age, ethnic group, and family history, the risk factors associated with prostate 

cancer are unclear,
 6

 making primary prevention difficult. 

Striking differences in incidence have been observed for different ethnic groups and 

populations. A high incidence has been observed in populations of African descent in several 

countries.
7
 First-degree relatives of men with prostate cancer have a two- to threefold increased 

risk for developing the disease,
6,8,9

 and its estimated heritability is high.
10

 Some patterns of 

familial aggregation have been observed that are consistent with an autosomal dominant mode of 

inheritance of a susceptibility gene, but this accounts for no more than 15 percent of cases.
11,12

 

Prostate cancer is currently considered to be a complex, multifactorial disease with the vast 

majority of familial clustering attributed to the interaction of multiple shared moderate to low 

penetrance susceptibility genes and shared environmental factors within these families. Many 

epidemiological studies have suggested a wide range of other risk factors for prostate cancer, but 

these have not been confirmed in controlled trials. 

The natural history of prostate cancer is highly variable.
13

 In a large proportion of men, the 

disease is indolent, and it is difficult to predict which tumors will be aggressive. African-

American men have a poorer prognosis than other groups, independent of comorbidity or access 

to health services.
7 

The value of aggressive management for localized prostate cancer is also 

debated, and only a small proportion of men with early stage prostate cancer die from the disease 

within 10 to 15 years of diagnosis.  

Prostate-specific antigen (PSA) was approved by the U.S. Food and Drug Administration in 

1986 for monitoring progression in patients with prostate cancer, and later approved for the 

detection of the disease in symptomatic men (but not for screening asymptomatic men).
14

 A 

meta-analysis of seven randomized controlled trials of screening using PSA testing alone, or in 

combination with digital rectal examination, suggested no evidence of benefit in reducing 

mortality,
15,16

 and some evidence of harms from overdiagnosis.
16

 Amidst substantial debate,
17-23

 

the argument has been made for developing more accurate screening tests, including possible 

genetic markers. 

Single nucleotide polymorphisms (SNPs) are minute inherited variations in the DNA 

sequence. SNPs occur about once in every 800 base pairs
24

 and are the most common type of 

genetic variation in humans. Since 2001, there have been about 1,000 published studies reporting 

associations between prostate cancer, SNPs, and other genetic variants. To date, genome-wide 

association (GWA) studies have identified replicated associations between prostate cancer and 

almost 40 specific SNPs.
25-34

 The magnitude of the odds ratios (ORs) in these studies was in the 

range of 1.1 to 2.1, that is, of low penetrance. It is generally accepted that information on single 

low-penetrance alleles has no value in screening,
35-38

 but a small to moderate number of 
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common, low-penetrance variants, in combination, may account for a high proportion of a 

disease
36,39,40

 and may be useful in predicting the risk for disease.
41

 The aim of this review is to 

assess the evidence on the possible value of SNP panels in the detection of and prediction of risk 

for prostate cancer, and their value in predicting disease prognosis in affected men. 

Scope and Purpose of the Systematic Review 
This report addresses the evidence on the validity and utility of using SNP panels in the 

detection, diagnosis, and clinical management of prostate cancer. It is intended to encompass all 

relevant areas of test evaluation as proposed by the ACCE framework (see Table A). 

 
Table A. Elements and key components of evaluation framework for SNP-based panels in prostate 
cancer risk assessment

42
 

Element Definition Components 

Analytic validity An indicator of how well a test or tool 
measures the property or characteristic 
(e.g., genomic variations) that it is 
intended to measure 

Analytical sensitivity 
Analytical specificity 
Reliability (e.g., repeatability of test results)  
Assay robustness (e.g., resistance to small 
changes in pre-analytic or analytic 
variables)

43
 

Clinical validity A measurement of the accuracy with 
which a test or tool identifies or predicts a 
clinical condition 

Clinical sensitivity 
Clinical specificity 
Positive predictive value 
Negative predictive value 

Clinical utility Degree to which benefits are provided by 
positive and negative test results  

Availability and impact of effective 
interventions 
Health risks and benefits 
Economic assessment 

Ethical, legal, and social 
implications 

Issues affecting use of SNP-based panels 
that might negatively impact individuals, 
families, and society 

Stigmatization 
Discrimination 
Psychological harms 
Risks to privacy and confidentiality 

Note: Reprinted from Amer Jour Prev Med 24(2), Yoon PW, Scheuner MT, and Khoury MJ., Research Priorities for Evaluating 

Family History in the Prevention of Common Chronic Diseases. Pp 128-35, 2003, with permission from Elsevier. 

 

The specific Key Questions (KQs) are: 

1. What is the analytic validity of currently available SNP-based panels designed for 

prostate cancer risk assessment? (KQ1) 

2. What is the clinical validity of currently available SNP-based panels designed for prostate 

cancer risk assessment? (KQ2) 

3. What is the clinical utility of currently available SNP-based panels for prostate cancer 

risk assessment, in terms of the process of care, health outcomes, harms, and economic 

considerations? (KQ3) 

These questions represent the links in the chain between using an SNP-based panel to assess 

a person‘s genotype and producing benefit in terms of reduction in mortality: do currently 

available SNP panels actually assess genotype accurately, and, if so, do they predict or stratify a 

person‘s risk accurately? Does such risk prediction or stratification lead to altered clinical 

decisionmaking and/or change in personal behavior sufficient to alter important disease 

outcomes? Are there any direct harms of a SNP-based approach? How do SNP-based strategies 

(alone or in combination with PSA) compare with current practice? 

This review‘s focus is firmly on the potential value of applying SNP-based genotype panels 

in clinical practice as a supplement to, or substitute for, current PSA-based strategies. 
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Methods 
Standard systematic review methodology was employed. MEDLINE

®
, Cochrane CENTRAL, 

Cochrane Database of Systematic Reviews, and Embase databases were searched from their 

inception to October 2011 inclusive.  

The commercial availability of a test panel was defined as a clinical test offered (or soon to 

be offered) by a certified laboratory, or licensed or certified kit reagent test panels sold for use by 

clinical service laboratories within continental North America.  

The Web sites of relevant specialty societies and organizations were searched, as well as the 

reference lists of eligible studies.  

On behalf of the authors, the Scientific Resource Center directly contacted 40 companies 

known to provide either test services or diagnostic reagents potentially relevant to the KQs, in an 

effort to elicit unpublished sources of information.  

Eligibility criteria included English language studies evaluating SNP analysis of human 

populations, or samples derived from human populations. The SNP analysis had to be across 

more than one gene, commercially available (or close to this), and at least one of the gene 

variants included in the panel must have been validated in a GWA study. Study designs varied 

by question.  

Quality assessment was performed using The Newcastle Ottawa Scale (NOS)
44

 supplemented 

by selected items for the QUADAS tool.
45

 

Results 
Our comprehensive search yielded 1,998 unique citations. In total, 1,303 (65 percent) were 

excluded from further review following the initial level of title and abstract screening. The 

remaining 695 citations were screened at full text and from these a total of 14 articles
46-59

 were 

eligible. All were considered primarily relevant to KQ2, but they also provided data that 

permitted extrapolation to address KQ1. 

KQ1. What is the analytic validity of currently available SNP-based panels 
designed for prostate cancer risk assessment? 

1. What is the accuracy of assay results for individual SNPs in current panels?  

No direct assessment of the analytic validity of any SNP-based panels was identified in the 

literature search. Companies known to offer testing for the risk of prostate cancer based on SNP 

panels were approached in May of 2011, as were companies known to offer genetic testing more 

generally. As of September 1, 2011, no response had been received. From the articles that were 

identified as providing information relevant to the assessment of the clinical validity of SNP 

panels, no data on the analytic validity of individual SNPs that were components of the panels 

were presented. 

2. What is the analytical validity of current panels whose purpose is, or includes, 

predicting risk of prostate cancer?  

Reports concerning 15 test panels were considered eligible for KQ2, and data were available, 

with overlaps from different sources, for most of these. Reported accuracy rates ranged up to 

>99.9 percent; SNP call rates were usually reported in the range of 98 to 99 percent (with a low 

of 90 percent), and reported concordance on retesting was usually greater than 99 percent. 

However, the methodologies described as the basis for determining analytical validity were not 

uniform across all analytes for some panels; in multiple cases, the SNP call rate of a given test 
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panel was reported on the basis of data from two or more different chip platforms or analytical 

techniques. (For the purpose of this report, call rate was defined as the proportion of samples for 

which genotypes are called for a converted marker). 

3. What are the sources of variation in accuracy or analytical validity across different test 

platforms?  

No evidence to address this question was identified. 

KQ2. What is the clinical validity of currently available SNP-based panels 
designed for prostate cancer risk assessment? 

Fourteen articles, describing 15 distinct SNP-based panels, were identified as eligible for 

KQ2. The properties of a 5-SNP panel were investigated in six articles, four of which also 

considered family history. The other 14 panels included between 2 and 35 SNPs, but each was 

investigated in a single study only; several of these considered family history and age in the risk 

prediction model. All but two evaluations were case-control (association) studies, and were 

heterogeneous in terms of the composition of each panel (specific SNPs and the number 

included), the inclusion of other risk factor data, the populations in which they were evaluated, 

and the metrics used to judge the performance of the panel as a ―test.‖ One evaluation was a 

cross-sectional study, and one was a cohort study of survival in men with prostate cancer. None 

of the studies were performed in routine clinical settings.  

1.  How well do available SNP-based genotyping panels predict the risk of prostate cancer 

in terms of: 

a. stratifying future risk and/or screening for current disease?  

Across six studies, the range of observed diagnostic ORs for the 5-SNP panel was 2.4 to 4.5. 

Receiver-operator characteristic curves were computed in two of these studies, with the reported 

figures for area under the curve (AUC) ranging from 58 to 73 percent, depending on the study 

and inclusion of other variables. AUCs across all panels ranged between 58 and 74 percent. In 

general, proposed tests with an AUC of 75 percent or less are unlikely to be clinically useful.
60,61

 

Moreover, within individual studies, the incremental gain in AUC observed when the predictive 

model including the SNP data was compared against the best alternative non-SNPs model (i.e., 

the absolute improvement in AUC) ranged from +0.025 to +0.04. 

b. distinguishing between clinically important and latent/asymptomatic prostate 

cancer? 

Data pertaining to this question were available for the 5-SNP panel.,
48,62

 the 14-SNP panel,
51

 

the 11-SNP panel,
50

 and the 35-SNP panel.
58

 Regardless of the operational definition of 

―clinically important‖ prostate cancer, none of the evaluations suggested that any of these panels 

performed well in distinguishing between more and less aggressive disease. 

2. How well do available SNP-based genotyping panels predict prognosis in individuals 

with a clinical diagnosis of prostate cancer? 

Prediction of prostate cancer mortality in affected men was evaluated for the 5-SNP panel, 

with and without inclusion of family history,
 47

 the 6-SNP panel,
 55

 and the 16-SNP panel.
59

 

Followup periods ranged from 3.7 to 10 years. There was no association between risk alleles and 

prostate cancer mortality for any of the panels,
 47,55,59

 and no increase in the AUC of a model 

based on age, PSA, Gleason score, and tumor stage when SNPs panel data were added.
47

 

No data were identified to address the questions of risk reclassification or predicted 

performance in simulation analyses. 
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3. What other factors (e.g., race/ethnicity, gene-gene interaction, gene-environment 

interaction) affect the predictive value of available panels and/or the interpretation of 

their results? 

No data were found which directly addressed this question. For one of the panels,
 54

 we noted 

the development of separate tests for SNPs in steroid hormone pathway genes for non-Hispanic 

Whites and Hispanic Whites. Also, the deCODE ProstateCancer test includes different subsets of 

variants for assessing risk in men of European, African American, and East Asian descent.
63

 

KQ3. What is the clinical utility of currently available SNP-based panels for 
prostate cancer risk assessment, in terms of the process of care, health 
outcomes, harms, and economic considerations? 

No eligible studies addressing any component of clinical utility were identified. 

Quality Assessment of Individual Studies 
We considered that all the included studies had at least a moderate risk of bias. 

Rating the Body of Evidence 
We considered the domains of risk of bias, consistency of findings, directness, and precision. 

As indicated above, all included studies were considered to have at least a moderate risk of bias. 

We could not assess consistency of results for panels assessed in single studies only. For one 

panel (Focus 5), evaluated in multiple studies, consistency could not be assessed quantitatively. 

For directness, all included studies were conducted in a research context, and none of the panels 

were applied in settings that might be considered close to routine clinical practice. In particular, 

there was no meaningful comparison of any SNP panel against a routine clinical alternative 

―test.‖ 

Finally, the assessment of precision requires a clear idea of clinically meaningful differences 

between different levels of sensitivity, specificity, AUC, and other accuracy metrics. This area of 

evaluation is underdeveloped in the clinical literature, and we were unable to offer a valid 

assessment of this domain.  

We were unable to assess the extent of publication bias in this review. We contacted a 

comprehensive list of companies we considered most likely to be developing SNP panels for 

commercial application, and received no responses. 

Overall, it is unlikely that any of the biases identified would be sufficient to alter the 

interpretation of the findings from (at best) inadequacy of evidence to clearly positive supporting 

evidence for any of the SNPs panels reviewed. 

Discussion 
We identified a number of evaluations of SNP panels that varied in their composition. We 

could not draw robust conclusions regarding their analytic validity. These studies showed 

statistically significant associations between combinations of SNPs and risk of prostate cancer. 

However, when assessed using test evaluation designs, the risk models based on SNP panels 

improved the AUC only marginally compared with non–SNP-based tests in distinguishing cases 

from noncases, clinically meaningful from latent or asymptomatic cancer, or in stratifying the 

prognosis of confirmed cases. These evaluations were not conducted in routine clinical settings. 

No evidence was identified to address the question of clinical utility.  
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Future research should focus on evaluating clinical validity more extensively and robustly in 

participants more representative of general clinical populations, and on comparing SNP-based 

panels directly with the existing standard of care. There would be value in applying decision 

analysis methods. In the development of new panels, there is also a need to characterize further 

the regions in which genetic markers have so far been identified and validated, as well as to 

identify and validate further genetic markers to enable a greater proportion of the genetic 

variation to be considered in stratifying risk. More emphasis needs to be placed on distinguishing 

between aggressive and nonaggressive disease, and investigators should consider the possibility 

for subgroup analyses at the planning stage of studies. 

Conclusion 
The potential value of using SNP-based panels in prostate cancer risk assessment includes 

risk stratification, screening for undiagnosed disease, and assessing prognosis. We identified 15 

SNP panels that we considered fulfilled the definition of ―close to commercially available.‖ They 

were widely variable in their makeup, containing 2-35 different SNPs, many combined with 

other risk factor data in predictive algorithms.  

With regard to stratifying future risk and/or screening for current disease, a 5-SNP panel was 

evaluated in six articles. The other 14 panels were investigated in single studies only. AUCs 

across all panels ranged between 58 and 74 percent. Thus, all of the panels had AUCs below 75 

percent, the threshold below which tests are in general considered unlikely to be clinically useful. 

Any increase in AUC compared with models not incorporating the SNP combinations was small. 

In the few studies that investigated the distinction between clinically important and 

latent/asymptomatic prostate cancer or prognosis, no associations were observed with risk scores 

derived from the SNP panels. Thus, currently available or documented SNP panels proposed for 

prediction of risk for prostate cancer have poor discriminative ability. 

No evidence was found which addressed the important questions of clinical utility. However, 

even if the review had identified more compelling evidence to support clinical utility, this would 

not in itself provide any direct evidence of the value of SNP-based test panels in reducing 

morbidity and mortality. Any benefit from improvements in prostate cancer risk prediction, 

screening, and prognostic stratification will depend to a large extent on clearer evidence that 

surveillance, diagnostic, and treatment strategies in themselves lead to reductions in morbidity 

and mortality. 
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Introduction 

Prostate Cancer  
Worldwide, more than 900,000 cases of prostate cancer were diagnosed in 2008, making its 

incidence second only to lung cancer in men.
1
 Incidence rates vary approximately 25-fold 

worldwide, with the highest rates being observed in North America, Australia and New Zealand, 

and Western and Northern Europe. It is believed that a large part of this variation reflects 

differences in the use of prostate specific antigen (PSA) screening.
1
 Excluding skin cancer, 

prostate cancer is the most common cancer in American men. In 2010, it was estimated that 

almost a quarter of a million new cases of prostate cancer were diagnosed in North America, and 

more than 36,000 men died from the disease.
2,3

 The risk for prostate cancer increases with age; 

the median age of diagnosis in the United States during 2004–2008 was 67 years.
4
 With the 

aging population, prostate cancer will present a significant burden to health care services. In data 

from the Surveillance, Epidemiology, and End Results Program, more men were diagnosed with 

prostate cancer at a younger age and earlier stage in 2004–2005 than in the mid- to late 1990s, 

and the disparity between ethnic groups in cancer stage at diagnosis decreased.
5
  

Risk Factors 
Apart from age, ethnic group, and family history, the risk factors associated with prostate 

cancer are unclear,
6
 which makes primary prevention difficult.  

Ethnic Group 
Striking differences in incidence have been observed for different ethnic groups and 

populations. A high incidence has been observed in populations of African descent in several 

countries,
7
 including Brazil, the Caribbean, and France.

8
 In parts of sub-Saharan Africa, the 

incidence of prostate cancer in black populations lies in the range of 14 to 25 per 100,000 per 

year, compared with 40 to 70 per 100,000 per year in white populations in these areas, although 

it is noted that the black population does not have access to diagnostic and screening facilities 

that are available to the white population in these areas.
9
 These observations are complicated by 

differences in the use of PSA screening and/or access to care, which may result in differential 

ascertainment. Migrant studies suggest that prostate cancer incidence increases when men move 

from a lower to a higher incidence population. Many epidemiological studies have suggested a 

wide range of risk factors for prostate cancer, but controlled trials have either not been 

conducted, or have shown negative results. 

Hereditary Factors 
First-degree relatives of men with prostate cancer have a two- to threefold increased risk for 

developing the disease.
6,10,11

 In addition, the risk of relatives developing prostate cancer increases 

with an increase in the number of affected individuals in the family and with a decrease in the 

age at diagnosis of the index prostate cancer case.
12

 High concordance rates have been observed 

in monozygotic twins. In a combined analysis of data from three Scandinavian countries, the 

estimated heritability for prostate cancer was the highest of all the types of cancer investigated.
13

 

A subset of familial prostate cancer cases show patterns of familial aggregation consistent 

with an autosomal dominant mode of inheritance of a susceptibility gene, but this accounts for no 
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more than 15 percent of prostate cancer.
14,15

 Prostate cancer is currently considered to be a 

complex, multifactorial disease with the vast majority of familial clustering attributed to the 

interaction of multiple shared moderate to low penetrance susceptibility genes as well as shared 

environmental factors within these families. 

Other Risk Factors 
Compared with other common types of cancer, the risk factors associated with prostate 

cancer are unclear.
6
 Many epidemiological studies have suggested a wide range of risk factors 

for prostate cancer, but controlled trials have either not been conducted, or have shown negative 

results. 

An analysis of individual patient data from 12 studies of the association between insulin-like 

growth factors (IGFs) and IGF binding proteins and prostate cancer suggests that higher levels of 

serum IGF1 are associated with a higher risk for prostate cancer.
16

 Several studies have 

investigated the possible association between diabetes mellitus and the risk for prostate cancer. 

Meta-analyses indicate an inverse relationship.
17,18

 

Observational studies have suggested that diet may be important in the etiology of prostate 

cancer, but these have not translated into effective preventive interventions. An analysis of the 

Alpha-Tocopherol Beta-Carotene Intervention Trial of heavy smokers in Finland showed a 40 

percent decrease in incidence and mortality in prostate cancer in men taking alpha-tocopherol 

compared with those taking placebo.
19

 Analysis of further randomized controlled trials (RCTs) 

that included prostate cancer as a secondary end-point have also indicated a possible protective 

effect of alpha-tocopherol.
20

 However, in a large, long-term trial of male physicians, neither 

vitamin E nor C supplementation reduced the risk of prostate or total cancer,
21

 and in another 

long-term trial, it was concluded that dietary supplementation with vitamin E significantly 

increased the risk of prostate cancer among healthy men.
22

 While observational studies have 

suggested a protective role for selenium, this was not confirmed in a large RCT.
23

 Inverse 

associations with consumption of tomatoes/lycopene
24,25

 and soy products
26,27

 have been 

reported. Positive associations with the consumption of dairy products and calcium have been 

reported.
24,28,29

 The evidence of association with alcohol,
24,30

 coffee,
31

 dietary fiber,
32

 fish 

consumption,
33

 and beta-carotene supplementation
34

 has been interpreted as null. 

Other risk factors that have been considered include androgens,
35

 anthropometric 

measures,
24,36

 physical activity,
6
 sexual behavior,

37
 sexually transmitted infection,

35,38,39
 

vasectomy,
40,41

 occupation as flight personnel,
42,43

 agricultural pesticide applications,
44

 use of 

nonsteroidal anti-inflammatory drugs,
45

 statin use,
46,47

 smoking,
25,48

 use of smokeless tobacco,
49

 

sun exposure,
50

 and serum 25-hydroxyvitamin D level.
51,52

 

Natural History 
The natural history of prostate cancer is highly variable.

53
 In studies of autopsy series, 

histologically proven prostate cancer was found in approximately 30 to 40 percent of men over 

50 years of age who died of other causes.
54-60

 This is three to four times higher than the lifetime 

risk of prostate cancer diagnosis in American men (approximately 11 percent),
53

 which suggests 

that the disease is indolent in a large proportion of affected men. However, it is difficult to 

predict the aggressiveness of the disease in individual men. The most commonly used scheme to 

grade prostate cancer is the Tumor, Nodes, Metastases (TNM) scheme, which evaluates the size 

and histological features of the tumor, the extent of involved lymph nodes, and the presence of 
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metastasis. This information is used to classify the tumor into one of four categories: Stage I–

small, localized focus within prostate, typically found when prostatic tissue is removed for other 

reasons such as benign prostatic hyperplasia; Stage II–more of the prostate is involved and a 

lump can be palpated (by digital rectal examination [DRE]) within the gland; Stage III–the tumor 

has broken through the prostatic capsule and the lump can be palpated on the surface of the 

gland; Stage IV–the tumor has invaded nearby structures, or has spread to lymph nodes or other 

organs.  

The Gleason score is based on histopathological assessment of the glandular architecture of 

prostate tissue samples, usually obtained by transurethral ultrasound (TRUS) guided biopsy.
61

 

The assessment involves determination of: the most prevalent pattern of growth and 

differentiation; and, the most aggressive pattern, each of which is assigned a score (range 1 to 5), 

which is then summed to give the overall Gleason score. The Gleason scoring system was 

modified,
62

 which resulted in a shift of the most commonly found score from six to seven.
61

 This 

has implications for the comparison of subgroup analyses by Gleason scores over time. 

Several studies have sought to provide an estimate of the long-term risk of death from 

prostate cancer in men whose disease was clinically localized at diagnosis and who were 

managed solely by observation (watchful waiting), with or without androgen withdrawal 

therapy.
53,63-72

 Most of these studies were carried out before the advent of PSA testing, which is 

thought to have increased the detection of clinically indolent disease and extended lead time.
73-78

 

Only a small proportion of men with prostate cancer diagnosed at an early clinical stage 

(Gleason scores ≤4) die from prostate cancer within 10 to 15 years of diagnosis. Men with poorly 

differentiated tumors frequently die within 5 to 10 years of diagnosis.
66,69

 The greatest variation 

in outcome is for men with moderately differentiated tumors (Gleason scores 5 to 7).
53,66,69

 The 

natural history over longer periods of observation is uncertain. A study in Sweden,
69

 observed an 

increase in prostate cancer mortality among a relatively small number of men who were alive 

more than 15 years after diagnosis of localized prostate cancer, but this was not observed in a 

larger study in Connecticut, United States.
66

 Numerous differences between these cohorts could 

account for this inconsistency.
79

 A modeling study in the United States projected that 20 to 33 

percent of men have preclinical onset (i.e., asymptomatic, but diagnosed as a result of a routine 

PSA test) of whom, 38 to 50 percent would be clinically diagnosed, and 12 to 25 percent would 

die of the disease in the absence of screening and primary treatment.
80

 

Treatment in Men With Clinically Localized Prostate Cancer 
The value of aggressive management for localized prostate cancer is also debated, and only a 

small proportion of men with early stage prostate cancer die from the disease within 10 to 15 

years of diagnosis. In the United States, African-American men have a poorer prognosis, which 

does not appear to be fully explained by comorbidity, PSA screening, or access to free health 

care, although the variation in the measurement of these factors complicates the interpretation.
7
  

Two RCTs have compared the efficacy of radical prostatectomy and watchful waiting in men 

with clinically localized prostate cancer, almost all of which were detected by methods other 

than PSA testing. A small trial showed no differences in survival between these two management 

strategies.
81

 A larger trial by the Scandinavian Prostate Cancer Study Group showed a small 

reduction in the risk of progression or death from prostate cancer in the men treated with radical 

prostatectomy, but also noted the potential harms that resulted from surgery.
70,71

 Two further 

RCTs are ongoing, one in the UK
82,83

 and one in the United States.
84 
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PSA Screening 
PSA was discovered in the 1960s and 1970s,

85
 and the work identifying it as a serum marker 

for adenocarcinoma of the prostate was published in 1987.
86

 It was first approved by the U.S. 

Food and Drug Administration (FDA) in 1986 for monitoring progression in patients with 

prostate cancer, and later approved for the detection of the disease in symptomatic men (but not 

for screening asymptomatic men).
87

 Since 1986, it is estimated that more than a million 

additional men in the United States have been diagnosed and treated for prostate cancer because 

of PSA screening than would otherwise have been the case, the most dramatic increase observed 

being for those under the age of 50.
88

 The increase in incidence following the introduction of 

PSA screening has never returned to prescreening levels, and has been accompanied by an 

increase in the relative fraction of early stage cancers, but not a decrease in the rate of regional or 

metastatic disease.
89

 

Seven randomized trials (12 publications) of screening using PSA testing alone, or in 

combination with DRE, have been reported, in the United States,
90,91

 Canada,
92-94

 and Europe,
95-

101
 with conflicting results.  

Meta-analysis of these trials indicates that prostate cancer screening did not result in a 

statistically significant decrease in all-cause or prostate cancer-specific mortality,
102,103

 and that 

overdiagnosis resulted in harms that are frequent, often persist, and are at least moderate in 

severity.
103

 The individual trials and meta-analyses have generated substantial debate, with many 

commentaries arguing for the development of more accurate markers to use in screening or a risk 

stratification approach.
104-112

 Investigation of genetic variants associated with prostate cancer has 

been considered a promising route to the identification of such markers. 

Single Nucleotide Polymorphisms 
Single nucleotide Polymorphisms (SNPs) are minute variations in the DNA sequence that are 

passed on from parents to children. They are the most common type of genetic variation in 

humans. Formally, an allele, that is, a variation in DNA sequence, is defined to be 

―polymorphic‖ if it occurs in at least 1 percent of a population.
113

 Therefore, although overall 

humans are very similar at the DNA sequence level, because the genome is large there is 

substantial latitude for individual genetic variation. SNPs occur about once in every 800 base 

pairs.
114

 The Human Genome Project and advances in related technologies have fostered the 

investigation of the relationship between genetic variation and many health outcomes, including 

prostate cancer. 

Since 2001, about 1,000 publications have reported associations between prostate cancer and 

SNPs and other genetic variants. The vast majority of the studies have related to candidate genes, 

in which the genes and variants, usually SNPs, have been specifically selected for investigation 

based on biological and physiological information regarding the involvement of gene products in 

early developmental pathways, biochemical and cellular process of progression, and/or clinical 

manifestations (a ―candidate gene‖ approach). For prostate cancer, the most intensively 

investigated associations have related to genes in the following pathways: adhesion molecules 

(CDH1
115

); androgen metabolism (AR,
116,117

 ESR2,
118

 SRDA2
119,120

); angiogenesis (VEGF
121

) 

angiotensin conversion (ACE
122,123

); base-excision repair (XRCC1
124,125

); inflammation and 

immune response (IL8, IL10,
126-128

 MSR1,
129

 PTGS2,
130

 TNF
131

); inhibition of cell growth 

(FGFR4,
132,133

 TGFB1,
134

 TGFBR1
135

); insulin-like growth factor metabolism (IGF1,
136
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IGFBP3
137

); one carbon metabolism (MTHFR,
138

 diverse genes
139

); oxidative response 

(MnSOD,
140

 hOGG1
141

); substrate metabolism (CYP1A1,
142

 CYP3A4,
143

 CYP17,
144,145

 GSTM1, 

GSTT1, GSTP1,
146

 NAT1 and NAT2,
124

 UGT2B17
145

); vitamin D metabolism (VDR
147

); and, 

common variants of genes for which rare mutations are associated with increased cancer risk 

(ELAC/HPC2,
148

 RNASEL,
149,150

 TP53,
151,152

 MDM2
153

). In general, the results of candidate gene 

studies have been inconclusive, for reasons discussed in many commentaries.
154,155

 However, 

when associations have been confirmed, they have been modest, with odds ratios (ORs) in the 

range of 1.1 to 2.2.
156

 Thus, the proportion of individuals carrying any one of these variants that 

also developed the health outcome under investigation is low (i.e., these variants are of low 

penetrance). 

The HapMap Project, completed in 2005, has shown that SNPs are often correlated with their 

neighboring SNPs, which has provided a methodology for investigating the associations between 

genetic variation and health outcomes on a genome-wide scale.
114

 In genome-wide association 

(GWA) studies, a dense array of genetic markers that capture a substantial proportion of 

common variation in genome sequence, are typed in a set of DNA samples and tested for 

association with the trait of interest without specific prior hypotheses.
157

 In most investigations 

of this type, the ability to validate findings in independent samples is built in to the study.
157

 As 

of 31 January 2012, GWA studies have identified replicated associations between prostate cancer 

and more than 50 specific SNPs (Table 1),
158-164,164-171

 all of which appear to be of low 

penetrance at best. 

It is generally accepted that screening based on single low penetrance alleles is of little 

value,
172-175

 and may in fact be harmful when psychosocial factors are considered. In contrast, it 

has been suggested that combinations of a small to moderate number of common, low penetrance 

variants may account for a high proportion of disease in a population
173,176,177

 and may be useful 

in predicting risk for disease.
178

 For example, for a common disease with a 5 percent lifetime 

risk, for which three hypothetical gene variants at different loci and one environmental exposure 

are modest risk factors (risk ratios 1.5 to 3.0), the positive predictive value of information for 

subjects with a variant allele at two to three loci could be 50 to 100 percent in the presence of a 

modifiable exposure.
173

 Thus, there has been mounting interest in the possibility that panels 

comprising combinations of germline genetic variants (SNPs) might be of value in screening for 

common chronic diseases,
179,180

 including prostate cancer. The aim of this review is to assess the 

evidence as to the possible value of SNP panels in the detection of, and prediction of risk for, 

prostate cancer. 
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Table 1. Replicated associations between prostate cancer and SNPs in GWA studies 

Chromosomal 
Region 

rs Number Intergenic or 
Intronic

61
 

Reported Gene Reference 

2p11.2 10187424 Intergenic GGCX , VAMP8, 
VAMP5, RNF181 

Kote-Jarai, et al., 2011
170

 

2p15 721048 Intronic EHBP1 Gudmundsson, et al., 2008
162

 

2p15 6545977 Intergenic  Eeles, et al., 2009
168

 

2p21 651164 Intronic LOC1002891682 Eeles, et al., 2009
168

 

2p24.1 13385191 Intronic C2orf43 Takata, et al., 2010
166

 

2q31.1 12621278 Intronic ITGA6 Eeles, et al., 2009
168

 

2q37.3 2292884 Intergenic MLPH Schumacher, et al., 2011
169

 

2q37.3 7584330 Intergenic  Kote-Jarai, et al., 2011
170

 

3p11.2 7629490 Intergenic  Schumacher, et al., 2011
169

 

3p12.1 2660753 Intergenic  Eeles, et al., 2008
163

 

3p12.1 17181170 Intergenic  Eeles, et al., 2009
168

 

3p12.1 9284813 Intergenic  Takata, et al., 2010
166

 

3q21.3 10934853 Intronic  Gudmundsson, et al., 2009
165

 

3q23 6763931 Intronic ZBTB38 Kote-Jarai, et al., 2011
170

 

3q26.2 10936632 Intergenic SKIL, CLDN11 Kote-Jarai, et al., 2011
170

 

4q22.3 17021918 and 
12500426 

Intronic PDLIM5 Eeles, et al., 2009
168

 

4q24 7679673 Intergenic TET2 Eeles, et al., 2009
168

 

5p12 2121875 Intronic FGF10 Kote-Jarai, et al., 2011
170

 

5p15.33 12653946 Intergenic  Takata, et al., 2010
166

 

5p15.33 2242652 Intronic TERT Kote-Jarai, et al., 2011
170

 

6p21.1 1983891 Intronic FOXP4 Takata, et al., 2010
166

 

6p21.33 130067 Missense CCHCR1 Kote-Jarai, et al., 2011
170

 

6q22.1 339331 Intergenic GPRC6A, RFX6 Takata, et al., 2010
166

 

6q25.3 651164 Intergenic SLC22A1 Schumacher, et al., 2011
169

 

6q25.3 9364554 Intronic SLC22A3 Eeles, et al., 2008
163

 

7p15.2 10486567 Intronic JAZF1 Thomas, et al., 2008
161

 

7q21.3 6465657 Intronic LMTK2 Eeles, et al., 2008,
163

 2009
168

 

8p21.2 1512268 Intergenic NKX3.1 Eeles, et al., 2009;
168

 Takata, et al., 2010
166

 

8q24.21 1447295 Intergenic  Yeager, et al., 2007;
158

 Gudmundsson, et al., 
2007a;

159
 Gudmundsson, et al., 2009

165
 

8q24.21 6983267 Intergenic  Yeager, et al., 2007;
158

 Thomas, et al., 2008;
161

 
Eeles, et al., 2008

163
 

8q24.21 1690179 Intergenic  Gudmundsson, et al., 2007a;
159

 Gudmundsson, 
et al., 2009

165
 

8q24.21 Hap C Intergenic  Gudmundsson, et al., 2007a
159

 

8q24.21 4242382 Intergenic  Thomas, et al., 2008;
161

 Eeles, et al., 2008;
163

 
Eeles, et al., 2009

168
 

8q24.21  Intergenic  Schumacher, et al., 2011
169

 

8q24.21 1016343 Intergenic  Eeles, et al., 2008;
163

 Schumacher, et al., 
2011

169
 

8q24.21 16902094 Intergenic  Gudmundsson, et al., 2009
165

 

8q24.21 445114 Intergenic  Gudmundsson, et al., 2009;
165

 Schumacher, et 
al., 2011

169
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Table 1. Replicated associations between prostate cancer and SNPs in GWA studies (continued) 

Chromosomal 
Region 

rs Number Intergenic or 
Intronic

61
 

Reported Gene Reference 

8q24.21 1456315 Intergenic  Takata, et al., 2010
166

 

8q24.21 6983267 Intergenic  Schumacher, et al., 2011
169

 

8q24.21 7837688 Intergenic  Takata, et al., 2010
166

 

8q24.21 13252298 Intergenic  Schumacher, et al., 2011
169

 

10q11.23 10993994 Intronic MSMB Thomas, et al., 2008;
161

 Eeles, et al., 2008;
163

 
Schumacher, et al., 2011

169
 

10q26.12 11199874 Intergenic  Nam, et al., 2012
171

 

10q26.13 4962416 Intronic CTBP2 Thomas, et al., 2008
161

 

11p15.5 7127900 Intronic ASCL2 Eeles, et al., 2009
168

 

11q13.3 10896449 Intergenic  Thomas, et al., 2008
161

 

11q13.3 7931342 Intergenic  Eeles, et al., 2008
163

 

11q13.3 7130881 Intergenic  Eeles, et al., 2009;
168

 Schumacher, et al., 
2011

169
 

11q13.3 11228565 Intergenic  Gudmundsson, et al., 2009
165

 

12q13.12 10875943 Intergenic PRPH Kote-Jarai, et al., 2011
170

 

12q13.3 902774 Intergenic KRT8, EIF4B, 
TENC1 

Schumacher, et al., 2011
169

 

13q22.1 9600079 Intergenic  Takata, et al., 2010
166

 

15q21.1 4775302 Intergenic  Nam, et al., 2012
171

 

17q12 4430796 Intronic TCF2 Gudmundsson, et al., 2007b;
160

 Thomas, et al., 
2008;

161
 Gudmundsson, et al., 2009

165
 

17q12 7501939 Intronic HNF1B Eeles, et al., 2008,
163

 2009;
168

 Takata, et al., 
2010;

166
 Schumacher, et al., 2011

169
 

17q21.33 7210100 Intronic ZNF652 Haiman, et al., 2011
167

 

17q24.3 1859962 Intergenic  Gudmundsson, et al., 2007b;
160

 Eeles, et al., 
2008,

163
 2009;

168
 Schumacher, et al., 2011

169
 

19q13.2 8102476 Intergenic  Gudmundsson, et al., 2009
165

 

19q13.33 2735839 Intronic KLK3 Eeles, et al., 2008
163

 

22q13.1 9623117 Intronic TCNC613 Sun, et al., 2009
164

 

22q13.2 742134 Intronic BIK Schumacher, et al., 2011
169

 

22q13.2 4242384 Intronic RPS25P10 Eeles, et al., 2009
168

 

22q13.2 5759167 Intergenic  Eeles, et al., 2009
168

 

Xp11.22 5945572, 
5945619 

Intronic NUDT11 Gudmundsson, et al., 2008;
162

 Eeles, et al., 
2008,

163
 2009

168
 

Xq12 5919432 Intergenic AR Kote-Jarai, et al., 2011
170

 

Scope and Purpose of This Review 
The Centers for Disease Control and Prevention (CDC), through the office of Public Health 

Genomics, and the Evaluation of Genomic Applications in Practice and Prevention (EGAPP) 

project, requested a review of the evidence on the use of SNP-based genotyping panels to assess 

risk of prostate cancer. The overall goal of EGAPP is to facilitate the use of evidence-based 

decisionmaking that will assist health care providers, consumers, policymakers, and payers in 

distinguishing genetic tests that are safe and useful, and guiding their appropriate application in 

clinical practice. Within the ―ACCE framework‖ (see Table 2), the EGAPP working group has 
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developed approaches to evaluating, synthesizing, and grading evidence.
181

 This synthesis will 

be used by EGAPP to develop evidence-based recommendations on the application of SNP-

based panels to prostate cancer. The overarching goal of the use of such panels is to facilitate 

early detection of, and enhance the ability to target men at increased risk for prostate cancer, as 

well as to assist in targeting invasive interventions at those men with diagnosed prostate cancer 

who are most likely to have an unfavorable prognosis.  

An initial set of questions was proposed by the EGAPP to guide the development of the 

evidence report, focusing on all aspects of the use of these panels. The intent of the original 

questions was to encompass all areas of evaluation, including analytic and clinical validity of 

panels and associated algorithms for prostate cancer risk assessment, their clinical utility in 

bringing about change in clinical decisionmaking, and their potential for harm.  
 

Table 2. Elements and key components of evaluation framework for SNP-based panels in prostate 
cancer risk assessment

182
 

Element Definition Components 

Analytic validity An indicator of how well a test or tool 
measures the property or 
characteristic (e.g., genomic 
variations) that it is intended to 
measure 

Analytical sensitivity 
Analytical specificity 
Reliability (e.g., repeatability of test results)  
Assay robustness (e.g., resistance to small 
changes in preanalytic or analytic variables)

183
 

Clinical validity A measurement of the accuracy with 
which a test or tool identifies or 
predicts a clinical condition 

Clinical sensitivity 
Clinical specificity 
Positive predictive value 
Negative predictive value 

Clinical utility Degree to which benefits are provided 
by positive and negative test results  

Availability and impact of effective 
interventions 
Health risks and benefits 
Economic assessment 

Ethical, legal, and 
social implications 

Issues affecting use of SNP-based 
panels that might negatively impact 
individuals, families, and society 

Stigmatization 
Discrimination 
Psychological harms 
Risks to privacy and confidentiality 

Note: Reprinted from Amer Jour Prev Med 24(2), Yoon PW, Scheuner MT, and Khoury MJ., Research Priorities for Evaluating 

Family History in the Prevention of Common Chronic Diseases. Pages 128-35, 2003, with permission from Elsevier. 

Objectives of This Review 
The primary objectives of the review were to identify, synthesize, and appraise the literature 

on the use of SNP-based panels in men who may be at risk of prostate cancer, encompassing all 

relevant areas of test evaluation as proposed by the ACCE framework. Anticipating a limited 

evidence base for some of the key questions, an objective of this review was also to characterize 

the knowledge gaps and provide targeted recommendations for future research. 

Key Questions of This Review 
The original key questions articulated in the Task Order were revised and rearticulated for 

the purposes of clarity. Thus, the three Key Questions (KQs) encompassing broad aspects of the 

analytic validity, clinical validity, and clinical utility of SNP-based panels were developed with 

the input of a Technical Expert Panel (TEP) whose membership was nominated by the Evidence-

based Practice Center and approved by the Agency for Healthcare Research and Quality 

(AHRQ). 
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Note: for the purposes of the review, the term ‗SNP-based panels‘ is used to indicate any risk 

assessment system designed to assess risk of prostate cancer, which incorporates one or more 

defined SNPs alone or in combination with other indicators. 

KQ1. What is the analytic validity of currently available SNP-based panels 
designed for prostate cancer risk assessment? 

1. What is the accuracy of assay results for individual SNPs in current panels? 

2. What is the analytic validity of current panels whose purpose is, or includes, predicting 

risk of prostate cancer? 

3. What are the sources of variation in accuracy or analytical validity across different 

panels? 

KQ2. What is the clinical validity of currently available SNP-based panels 
designed for prostate cancer risk assessment? 

1. How well do available SNP-based genotyping platforms predict the risk of prostate 

cancer in terms of  

a. stratifying future risk and/or screening for current disease? 

b. distinguishing between clinically important and latent/asymptomatic prostate 

cancer? 

c. How well do available SNP-based genotyping panels predict prognosis in 

individuals with a clinical diagnosis of prostate cancer? 

2. What other factors (e.g., race/ethnicity, gene-gene interaction, gene-environment 

interaction) affect the predictive value of available panels and/or the interpretation of 

their results? 

KQ3. What is the clinical utility of currently available SNP-based panels for 
prostate cancer risk assessment, in terms of the process of care, health 
outcomes, harms, and economic considerations? 

Process of care 

1. Does the use of panels alter processes of care and behavior, in terms of 

a. screening or management decisions, and the appropriateness of these decisions, 

by patients and/or providers 

b. alteration in health-related behaviors of patients (e.g., adherence to recommended 

screening interventions and/or other lifestyle changes)? 

Health outcomes  

2. Does the use of panels lead to changes in health outcomes, in terms of  

a. all-cause mortality 

b. cancer-specific mortality 

c. morbidity, and do any such changes vary by race or ethnicity? 

Harms  

3. Does the use of panels lead to harms in terms of  

a. psychological harms 
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b. other negative individual impacts (e.g., discrimination), and do any such harms 

vary by race or ethnicity? 

Economics  

4. What is known about the costs, cost-effectiveness, and/or cost-utility of using SNP-based 

panels for prostate cancer risk assessment, compared to current practice?
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Methods 

Topic Development 
The McMaster University Evidence-based Practice Center (MU-EPC) engaged with 

representatives of Evaluation of Genomic Applications in Practice and Prevention (EGAPP) to 

seek clarification on the intended uses for the evidence report and for future recommendations. 

Subsequently, a Technical Expert Panel (TEP) was assembled, whose membership was 

nominated by the Evidence-based Practice Center and approved by the Agency for Healthcare 

Research and Quality (AHRQ). The TEP advised MU-EPC on aspects of the Key Questions 

(KQs), which were then revised to reflect the intent of the report from the perspective of AHRQ 

and EGAPP. 

Analytic Framework  
Figure 1 depicts the KQs within the context of the study selection criteria described in the 

following section. In general, the figure illustrates how the use of single nucleotide 

polymorphisms (SNP) test panels may result in different types of intermediate and final 

outcomes, including adverse events. 
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Figure 1. Use of multigene panels involving SNPs for prostate cancer risk assessment  
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Search Strategy 

Studies were limited to those published in English, from the beginning of each database to 

October 2011. The following databases were searched: MEDLINE
®
, Cochrane CENTRAL, 

Cochrane Database of Systematic Reviews, and EMBASE. Strategies used combinations of 

controlled vocabulary (medical subject headings, keywords) and text words (see Appendix A). 

Review was limited to commercially available SNP panels. The commercial availability of a 

test panel was defined as a clinical test offered (or soon to be offered) by a certified laboratory, 

or licensed or certified kit reagent test panels sold for use by clinical service laboratories within 

continental North America. To identify potential test panels for review, the following sources of 

information were used: PubMed, the Genetests Web site (now 

www.ncbi.nlm.nih.gov/sites/GeneTests/), grey literature, and letters to companies. Grey 

literature was identified through searching the Web sites of relevant specialty societies and 

organizations, Health Technology Assessment agencies (Hayes Inc. Health Technology 

Assessment), guideline collections, regulatory information (i.e., United States Federal Drug 

Agency, Health Canada, Authorized Medicines for European Community), clinical trial 

registries (i.e., clinical.trials.gov, Current Controlled Clinical Trials, Clinical Study Results, 

World Health Organization (WHO) Clinical Trials), grants and federally funded research (i.e., 

National Institute of Health (NIH), HSRPROJ), abstracts and conference proceedings (i.e., 

Conference Papers Index, Scopus), and the New York Academy of Medicine‘s Grey Literature 

Index. On behalf of the authors, the Scientific Resource Center directly contacted 40 companies 

known to provide either test services or diagnostic reagents potentially relevant to the key 

questions, in an effort to elicit unpublished sources of information.  

Review of reference lists of included studies was undertaken. Any potentially relevant 

citations were cross-checked with our citation database. Any references not found were retrieved 

and screened at full text. Study authors were contacted to request details of relevant unpublished 

data.  

Study Selection 
Studies without a quantitative component were excluded (e.g., editorials, commentaries, 

notes, and qualitative studies). No restrictions were placed on study setting, minimum sample 

size, or duration of followup.  

Intervention 
For all KQs, the eligible intervention was a commercially available (or soon to be available) 

test panel with at least two SNPs, at least one of which must have been validated in a genome-

wide association (GWA) study. The criterion of having been validated in a GWA study was 

imposed because many associations with candidate genes have not been found to be 

replicated.
154,155

 We operationalized this criterion by checking the list of included SNPs against 

the list presented in Table 1, which was developed by reviewing the original articles indexed in 

the National Human Genome Research Institute GWA catalogue.
184

 Validation required 

observation of association in one or more independent data sets with a significance level of 

p<10-5. Studies of single gene tests, and/or panels which were not commercially available, were 

excluded. A test panel was defined by the list of SNPs (or other genetic sequence analytes) 

included in the assay. The included SNPs could be either informative (i.e., provide test results 
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utilized in the interpretation of the result), or be controls used to assist in determining the 

accuracy and conclusiveness of the test result.  

Table 3 summarizes the eligibility criteria by KQ. 

 
Table 3. Eligibility criteria 

 Eligibility Population/ 
Participants 

Study Designs Comparators Outcome 

KQ1:  
Analytic 
validity 

Inclusion Biological 
samples 
derived from 
human 
populations 
 

Split sample comparative 
studies 
 
External proficiency 
assessment 
 
Genotyping applied to 
standard reference 
materials 

With reference 
method (validity) 
 
Between same 
method applied 
more than once 
(repeatability) 

Analytical sensitivity 
Analytical specificity 
Reliability (e.g., 
repeatability of test 
results)  
Assay robustness (e.g., 
resistance to small 
changes in preanalytic or 
analytic variables) 

Exclusion  Gene discovery studies N/A  

KQ2: 
Clinical 
validity 

Inclusion Males only 
 

Clinical test evaluations 
Controlled/uncontrolled 
trials 
Cohort studies 
Case-control studies 

N/A Prostate cancer Dx, 
stage/type, 
aggressiveness, mortality 
Overall mortality 
Survival 
Clinically actionable 
measures of disease 
recurrence 

Exclusion  Case reports 
Gene discovery studies 
(e.g., GWA studies

1
) 

N/A  

KQ3: 
Clinical 
utility 
 
Process 

Inclusion  Randomized/ 
nonrandomized 
controlled trials 
Uncontrolled trials 
Interrupted time series 
analyses 
Cohort studies  
Case-control studies 
Clinical test evaluations 

None 
Current risk 
assessment, 
screening, 
prognostic practices 
or tests (PSA, digital 
rectal examination, 
etc.) individually or in 
combination 

Physician 
recommendations (e.g., 
PSA testing, digital rectal 
examination, biopsy, 
therapeutic intervention) 
Adherence with physician 
recommendations 
Health related behavior 

Exclusion  Case reports N/A  

KQ3: 
Clinical 
utility 

 
Health 
outcomes 

Inclusion  Randomized/non-
randomized controlled 
trials 
Uncontrolled trials 
Interrupted time series 
analyses 
Cohort studies  
Case-control studies 
Clinical test evaluations  

None 
Current risk 
assessment, 
screening, 
prognostic 
practices or tests 
(PSA, digital rectal 
examination, etc.) 
individually or in 
combination 

Prostate cancer 
incidence 
Prostate cancer 
mortality 
All cause mortality 
Morbidity 

Exclusion  Case reports N/A  
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Table 3. Eligibility criteria (continued) 

 Eligibility Population/ 
Participants 

Study Designs Comparators Outcome 

KQ3: 
Clinical 
utility 

 
Harms 

Inclusion  Randomized/non-
randomized controlled 
trials 
Uncontrolled trials 
Interrupted time series 
analyses 
Cohort studies  
Case-control studies 
Clinical test evaluations 

None 
Current risk 
assessment, 
screening, 
prognostic practices 
or tests (PSA, digital 
rectal examination, 
etc.) individually or in 
combination 

Prostate cancer 
incidence 
Prostate cancer mortality 
All cause mortality 
Morbidity 
Psychological impact  
Insurance coverage 
Access to care 

Exclusion  Case reports 
Simulation studies 

N/A  

KQ3: 
Clinical 
utility 
 
Economics 

Inclusion  Cost analyses 
Cost effectiveness 
analyses 
Cost utility analyses 
Cost benefit analyses 

None 
Current risk 
assessment, 
screening, 
prognostic practices 
or tests (PSA, digital 
rectal examination, 
etc.) individually or in 
combination 
(dependent on 
design) 

Prostate cancer 
incidence 
Prostate cancer mortality 
All cause mortality 
Morbidity 
Utility  
Service use 

Exclusion  Studies without an 
economic component 

N/A  

Abbreviations: Dx = diagnosis; GWA = Genome wide association study; N/A = not applicable; PSA = prostate-specific antigen 

Data Abstraction 
Relevant fields of information were abstracted from individual studies by trained data 

abstractors using standardized forms and a reference guide. Prior to performing the data 

abstraction, a calibration exercise was conducted using a random sample of two included studies. 

Key study elements were reviewed by a second person (study investigator) with respect to 

outcomes, seminal population characteristics, and characteristics of the intervention. 

Disagreements were resolved by consensus.  

Data were abstracted on study characteristics, SNP panels, metrics specific to each KQ, and 

other relevant data. Abstracted data included study characteristics (author and publication year, 

study objective, study design, setting, location, dates of data collection, and source of study 

funding) as well as details of the study participants (eligibility, sources and methods of selection, 

and number assessed for eligibility). Information was also abstracted about SNPs (number 

genotyped, type of laboratory, genotyping method and if done blind to participant status, call 

rate, concordance rate for duplicate samples, other quality control checks, Hardy Weinberg 

equilibrium information, rs (reference SNP) number and chromosomal region by model, method 

for handling SNPs in analysis, and other variables included in SNP panel). Analysis data was 

abstracted that included: method of constructing SNP panel, method for validating SNP panel, 

missing data, measures used to evaluate SNP panel (e.g., odds ratios (ORs) by risk score, area 

under the receiver operator characteristics curve (AUC), ΔAUC, maximum test accuracy, and 

cross-validation consistency). Data for results was abstracted as follows: number of participants 

included in analysis, mean age and standard deviation by group, ethnicity, first-degree family 

history of prostate cancer, prostate-specific antigen (PSA), Gleason score, pathologic stage 

(Tumor, Nodes, Metastases [TNM]), aggressive disease (definition and proportion of cases with 
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aggressive disease), risk score, AUC, ΔAUC, other measure, subgroup analysis, results of 

validation if relevant (see Appendix B).  

Assessment of Analytical Validity of Individual Studies 
Information indicative of the rigor of assessment of analytical validity in individual studies 

was also abstracted and considered. Examples of sources of technical variation included:  

1. Pre-analytic phase: sample collection and handling, storage of sample, transport time, 

patient characteristics (age, race, ancestry, family health, etc.), patient preparation, other 

patient related attributes; 

2. Analytic phase: type of assay platform used and its reliability, specific analytes evaluated 

in the panel (specification of alleles, genes, or biochemical analytes), genotyping methods 

used, inclusion of relevant alleles), the type of software used to analyze and call SNPs 

(determination of positive or negative conclusion) of the test, and post-hoc review to 

ensure the result is correct (looking and reviewing the batch) was considered; and,  

3. Post-analytic phase: type of quality controls utilized, difficulty of interpretation, method 

of test interpretation and application, reporting protocols, post-test interpretation, contents 

of the report, and counseling information provided to the patient. 

Assessment of Methodological Quality of Individual Studies 
The methodological quality was interpreted to include primarily elements of risk of bias 

(systematic error) related to the design and conduct of the study.  

Assessment of Studies Relating to Analytic Validity 

As there were no studies that solely provided data on analytical validity, quality assessment 

was not performed. 

Assessment of Studies Relating to Clinical Validity 

We selected the Newcastle-Ottawa Scale (NOS)
185

 to assess risk of bias for observational 

studies (case-control and cohort). The study design elements evaluated with this tool include: 

selection of the study population, appropriate means for measuring exposures (case-control 

studies) and outcomes (cohort studies), and comparability of groups (controlling for 

confounding). We also selected some items from the QUADAS
186

 to evaluate the risk prediction 

aspect of the included studies. 

Applicability 

Applicability was assessed by considering the key attributes of the population, intervention, 

comparator, and outcome in the context of a wider spectrum of patients in primary care settings 

that would likely benefit from these interventions in ―real-world‖ conditions.  

Rating the Body of Evidence 
The overall strength of the body of the evidence was assessed using the AHRQ Strength of 

Evidence (SOE) approach.
187

 There are several factors that influenced the overall strength of the 

evidence: 

1. Study limitations (predominately risk of bias criteria); 

2. Type of study design (experimental versus observational); 
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3. Consistency of results (degree to which study results for an outcome are similar; i.e. 

variability is easily explained, range of results is narrow); 

4. Directness of the evidence (assesses whether interventions can be linked directly to the 

health outcomes); and, 

5. Precision (degree of certainty surrounding an effect estimate for a specific outcome). 

Publication Bias 
Although the search strategy was comprehensive there is always the potential for publication 

bias. To help address publication bias, the Scientific Resource Centre (SRC) was asked to 

contact companies in an attempt to locate unpublished trials. No information was received from 

any of the companies. 

Data Synthesis 
A qualitative descriptive approach was used to summarize study characteristics and 

outcomes. Multiple publications for the same study were grouped together and treated as a single 

study, with the most current data reported for the presentation of summary results. Standardized 

summary tables explaining important study and target population characteristics, as well as study 

results, were created. Quantitative synthesis and subgroup analyses were not performed because 

of lack of comparability of the studies. 

For KQ1, the analysis focused on assembling evidence that the SNP panels measured what 

they were intended to measure (i.e., their performance as assays). The metrics of primary interest 

were sensitivity, specificity, positive and negative predictive values, diagnostic OR, and the type 

of risk prediction (quantitative or qualitative) provided by the test, with the gold standard 

represented by some other form of genotyping. Because of the anticipated scarcity of relevant 

studies, we also scrutinized the reports for findings related to laboratory quality assurance (e.g., 

reliability (repeated sample testing), within and between laboratory precision, the time interval 

for testing, the proportion of specimens providing a conclusive result, failure rates for usable 

results, proportion of inconclusive results resolved, and more general evidence of external or 

internal quality control programs). 

For KQ2, the focus of the analysis was on how well the SNP panels appeared to perform in 

classifying individuals in terms of the outcomes of interest (prostate cancer occurrence, 

detection, mortality, or stage/aggressiveness of cancer). The primary metrics were clinical 

sensitivity, specificity, positive and negative predictive value, positive and negative likelihood 

ratios, and AUC, and/or c-statistic.  

For KQ3, the analysis assembled and evaluated the findings relating to the processes of care, 

health outcomes, harms, and economic aspects of using the SNP-based panels in practice. The 

range of relevant metrics was dependent on primary study design and the outcomes reported. For 

the economic analyses, direct and indirect cost estimates of the use of SNP-based panels were 

reviewed, and all cost-effectiveness and cost utility metrics were included. 

Peer Review Process 
Experts in the field were asked to act as peer reviewers for the draft report. They represented 

stakeholder groups including physicians, researchers and other professional representatives with 

knowledge of the topic. Additional peer reviewers included the Task Order Officer (TOO), 

associate editors, and members of the AHRQ internal editorial staff. The peer reviewer 
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comments on the draft report were considered by the EPC in preparation of the final report. The 

responses to the peer reviewers were documented and will be published three months after the 

publication of the final evidence report.  
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Results 
The literature search yielded 1,998 unique citations. In total, 1,303 (65 percent) were 

excluded from further review following the initial level of title and abstract screening. Because 

of the complexity of the content area, and challenges in defining the ‗clinical relevance‘ of the 

reported evaluations, full text screening was conducted in three phases. The first phase was 

conducted by EPC staff and focused on the most straightforward assessment of the overall study 

against eligibility criteria; the second phase was conducted by investigators and focused on 

establishing the eligibility of the specific SNPs within the panel reported; the third phase was 

also conducted by the investigators and focused on deciding whether the SNP panel could be 

considered ‗available‘ and whether the evaluation context could be considered, at least to some 

extent, clinically relevant. Therefore, out of the 695 citations promoted to full text screening, 457 

were excluded at the first phase, 127 were excluded at the second phase, and 97 at the third 

phase. This left 14 articles 
188-201

 retained for the review, which proceeded to data abstraction and 

quality assessment. All 14 focused on the assessment of clinical validity (KQ2). Figure 2 depicts 

the flow of studies through the screening process, and reasons for study exclusion. The 

remainder of this chapter describes the evidence for the key questions (KQs) and a quality 

assessment of the studies. 

One challenge that became evident during the assembly of source material for review was a 

lack of published data describing the technical protocols and analytical accuracies achieved for 

specific SNPs, and in particular, their analytical validation. There was also a paucity of 

information describing the laboratory protocols used to demonstrate the analytical validation of 

SNP panels used for clinical service testing. The reviewers sought but did not receive additional 

unpublished details about the analytical and clinical validation of proprietary commercial panels 

from the providers of these services. Therefore, from the articles eligible for KQ2 (clinical 

validity), we abstracted any information that was relevant to KQ1 (analytic validity).  
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Figure 2. Flow diagram depicting the flow of studies through the screening process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristics of the Studies 
All but two of the studies were of case-control design with the number of cases ranging from 

203 to 2,899 and the number of controls from 560 to 1,781 (Tables 8 through 10). One study was 

a cross-sectional study of 5,241 men who had undergone prostate biopsy,
200

 and one was an 

investigation of survival in 2,875 men diagnosed with prostate cancer.
201

 The studies were 

carried out in Canada,
195

 Sweden,
188,192,198,200,201

 the United States,
189,191,194,196,197,199

 (clarified in 

an email from W. Catalona, M.D. (WCatalona@nmff.org) in February 2012) and in both Sweden 

and the United States.
190,193

  

There was complete overlap in the participants included from five of the six studies that 

included Sweden: a risk model was initially developed for a panel of 5 SNPs,
188

 extended to 11 

SNPs
192

 in data from the same participants, then 14 SNPs,
193

 and then 28 SNPs;
198

 the study of 

prostate cancer survival used a 16-SNP panel.
201

 For the initial 5-SNP model, validation was 

Excluded ...................................................... n=97 

 
All studies excluded because they did not use a 
SNP assembled panel to assess clinical 

validity (risk prediction) 

Excluded .................................................... n=457 

Not about prostate cancer ......................... n=99 
No test panel of human SNP ..................... n=28 
Test not commercially available .............. n=281 
Study design ............................................. n=49 

Full Text screen 1 
n=695 

Full Text screen 2 
n=238 

Excluded .................................................... n=127 

GWA study ................................................ n=18 
SNP assessment in single gene ................ n=49 
Candidate gene study ............................... n=60 

Full Text screen 3 
n=111 

Excluded n=1,303 

Included Studies 
n=14 

Title and Abstract screen 
n=1,998 

mailto:WCatalona@nmff.org
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undertaken in King County (Washington, United States),
189

 and a combined estimate of the 

cumulative effect of the five risk variants was made, which incorporated these data and the 

Swedish data.
190

 For the 14-SNP model, data from the United States were used for 

confirmation;
193

 the U.S. data in this study was based on the same participants (in the Prostate, 

Lung, Colorectal and Ovarian (PLCO) Cancer Trial)
90

 as in one of the U.S. studies used to 

validate the 5-SNP model.
190

 There was also overlap between the studies in the United States, 

first of participants recruited at the Johns Hopkins Hospital, Baltimore 1999-2006,
190,194

 second 

in participants recruited in King County, Washington 1993-2002 to 2002-2005,
189,197

 and third in 

participants recruited in Chicago 2002-2008
191

 and 1997-2009.
199

 

Nine of the studies were concerned solely with the development of models for the prediction 

of risk for prostate cancer,
188,192,194,196-201

 two solely with model validation,
189,190

 and three with 

both development of new models and validation of previously-developed models.
191,193,195

 All 

five of the studies that carried out model validation used data independent of those in which the 

models had been developed. However, in two of the studies, the teams of investigators validating 

the models included some who were also involved in the model development.
190,193

 

Most of the studies related to participants of European origin. In all but one
200

 of the studies 

of Swedish participants,
188,190,192,193,198,201

 the ethnicity was not explicitly specified. All but one of 

the studies of United States‘ participants were limited to men of European origin.
189-

191,193,194,197,199
 The exception to this presented a stratified analysis for non-Hispanic European 

(54 percent of controls), Hispanic (33 percent), and African-American origin (13 percent).
196

 The 

study including Canadian subjects also related to ethnically diverse participants: European origin 

(81 percent of controls), Asian (8 percent), black (7 percent), and other (4 percent); some 

analyses were adjusted for ethnicity and some were restricted to participants of European 

origin.
195

 

In one study, estimates were presented separately for cases from families in which two 

additional first-degree relatives had been diagnosed with prostate cancer and for cases that were 

recruited irrespective of family history.
194

  

Eight studies presented information on the proportion of cases and controls with a family 

history of prostate cancer. In five, this was specified as relating to first-degree relatives – in three 

different analyses of the same Swedish participants, the proportion of cases with a family history 

was 19 percent and controls 9.4 percent,
188,192,198

 in a study in King County, WA, the proportions 

were 21.6 percent and 11.1 percent, respectively,
189

 and in the study in which cases were 

recruited in Chicago, IL, and St. Louis, MO, the proportions were 36.4 percent and 14.9 

percent.
199

 In one study, family history referred to first- and second-degree relatives, and the 

proportion of cases for which such a history was reported was 11.6 percent and of controls 6.1 

percent.
193

 In the other two studies, the degree of relationships included in ―family history‖ were 

not defined: in the Canadian study, the proportion for cases was 16.4 percent and for controls 

was 12.1 percent,
195

 while in the Stockholm study, the proportions were 29.0 percent and 21.9 

percent respectively.
200

 

Ten articles were based on newly incident cases, one that related to the Canadian study (cases 

detected following referral for prostate-specific antigen (PSA) ≥4.0ng/mL or abnormal digital 

rectal examination without previous history of prostate cancer),
195

 six to data on the same 

participants from Sweden,
188,190,192,193,198,201

 one to the Stockholm study,
200

 and two to partially 

overlapping studies from the United States.
189,197

  

Two publications (one of which also reported on participants from Sweden) reported 

analyses on prevalent cases from overlapping studies in the United States.
190,194

 One study in the 
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United States was based on a mixture of newly incident and prevalent cases.
196

 In another two, it 

was unclear whether the cases were newly incident or prevalent – it was stated only that the 

cases were recruited after radical prostatectomy.
191,199

  

The mean age of cases ranged from 56.8 years
193

 to 70.5 years.
197

 There was no obvious 

pattern according to inclusion of newly incident or prevalent cases.  

As might be expected given trends in PSA testing, there appeared to be a pattern that the 

average PSA level at diagnosis of cases was lower for more recent study periods. The proportion 

of cases with a PSA level of ≤4ng/ml varied between under 8 percent in Canada 1999-2007
195

 

and Sweden 2001-2003,
188,192,198

 to 13.6 percent in Washington State (United States) 1993-1996 

and 2002-2005,
202

 and 22 percent in Chicago 2002-2008.
191

  

Where reported (n=9), the proportion of cases with a Gleason score of ≤6 at diagnosis ranged 

from 51 percent (Physicians‘ Health Study) 1982-2008
197

 to 81 percent (Chicago and St. Louis 

1997-2009).
199

 Only one study
190

 explicitly referred to having used the revised scoring as 

described by Epstein, et al.,
62

 for the Johns Hopkins Hospital component of the study. The stage 

at diagnosis was reported for the Swedish cases,
188,192,198,200,201

 in the study comprising three sets 

of cases and controls in the United States,
197

 and the Chicago study;
191

 over two-thirds of the 

cases were stage T2 or less at diagnosis. All of the cases in the Chicago-St. Louis study were 

stage T1c at diagnosis.
199

  

In some of the studies, cases and controls clearly derived from the same study base. Thus, in 

the Canadian study, controls were selected from the same group of men referred to the prostate 

cancer centers of the University of Toronto who had either a PSA value ≥4.0ng/ml or an 

abnormal digital rectal examination (DRE), and who had no biopsy evidence of prostate 

cancer.
195

 In five of the studies including Swedish cases, the controls were population-based and 

selected from the Swedish population registry.
188,190,192,193,198

 In the Stockholm study, participants 

had undergone at least one prostate biopsy.
200

 The cases from the PLCO Trial were compared 

with controls participating in the trial.
193,203

 Cases arising in the Physicians‘ Health Study
197

 and 

cases from the San Antonio cohort
196

 were compared with controls selected from the same 

cohorts. Cases with prostate cancer in King County, Washington were compared with men 

without a self-reported history of prostate cancer who were resident in the county and identified 

by random digit dialing (participation rate 44.5 to 51.6 percent).
189,197

 Cases from the Johns 

Hopkins Hospital series, all of whom had undergone radical prostatectomy, were compared with 

men undergoing surgery for prostate cancer at the Johns Hopkins Hospital and in the greater 

Baltimore metropolitan area who had normal DRE, PSA <4.0ng/ml, and were aged >55 

years.
190,194

 Cases for the Northwestern Memorial Hospital series, all of whom had undergone 

radical prostatectomy, were compared with 777 healthy male volunteer controls; from these, 247 

may have been selected for the Icelandic genealogical database or from other genome-wide 

association (GWA) studies at deCODE, while the remaining participants were from a prostate 

cancer screening program done in April 2007 (it is not stated where this occurred).
191,204

 In the 

Chicago-St. Louis study,
199

 203 stage T1c cases (who had undergone radical prostatectomy, had 

a PSA <4.0ng/ml and a nonsuspicious DRE) were compared with 611 controls who had a PSA 

<4.0ng/ml, normal DRE, and no prior history of prostate biopsy that are stated to have been 

selected from a GWA study that included participants from the University of Chicago and 

Northwestern,
205

 per an email from W. Catalona. M.D.(WCatalona@nmff.org) on February 2, 

2012. 
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Source of Funding and Conflict of Interest 
All of the studies were publicly funded. In addition, two studies received support from 

deCODE Genetics.
191,199

 All but five studies
189,190,194,198,199

 included conflict of interest 

statements. Of the nine studies in which there was such a statement, two referred to the filing of a 

patent application
188,192

 and two indicated specific nonpublic funding received by one of the 

authors.
191,197

  

Overview of the SNP-Based Genotype Panels 
There were 15 panels identified from the included studies (Tables 11 and 12). The number of 

SNPs included in the panels ranged from two to 35. Almost all of the individual SNPs had been 

discovered and replicated as being associated with prostate cancer in GWA studies.  

Apart from overlap for the five SNPs included in the Focus 5 test panel, there were 

considerable differences between the panels assessed (Table 12).  

The first test panel included five SNPs as described in the article of Zheng, et al.,
188

 and is 

the basis of the Focus 5 predictive test for prostate cancer. A patent application has been filed by 

Xu, et al.,
206

 ―Methods and compositions for correlating genetic markers with prostate cancer 

risk.‖ The test has been marketed by Proactive Genomics.
207

 Four other articles assessed this test 

in independent data.
189-191,195

 

The second test, again initially proposed by Zheng, et al.,
188

 included family history with the 

five SNPs included in the first test, and two of the articles that assessed the first test panel also 

assessed this test.
189,190

 In two of these studies, family history was defined to include first degree 

relatives.
188,189

 

The other 13 tests were reported in 11 articles
191-201

 (Table 11). Four of these included family 

history, two in first-degree relatives,
192,198

 one in first- and second-degree relatives,
193

 and one in 

relatives of unspecified degree.
200

 

deCODE markets the deCODE ProstateCancer test, which tests for 27 genetic variants 

associated with prostate cancer in men of European descent (including the five SNPs included in 

the Focus 5 test), a subset of 9 variants for African-American men, and a subset of 12 variants 

for men of East Asian descent (Table 13); the specific variants in the subsets are not specified in 

the Web site (www.decodhealth.com/prostate-cancer).
208

 If the deCODE ProstateCancer is 

sought separately, it has to be obtained through a licensed health professional. The test can also 

be ordered as part of the deCODEme Complete Scan, which analyzes genetic risk factors for 47 

traits and conditions ($1,100 USD as of 19 June 2011) or the deCODEme Cancer Scan, which 

analyzes genetic risk factors for seven types of cancer ($500 USD).
209

 A patent application was 

filed by Gudmundsson, et al., in May, 2010.
210

  

KQ1. What is the analytic validity of available SNP-based panels designed 
for prostate cancer risk assessment? 

1. What is the accuracy of assay results for individual SNPs in current test panels? 

No data addressing this question were identified in the literature search. Companies known to 

offer testing for the risk for prostate cancer based on SNP panels were approached in May 2011, 

as were companies known to offer genetic testing more generally. As of September 1, 2011, no 

response had been received. From the articles that were identified as providing information 
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relevant to the assessment of the clinical validity of SNP panels (KQ2), no data were presented 

on the analytic validity of individual SNPs from which the panels were composed. 

2. What is the analytic validity of current test platforms whose purpose is, or includes, 

predicting risk of prostate cancer? 

5-SNP panel. The 5-SNP panel that is the basis of the Focus 5 test, and the test that incorporates 

family history of prostate cancer, was genotyped using the Mass ARRAY QGE iPLEX system 

(Sequenom) in the report in which these models were developed.
188

 The same method was 

applied in samples from the Johns Hopkins Hospital
190

 and Canada.
195

 Some of the analytic 

validity information relevant to the initial study in Swedish samples
188

 are reported in other 

articles which relate to the same platform, including the initial five SNPs as well as additional 

SNPs.
192,193,201

 A call rate of 98.3 percent was reported,
192,193,201

 with a concordance rate for 

duplicate SNPs of >99 percent, and the genotypes for each SNP conformed to Hardy-Weinberg 

equilibrium (HWE) in controls.
188,192,193

 (For the purpose of this report, call rate was defined as 

the proportion of samples for which genotypes are called for a converted marker). It was not 

reported whether genotyping was done blind to case-control status.  

The 5-SNP panel was genotyped with one modification (substitution of rs6983561 for 

rs16901979; it was stated that there was perfect correlation between these two SNPs in HapMap 

CEPH individuals), in a study using the Applied Biosytems (ABI) SNPlex Genotyping 

System.
189

 There was perfect agreement for the five SNPs between 140 blind duplicate samples 

distributed across all genotyping batches. Genotyping was done blind to case-control status. All 

genotype frequencies observed in controls were consistent with HWE.  

One of the sets of samples used to assess the 5-SNP panel was the PLCO trial.
190

 Four of the 

SNPs had already been genotyped as part of a GWA.
159

 The genotyping had been undertaken by 

means of Sentrix HumanHap300 and Sentrix HumanHap240 platforms (Illumina).
158,161

 The fifth 

SNP (rs16901979 in 8q24) was imputed from the adjacent genotyped SNPs at 8q24.
190

 

9-SNP panel. In the study of Helfand, et al.,
191

 it is stated that genotyping was done by deCODE 

and reference is given to previous papers describing genotyping methods, quality control, and 

genotyping accuracy (5 companion papers).
159,160,162,165,205

 The methods include the Illumina 

Infinium Human Hap300 SNP chip, for which it is stated that samples with a call rate of <98 

percent were excluded from analysis.
159,160,162,165

 In addition, the Centaurus (Nanogen) platform 

was used
159,160,162,165,205

 and the concordance rate of SNPs genotyped by both the Illumina and 

Centaurus methods was stated to be >99.5 percent.
159,160

 It is also stated that all genetic variants 

were in HWE.
191

 

17-SNP panel. In the Chicago-St. Louis study,
199

 as for the 9-SNP panel, it is stated that 

genotyping was also done by deCODE and reference is given to the same companion papers 

describing genotyping methods, quality control, and genotyping accuracy.
159,160,162,165,205

 It is also 

stated that all 17 genetic variants were in HWE in controls.
199

 

11-SNP panel. This panel was genotyped using the Mass ARRAY QGE iPLEX system 

(Sequenom).
192

 A call rate of 98.3 percent was also reported, with an average concordance rate 

for duplicate SNPs of 99.8 percent, and the genotypes for each SNP conformed to HWE in 

controls.
192

 It was not reported whether genotyping was done blind to case-control status.  
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14-SNP panel. In the Swedish samples in this study, this panel was genotyped using the Mass 

ARRAY QGE iPLEX system (Sequenom).
193

 A call rate of 98.3 percent and a concordance rate 

between duplicate samples included in each-96-well plate of 99.8 percent was reported. For the 

samples from the PLCO Trial included in this study, it is stated that 13 SNPs had been genotyped 

already as part of a companion paper,
161

 and one (rs16901979 in 8q24) was imputed. In the 

PLCO samples, genotyping was undertaken by means of Sentrix® HumanHap300 and Sentrix 

HumanHap240 platforms (Illumina).
158,161

 It is stated that tests for HWE in control participants 

in each of the two sets of samples were made, but results are not presented. It was not reported 

whether genotyping was done blind to case-control status.  

16-SNP panel. This panel was genotyped using the Mass ARRAY QGE iPLEX system 

(Sequenom).
201

 A call rate of 98.3 percent was reported, with an average concordance rate for 

duplicate SNPs of 99.8 percent. As the study examined survival in prostate cancer cases, 

conformity of the genotypes to HWE was only assessed in the cases; each SNP was stated to be 

in equilibrium.
201

 

28-SNP panel. No specific information was presented in the article where this panel was 

reported.
198

 

Three SNPs in 8q24. The three SNPs included in this test were part of 12 SNPs at 8q24 that 

were genotyped using the Mass ARRAY QGE iPLEX system (Sequenom), with a call rate of 

>98 percent and an average concordance rate between duplicate samples included in each-96-

well plate of >99 percent.
194

 Genotype proportions were consistent with HWE in controls. 

4-SNP test: KLK2, HPC1, TNF, ETV1 and 8q24, 17q24, TNF, ETV1. The Sequenom iPLEX 

technology was applied in the genotyping of the Canadian study used to develop these tests. The 

call rate was >90 percent for 25 SNPs; six of these were not in HWE and were excluded from 

further analysis.
195

 The call rate of SNPs significantly associated with prostate cancer was >95 

percent.  

Test for three SNPs in steroid hormone pathway genes. The three-SNP test in non-Hispanic 

whites was developed on the basis of the genotyping of 120 SNPs in the steroid hormone 

pathway by different methods.
196

 One hundred and four of the SNPs were genotyped using the 

GoldenGate assay (Illumina), four by TaqMan, and the remainder by methods described in four 

publications.
109,211-213

 It is stated that >80 percent of SNPs were successfully genotyped in >90 

percent of the samples. Three SNPs failed (rs632148 within SRD5A2; rs280663 in HSD97B3; 

rs10877012 in CYP27B1) and one was not polymorphic (rs9332900 in SRD5A2). Three of the 

remaining SNPs were not in HWE in non-Hispanic whites and were excluded from the analysis 

of this ethnic group.  
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Test for two SNPs in steroid hormone pathway genes. The two-SNP test in Hispanic whites 

was developed on the basis of the genotyping of 120 SNPs in the steroid hormone pathway by 

different methods.
196

 One hundred and four of the SNPs were genotyped using the GoldenGate 

assay (Illumina), four by TaqMan, and the remainder by methods described in four 

publications.
109,211-213

 It is stated that >80 percent of SNPs were successfully genotyped in >90 

percent of the samples. Three SNPs failed (rs632148 within SRD5A2; rs280663 in HSD97B3; 

rs10877012 in CYP27B1) and one was not polymorphic (rs9332900 in SRD5A2). Two of the 

remaining SNPs were not in HWE in Hispanic whites and were excluded from the analysis of 

this ethnic group.  

6-SNP panel. This panel was developed to predict risk for prostate cancer in two sets of samples, 

and to predict risk for prostate cancer mortality in three, on the basis of genotyping six 8q24 and 

two 17q variants.
197

 The Sequenom iPLEX technology was used to genotype samples from the 

Physicians‘ Health Study and the Gelb Center; there was >99 percent concordance for six SNPs 

that were assessed on a subset (n=1,370) of specimens twice.
197

 The Applied Biosytems (ABI) 

SNPlex Genotyping System was used to genotype the samples from King County, Washington. 

None of the eight SNPs violated HWE in either set (Physicians‘ Health Study or King County, 

Washington) of controls. The call rate for the eight SNPs genotyped was >94 percent. 

35-SNP panel. This panel was developed by genotyping 36 SNPs validated in previous studies 

using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass 

spectrometry based on allele-specific primer extension using the Sequenom iPLEX 

technology.
200

 Genotyping rs2660753 (at 3p12) failed completely. For the remaining 35 SNPs, a 

98.6 percent average call rate was reported. Hardy-Weinberg equilibrium was assessed in 

controls, no departure from HWE was observed (per an email from H. Grönberg, M.D., Ph.D. 

(Henrik.Gronberg@ki.se) on February 2, 2012). The genotyping was performed at a core 

mutation analysis facility in Huddinge and was fully blinded to the case-control status (clarified 

in emails from H. Grönberg, M.D., Ph.D. (Henrik.Gronberg@ki.se), and M. Aly, M.D. 

(markus.aly@ki.se) on February 2, 2012).  

deCODE ProstateCancer test. The company‘s Web site states that the deCODE ProstateCancer 

test is performed by Illumina I-Select Bead Chip method – and based on proprietary Illumina 

technology using DNA amplification hybridization and fluorescent detection.
208

 Greater than 

99.9 percent accuracy is claimed. 

3. What are the sources of variation in accuracy or analytical validity across different test 

panels? 

No evidence to address this question was identified. 

KQ2. What is the clinical validity of available SNP-based panels designed 
for prostate cancer risk assessment? 

1. How well do available SNP-based genotyping platforms predict the risk of prostate 

cancer in terms of  

a. stratifying future risk and/or screening for current disease? 

mailto:Henrik.Gronberg@ki.se
mailto:Henrik.Gronberg@ki.se
mailto:markus.aly@ki.se
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5-SNP panel (Focus 5) with and without inclusion of family history. Zheng, et al.,
188

 

developed a model for the cumulative effect of five SNPs, selected as the most significant of 16 

SNPs genotyped in five chromosomal regions (three at 8q24, and two at 17q). The number of 

genotypes associated with prostate cancer was counted for each subject and showed a significant 

trend of association, with the odds ratio (OR) for four or more genotypes compared with none 

being 4.47 (95% CI, 2.93 to 6.80, adjusted for age, geographic region, and family history). When 

family history was included in the risk score for each subject, the OR for five or more factors 

(genotype or family history) was 9.96 (95% CI, 3.62 to 24.72, adjusted for age and geographic 

region). Receiver operating curves were calculated. The area under the curve (AUC) for a model 

including age and geographic region was 57.7 percent (95% CI, 56.0 to 59.3), for a model adding 

family history to these factors was 60.8 percent (95% CI, 59.1 to 62.4), and for a model further 

adding in the number of genotypes associated with prostate cancer was 63.3 percent (95% CI, 

61.7 to 65.0). These data were also presented in a later paper focusing on the development of a 

28-SNP panel.
198

 In the later analysis, the sensitivities and specificities of a risk score combining 

the five SNPs and family history in first-degree relatives were presented for cutoffs of onefold, 

twofold, and threefold the median risk score (Table 4). As would be expected, sensitivity 

decreased and specificity increased with increasing cutoffs of absolute risk. The positive 

predictive value of the five SNPs (family history excluded) was 34 percent. 

 
Table 4. Sensitivity and specificity for absolute risk of prostate cancer for risk score based on  
5-SNP and family history (FHx) in first-degree relatives in Swedish study

198
 

 5-SNP + FHx 

Cutoff Sensitivity  Specificity 

Onefold median 0.53 0.61 

Twofold median 0.16 0.93 

Threefold median 0.05 0.98 

 

The model was tested in independent data from men of European origin in King County, 

Washington,
189

 in data from the Johns Hopkins Hospital and the PLCO Cancer Screening 

Trial,
190

 in a Canadian study,
195

 and in a study in which cases underwent radical prostatectomy in 

a hospital in Chicago.
191

 The pattern of association with risk score was attenuated compared with 

the original study of Swedish data,
188

 with the OR for four or more genotypes compared with the 

reference category of no risk genotypes being 3.36 (95% CI, 1.90 to 6.08, adjusted for age and 

family history) in King County, 2.42 (95% CI, 1.4 to 4.1) in the Canadian study, 2.84 (1.30 to 

6.21) in Johns Hopkins Hospital, 3.09 (95% CI, 1.62 to 5.90) in the PLCO Trial, and 3.19 (95% 

CI, 1.85 to 5.50, adjusted for age) in Chicago. In the Canadian study, the AUC for a baseline 

model that included age, family history of prostate cancer, ethnicity, urinary symptoms, PSA, 

free: total PSA ratio, and DRE was 72 percent (95% CI, 70 to 74), and with the addition of five 

SNPs, 73 percent (95% CI, 71 to 75).
195

 In these studies, the proportion of controls with four or 

more risk genotypes ranged between 1.6 percent
190

 and 3.4 percent,
191

 while the population with 

five or more risk factors (one of which could be family history of prostate cancer) was 0.3 

percent or less.
188-190
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When family history was included in the risk score, the ORs for five or more risk factors 

compared with none was 4.92 (95% CI, 1.58 to 18.53, adjusted for age) for King County,
189

 and 

20.68 (95% CI, 2.61 to 163.85) for the PLCO trial.
190

 In the King County data, the AUC for a 

model including age, serum PSA level, and history of prostate cancer in a first-degree relative 

was 63 percent, which increased to 66 percent when the five SNPs were added (difference 3 

percent, 95% CI, -12 to +6); this difference was not statistically significant.
189

  

9-SNP panel. Helfand, et al.
191

 extended the 5-SNP model, adding four variants at 2p15, 10q11, 

11q13, and Xp11. The OR associated with having six or more of the nine risk genotypes was 

5.75 (95% CI, 2.50 to 13.24), and the proportion of controls in the category of highest risk was 

2.5 percent. For the model with five genetic variants, the crude AUC was 58 percent, and with 

adjustment for age, 65 percent. With inclusion of the four additional variants, the AUCs were 61 

percent and 66 percent, respectively.  

17-SNP panel. In the Chicago-St. Louis study (Helfand et al.),
199

 the 9-SNP model was modified 

by changing one variant at 2p15, and adding one variant at 3q21.3, 11q13, 17q12, 19q13.2, and 

two at 5p15 and 8q24. The study differed from the others in that it was limited to men with a 

PSA level <4.0ng/ml and with normal DRE, and cases were limited to clinical stage T1c. 

Compared with men who had four or fewer variants, the OR for men with 11 or more variants 

was 10.6 (95% CI, 2.7 to 42.0), and the proportion of controls in this highest risk category was 

2.5 percent. When history in first-degree relatives was added to the risk score, compared to men 

with zero to five variants/family history, the OR for men with 11 or more variants was 11.2 (95% 

CI, 4.3 to 29.2), and the proportion of controls in this highest risk category was 3.2 percent. The 

AUC for the model including all the carrier numbers of the 17 SNPs was 0.66; this was not 

significantly different from an AUC of 0.62 for age alone. The AUC of a model containing the 

17 SNPs and family history was 0.71, which was statistically significantly higher than the model 

based on age alone. 

 

11-SNP panel. Zheng, et al.,
192

 examined the effect of including 14 additional SNPs in the same 

Swedish study participants as in the original 5-SNP model.
188

 On the basis of an SNP by SNP 

analysis, 12 remained associated with prostate cancer risk after adjustment for age, family 

history, geographic region, and the other SNPs. However, one of these SNPs was not included in 

further analysis because it was originally discovered in this study population and ―has not been 

extensively confirmed in other study populations.‖
192

 Thus, further evaluation focused on counts 

of risk alleles for 11 SNPs and family history. The AUC for a model involving age only was 58 

percent (95% CI, 56 to 59), for age and family history was 61 percent (95% CI, 59 to 62), and for 

age, family history, and all eleven SNPs was 65 percent (95% CI, 63 to 66). Stratified analysis of 

data on sensitivity and specificity by number of risk factors did not show differences by disease 

aggressiveness or age at diagnosis. These data were also presented in a later paper focusing on 

the development of a 28-SNP panel.
198

 In the later analysis, the sensitivities and specificities of a 

risk score combining the 11 SNPs and family history in first-degree relatives were presented for 

cutoffs of onefold, twofold, and threefold the median risk score (Table 5). As would be expected, 

sensitivity decreased and specificity increased with increasing cutoffs of absolute risk. The 

positive predictive value of the 11 SNPs (family history excluded) was 37 percent. 
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Table 5. Sensitivity and specificity for absolute risk of prostate cancer for risk score based on  
11-SNP and family history (FHx) in first-degree relatives in Swedish study

198
 

 11-SNP + FHx 

Cutoff Sensitivity  Specificity 

Onefold median 0.54 0.62 

Twofold median 0.18 0.92 

Threefold median 0.07 0.98 

14-SNP panel. The Swedish data were also investigated in development of a prediction model of 

absolute risk for prostate cancer using 14 SNPs and family history, and using data for the PLCO 

trial for confirmation.
193

 The number of risk alleles could range from zero to 27 (because one of 

the risk alleles was on the X chromosome), with the mode being 11 for controls. In the Swedish 

data, the OR for prostate cancer in men who had ≥14 risk alleles and positive family history 

(which occurred in 1 percent of control men) compared with men with 11 risk alleles and no 

family history of prostate cancer was 4.92 (95% CI, 3.64 to 6.64). The corresponding OR for the 

PLCO trial data was 3.88 (95% CI, 2.83 to 5.33). In the Swedish data, the risk did not differ 

between aggressive and nonaggressive disease. With regard to absolute risk in Sweden, a 55 year 

old man with ≥14 risk alleles and a positive family history was estimated to have a 52 percent 

risk of being diagnosed with prostate cancer in the next 20 years, compared to a risk of 8 percent 

for men with seven or fewer risk alleles and no family history. The corresponding estimates for 

the men in the United States were 41 percent and 6 percent, respectively.  

28-SNP panel. The Swedish data were also used in the development of a 28-SNP panel.
198

 The 

AUC for the panel was 0.62, compared with 0.61 for the 11-SNP panel, and 0.60 for the 5-SNP 

panel; these differences were statistically significant. The sensitivities and specificities of a risk 

score combining the 28 SNPs and family history in first-degree relatives were presented for 

cutoffs of onefold, twofold, and threefold the median risk score (Table 6). As would be expected, 

sensitivity decreased and specificity increased with increasing cutoffs of absolute risk. The 

positive predictive value (PPV) of the 28-SNPs (family history excluded) was 37 percent. When 

the SNPs and family history were sorted on the basis of their contribution to genetic variance, 

from highest to lowest, at each cutoff of onefold, twofold, and threefold population median risk, 

the PPV increased only slightly with increasing numbers of SNPs. 
 
Table 6. Sensitivity and specificity for absolute risk of prostate cancer for risk score based on  
28-SNP and family history (FHx) in first-degree relatives in Swedish study

198
 

 28-SNP + FHx 

Cutoff Sensitivity  Specificity 

Onefold median 0.55 0.62 

Twofold median 0.23 0.91 

Threefold median 0.11 0.97 
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Three SNPs in 8q24. One study in the Johns Hopkins Hospital investigated multiple variants of 

8q24 in men with prostate cancer who had at least two additional first-degree relatives with 

prostate cancer, men who did not fall into this category, and controls.
194

 To assess the combined 

effects of variants in three regions of 8q24, one variant from each region was selected. Compared 

to men with no risk genotype, the OR of prostate cancer for men with 2+ affected first-degree 

relatives for two or more risk genotypes was 2.94 (95% CI, 1.68 to 5.15), and for prostate cancer 

without such a family history was 2.23 (95% CI, 1.52 to 3.28).  

4-SNP test: KLK2, HPC1, TNF, ETV1. In a Canadian study,
195

 in addition to examining the 5-

SNP model of Zheng, et al.,
188

 a model comprising four SNPs, one each in KLK2, HPCI, TNF, 

and ETV1was evaluated. The OR associated with presence of all four variants compared with 

none was 2.53 (95% CI, 1.6 to 4.1). The proportion of controls that had variants of all four SNPs 

was 3.2 percent. The AUC for the baseline model that included age, family history of prostate 

cancer, ethnicity, urinary symptoms, PSA, free: total PSA ratio, and DRE was 72 percent (95% 

CI, 70 to 74), and with the addition of the four SNPs was 73 percent (95% CI, 71 to 74).  

4-SNP test: 8q24, 17q24, TNF, ETV1. In the same Canadian study,
195

 a model comprising four 

SNPs, one each from 8q24, 17q24.3, TNF, and ETV1, was evaluated. The OR associated with 

presence of all four variants compared with none was 6.07 (95% CI, 2.0 to 18.5). The proportion 

of controls that had variants of all four SNPs was 0.3 percent. The AUC for the baseline model 

that did not include SNPs (see above) was 72 percent, and with the four SNPs included was 74 

percent (95% CI, 72 to 76). Using two thirds of the data, the investigators developed a 

nomogram that incorporated these SNPs, age, family history of prostate cancer, ethnicity, urinary 

voiding symptom, PSA level, free: total PSA ratio, and DRE in predicting all prostate cancer, 

and predicting prostate cancer with a Gleason score of 7 or more. Predicted and actual 

probabilities were compared in the remaining one third of the data, and the incremental drop in 

AUC for each predictor variable when removed from the nomogram model was assessed. The 

incremental drop was greater (1.4 percent) for the SNP combination than PSA (0.1 percent), 

family history of prostate cancer (0.3 percent), urinary voiding symptom (0.1 percent), and DRE 

(1.0 percent), but not age (2.2 percent) or free: total PSA ratio (6.6 percent).  

Test for three SNPs in steroid hormone pathway genes. Beuten, et al.,
196

 examined SNPs in 

the steroid hormone pathway. They presented information on the cumulative effect of three risk 

variants, (one in HSD3B2, two in CYP19) in non-Hispanic whites. There was a trend with an 

increasing number of risk genotypes. The OR for three risk genotypes compared with none was 

2.87 (95% CI, 1.64 to 5.02, adjusted for age), with 3.6 percent of controls in the category of 

highest risk.  

Test for two SNPs in steroid hormone pathway genes. In the investigation of SNPs in the 

steroid hormone pathway described in the preceding subsection, Beuten, et al.,
196

 presented 

information on the cumulative effect of two risk variants (one in CYP19, different from those in 

non-Hispanic whites, one in CYP24A11) in Hispanic whites. Again, there was a trend with an 

increasing number of risk genotypes. The OR for two risk genotypes compared with none was 

4.58 (95% CI, 2.19 to 9.61, adjusted for age), with 5.6 percent of controls in this category of risk.  



 

31 

6-SNP test. Penney, et al.,
197

 evaluated eight SNPs, six in 8q24 and two in 17q, in data from the 

Physicians‘ Health Study (PHS) and from King County, Washington. Four of the 8q24 and the 

two 17q SNPs were significantly associated with prostate cancer in the two data sets, and the 

association with a risk score obtained by adding up the alleles was evaluated. The risk of prostate 

cancer increased by 19 percent for each additional risk allele in the PHS, and 23 percent in King 

County.  

35-SNP panel. Aly, et al.,
200

 focused their analyses relating to clinical validity of a 35-SNP 

panel on men with a PSA level ≤10 ng/ml as they considered that there is most debate over 

recommending a prostate biopsy in this group than in men with a higher PSA level. A genetic 

score was calculated by summing the number of risk alleles (0,1, or 2) at each of the 35 SNPs 

multiplied by the logarithm of the OR for that SNP. In univariate analysis, the OR associated 

with this score was 1.93 (95% CI, 1.85 to 2.01), with an AUC of 0.61 (95% CI, 0.59 to 0.63). In 

multivariate analysis, adjusting for PSA, the ratio of free-to-total PSA, age, and family history, 

the OR was 1.52 (95% CI, 1.45 to 1.59). The AUC for PSA, the ratio of free-to-total PSA, and 

age was 0.63 (95% CI, 0.60 to 0.65); the addition of family history increased this to 0.64 (95% 

CI, 0.62 to 0.66) and adding both family history and the genetic score increased the AUC to 0.67 

(95% CI, 0.65 to 0.70). 

Different risk cutoffs were assessed for: 1) the model comprising PSA, the ratio of free-to-

total PSA, age, and family history; 2) the addition of the genetic score to this model; and, 3) a 

hypothetical genetic model based on a score variable constructed from SNPs explaining 100% of 

the population genetic risk. Comparisons were made of how these would affect the numbers of 

biopsies performed and cancer detected per 1,000 men with a clinical prostate biopsy (Table 7). 

The addition of the 35 SNPs (Model 2) to the factors included in Model 1 would reduce the 

number of biopsies conducted but increase the number of missed cancers. For the hypothetical 

genetic model (Model 3), the number of biopsies would be further reduced compared with Model 

2, and the increase in proportion of missed cancers reduced. 
 
Table 7. Comparison of effects on biopsies conducted and cancer detected per 1,000 men with a 
clinical prostate biopsy between three models of risk prediction for prostate cancer and two 
cutoffs 

Model 

Cutoff 

Biopsies Cancers 

Conducted Avoided 
% 

Avoided Detected Missed 
% 

Missed 

Biopsies conducted and cancers 

detected 
 1000 0 0 365 0 0 

1. PSA, the ratio of free-to-total 

PSA, age, and family history  

20 949 51 5.1 352 13 3.6 

25 871 129 12.9 338 27 7.4 

2. PSA, the ratio of free-to-total 

PSA, age, family history, and 

genetic score  

20 878 122 12.2 344 21 5.8 

25 773 227 22.7 321 44 12.1 

3. Hypothetical genetic model 
20 745 255 25.5 348 17 4.7 

25 686 314 31.4 340 25 6.8 
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deCODE ProstateCancer test. The deCODE Prostate Cancer Web site states that the predictive 

accuracy of the 27-SNP ProstateCancer test panel, the 9-SNP subset for African-American men, 

and the 12-SNP subset for men of East Asian descent is essentially independent of, and therefore 

complements, the risk confirmed by family history of the disease.
208

 The validity is reported to 

be based on the evaluation of risks associated with single SNPs; it is stated that the validity of 

multiplying together the risk conferred by different markers is based on the lack of significant 

interaction or overlap of impact between markers in two studies.
165,168

 

b. Distinguishing between clinically important and latent/asymptomatic prostate 

cancer 

5-SNP panel. In a case-only analysis of combined data from the Swedish, Johns Hopkins 

Hospital, and PLCO Trial participants, there was no statistically significant association between 

the five genetic variants, Gleason score, aggressiveness of prostate cancer,
214

 or age at 

diagnosis.
190

 

14-SNP panel. In the Swedish data investigated in the development of a prediction model of 

absolute risk for prostate cancer using 14 SNPs and family history, the OR for aggressive 

prostate cancer in men who had ≥14 risk alleles and positive family history compared with men 

with 11 risk alleles and no family history of prostate cancer was 4.77 (95% CI, 3.41 to 6.69).
193

 

The corresponding OR for nonaggressive prostate cancer was 5.05 (95% CI, 3.66 to 6.96). In 

addition, the risk associated with each increase in the number of risk alleles did not differ 

between aggressive and nonaggressive disease.  

11-SNP panel. In the analysis of Zheng, et al.,
192

 which developed a model comprising counts of 

risk alleles for 11 SNPs and family history, stratified analysis of data on sensitivity and 

specificity by number of risk factors did not show differences by disease aggressiveness or age at 

diagnosis. 

35-SNP panel. In the study of Aly, et al.,
200

 aggressive disease was defined as T3-4 N1 M1 or 

Gleason 4+3 and higher, and nonaggressive disease as T0-2 N 0/X M 0/X or Gleason 3 +=4 and 

lower. The increase in AUC for aggressive disease between a SNP-based model (35-SNPs) and a 

non-SNP-based model based on PSA, the ratio of free-to-total PSA, age, and family history was 

not statistically significant. 

c. How well do available SNP-based genotyping panels predict prognosis in 

individuals with a clinical diagnosis of prostate cancer? 

5-SNP panel (Focus 5) with and without inclusion of family history. In the study in King 

County,
189

 described above, the predictive ability of the SNP panel for prostate cancer specific 

mortality over an average length of followup of 7.6 years was evaluated. There were 45 deaths 

among 1,207 men with followup data; there was no association with the SNPs individually or in 

combination, and they did not increase the AUC for a model that included age at diagnosis, 

serum PSA at diagnosis, Gleason score, and tumor stage (difference in AUC between model 

including SNPs compared to one without 0.5 percent, 95% CI, -1 to +2). 
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6-SNP test. In a survival analysis of the six SNPs found to be associated with prostate cancer in 

the data from the PHS and King County using the Cox proportional hazards model, there was no 

significant association between these variants and prostate cancer mortality.
197

 In addition, 

comparison was made between prostate cancer deaths and men alive more than 10 years after 

diagnosis in a combined analysis that included both of these samples, together with a series of 

cases from the Dana-Farber Harvard Cancer Center diagnosed over the period from 1976 to 

2007. The total number of risk alleles was not associated with mortality. 

16-SNP panel. In a population-based study of survival after prostate cancer diagnosis in 2,875 

men in Sweden over an average of 4.9 years (range 3.7 to 6.8 years), there was no association 

between prostate cancer mortality in a comparison with the average number of risk alleles, in a 

test for trend with an increasing number of risk alleles, or in relation to specific individual 

variants within the panel.
201

  

None of the studies reported above presented data on risk reclassification or performance in 

simulation analyses. 

3. What other factors (e.g., race/ethnicity, gene-gene interaction, gene-environment 

interaction) affect the predictive value of available panels and/or the interpretation of 

their results? 

Beuten, et al.,
196

 developed separate tests for SNPs in steroid hormone pathway genes for 

non-Hispanic whites and Hispanic whites (see above). 

deCODE markets the ProstateCancer test, which tests for 27 genetic variants (Table 13) 

associated with prostate cancer in men of European descent (including the five SNPs included in 

the Focus 5 test), a subset of nine variants for African-American men, and a subset of 12 variants 

for men of East Asian descent; the specific variants in the subsets are not specified in the Web 

site (www.decodhealth.com/prostate-cancer).
208

 

KQ3. What is the clinical utility of available SNP-based panels designed for 
prostate cancer risk assessment? 

Process of care 

1. Does the use of panels alter processes of care and behavior? 

a. screening or management decisions, and the appropriateness of these 

decisions, by patients and/or providers 

b. alteration in health-related behaviors of patients (e.g., adherence to 

recommended screening interventions and/or other lifestyle changes)? 

No data addressing this question were identified. 

Health outcomes 

2. Does the use of panels lead to changes in health outcomes? 

a. all-cause mortality 

b. cancer-specific mortality 

c. morbidity 

And do any changes vary by race or ethnicity? 

No data addressing this question were identified. 
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Harms 

3. Does the use of panels lead to harms?  

a. psychological harms 

b. other negative individual impacts (e.g., discrimination) and do any such harms 

vary by race or ethnicity? 

No data addressing this question were identified. 

Costs 

4. What is known about the costs, cost-effectiveness, and/or cost utility of using SNP-

based panels for prostate cancer risk assessment, compared to current practice? 

No data addressing this question were identified. 

Quality Assessment of Individual Studies 
All included studies were related to clinical validity, which usually lends itself to a medical 

test framework for quality assessment. However, we decided to use the Newcastle-Ottawa Scale 

(NOS)
185

 (Table 14a) because all but one of the studies had a case-control design (the exception 

being a cohort study of prostate cancer survival
201

), and because it is not clear how well the 

QUADAS
186

 tool would apply to genetic tests. We supplemented this with selected items from 

the QUADAS
186

 tool to assess the risk prediction aspect of the included studies. These were: (1) 

whether the spectrum of participants was representative of the patients who would receive the 

test in practice; (2) whether the selection criteria were clearly described; and, (3) whether un-

interpretable, indeterminate, or intermediate test results were reported (Table 14b). Other 

QUADAS
186

 criteria considered when assessing the risk of bias of the studies included whether 

or not: 1) the whole sample or a random selection of the sample received verification using the 

reference standard; 2) participants received the same reference standard regardless of the index 

test result; 3) the reference standard was independent of the index test; 4) the execution of the 

index test was described in sufficient detail to permit its replication; and, 5) the same clinical 

data were available when the test results were interpreted as would be available when the test is 

used in practice. 

The reference standard for cases was histopathological diagnosis in all of the studies, but 

checking for latent or undiagnosed cancer was not conducted in control groups with two 

exceptions.
195,200

 Autopsy studies in men over 50 years of age who had died from other causes 

have demonstrated a frequency of histologically proven prostate cancer of 30 to 40 percent.
54-60

 

However, there are clearly ethical constraints to taking prostate tissue samples in asymptomatic 

men in order to exclude an undiagnosed disease. In one of the studies, controls were selected 

from the same group of men referred to prostate cancer centers who had either a PSA value 

≥4.0ng/ml or an abnormal DRE and who had no biopsy evidence of prostate cancer.
195

 The 

results of the clinical validity evaluation of the 5-SNP panel in this study were similar to those of 

the other studies in which this panel was evaluated.
189-191

 In all of the studies, it seems unlikely 

that the index test result affected the decision to undertake prostate biopsy, or the interpretation 

of histopathological examination of biopsy specimens. However, since all of the studies were 

conducted in research contexts, it is not clear that decisionmaking incorporated the same clinical 

data as would have been available in routine practice.  

The execution of the genotyping component of the index test was adequately described in all 

but one
198

 of the studies (see section on analytic validity). Almost all of the studies related to 

participants of European origin, and those that did not adjusted for ethnicity or conducted 
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analyses restricted to participants of European origin. This is likely to have limited the risk of 

bias resulting from population stratification; that is, the presence within a population of 

subgroups among which allele (or genotype, or haplotype) frequencies and disease risks 

differ.
215-218

 However, some of the other variables included in risk scores may have been prone to 

differential error because of the retrospective case-control design used in all but the PLCO 

Trial,
193,203

 the PHS,
197

 and the San Antonio cohort.
196

  

By combining the results of the NOS
185

 evaluation and the QUADAS
186

 criteria for the 

individual studies, all studies of the 5-SNP panel were found to have a moderate risk of bias. 

Based on three selected domains in the NOS
185

 (selection of controls, comparability of cases and 

controls, method of ascertainment of cases and controls), along with limited data about 

genotyping methods and quality control, lack of specification of which candidate nongenetic 

variables were initially examined or considered for inclusion in the risk models, and lack of 

information about how these variables were assessed, the overall risk of bias of was assessed as 

being at least ‗moderate‘. Using the same approach, the assessments of the other 14 panels were 

based on single studies, reported in eleven articles,
191-201

 and these were also all considered to 

have at least a moderate risk of bias. 

Rating the Body of Evidence 
Four domains were considered in the assessment of overall strength of evidence (SOE) for 

the SNP panels identified. These were risk of bias (internal validity of the studies), the 

consistency of findings, directness (how closely the tests were applied in a way which resembles 

routine practice), and precision (whether the estimates allow clinically useful conclusions). 

For the domain of internal validity, all studies were assessed as having at least a moderate 

risk of bias. For the domain of consistency, it is impossible to assess results for panels evaluated 

in single studies only. For the Focus 5 panel, where there were several studies, the data did not 

permit development of an ROC curve, and therefore consistency could also not be assessed 

quantitatively. For models containing the five SNPs included in the Focus 5 panel, but with 

diverse other variables included, the AUC ranged between 63 percent and 73 percent.
188,193,195

 

Compared with the models that did not include the SNPs, the 5 SNPs increased the AUC by 1 to 

3 percent.  

For the domain of directness, all studies were conducted in a research context, no panel being 

applied in a setting that might be considered close to routine clinical practice. As well as 

presenting difficulty in assessing generalizability to a ‗typical‘ clinical approach, this meant that 

none of the tests were explicitly evaluated in a medical test framework. Specifically, the case-

control design meant there was no meaningful comparison of any SNP panel against a routine 

clinical alternative ‗test‘. Finally, the assessment of the precision domain requires a clear idea of 

clinically meaningful differences between levels of sensitivity, specificity, AUC, and other 

accuracy metrics (i.e., how much difference in one of these would make a ‗real‘ difference in 

clinical or patient decisionmaking). This area of evaluation appears to be underdeveloped in the 

clinical literature, and the studies evaluated shed no light on this aspect. We were therefore 

unable to offer a valid assessment of this domain. 

We are unable to assess the extent of publication bias in this review. We contacted a 

comprehensive list of companies we considered most likely to be developing SNP panels for 

commercial application, and received no responses. It is possible that unpublished data exist to 

support the clinical validity of one or more of the SNP panels reviewed here, or of other SNP 

panels which were not identified in this report. If so, this review‘s conclusions would be unduly 
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negative. However, this would be an unlikely scenario, since publication bias is usually 

considered to lead to selective reporting of studies with systematically larger effect sizes than is 

actually the case.
219

 Only papers published in English were included. There is no empirical 

evidence of the effects of language restriction on genetic risk prediction studies. Although there 

is some empirical evidence of systematic differences in effect sizes of genetic associations 

reported in studies in Asian populations published in English and in Chinese, it is not clear that 

these differences are due to publication bias.
220

 Moreover, there is evidence of considerable 

overlap of publications in English and Chinese medical journals on the same studies.
221

 In the 

literature on randomized controlled trials, restriction to English language publications does not 

appear to bias estimates of effectiveness of conventional interventions.
222

 

Overall, it is unlikely that any of the biases identified would be sufficient to alter the 

interpretation of the findings from (at best) inadequacy of evidence to clearly positive supporting 

evidence for any of the SNP panels reviewed.  

For characteristics of included studies see Tables 8–10. The Focus 5 test is reported in Table 

11. Summary of SNPs and other variables included in test panels is reported in Table 12. Table 

13 reports genetic variants tested for by deCODE ProstateCancer and Table 14 reports case 

studies on the Newcastle-Ottawa Scale.  
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Table 8. Characteristics of included studies 

Author 
Year 

Study Objective 
Study Design 

Setting 
Location 
Dates of Data Collection 

Study Participants 
Eligibility 
Source and Method of Selection 
Number Assessed for Eligibility 

Aly
200

 
2011 

Model development 
 
Cohort 

5,241 men who underwent prostate 

biopsy 

Stockholm, Sweden 

2005 - 2007 

 

Exclusion: age >80, deceased, no valid personal number or 

address, other cancer than prostate at biopsy, known prostate 

cancer before 2005, lack of consent 

Patient registries in 2 of 3 pathology departments in 

Stockholm, Sweden 

8,088 identified, 7,035 invited, 5,241 accepted 

Beuten
196

 
2009 

Model development 
 
Case-control 
 

Screening center funded by national 
cancer institute 
 
Texas, U.S. 
 
NR but screening center opened in 2001 

Cases had biopsy confirmed prostate cancer. 
 
231 incident cases from San Antonio Center for Biomarkers of 
Risk of Prostate Cancer cohort + 655 prevalent cases; controls 
volunteers >45 years normal DRE and PSA <2.5ng/mL on all 
study visits 
 
1,452 non-Hispanic Caucasians (cases = 609 , controls = 
843); 709 Hispanic Caucasians (cases = 195, controls = 514); 
291 African-Americans (cases = 82, controls = 209) 

Helfand
191

 
2010 

Model Development 
 
Case-control  

Hospital cases (90% treated by single 
surgeon); volunteer control group 
previously described matched on 
European descent 
 
Chicago, U.S. 
 
June 2002 - May 2008 (biopsy and 
pathological findings prospectively 
collected in cases) 

Inclusion: European descent, with CaP who underwent radical 
prostatectomy at Northwestern Memorial Hospital  
Exclusion: lack of genetic data and/or incomplete clinical 
information 
 
Consecutive men with CaP who underwent radical 
prostatectomy. Controls were volunteers (PSA less than 
2.5ng/mL, and normal digital rectal exam) 
 
1,614 men 
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Table 8. Characteristics of included studies (continued) 

Author 
Year 

Study Objective 
Study Design 

Setting 
Location 
Dates of Data Collection 

Study Participants 
Eligibility 
Source and Method of Selection 
Number Assessed for Eligibility 

Helfand
199

 
2011 

Model development 
 
Case-control 

1,459 white men who underwent radical 
prostatectomy. 203 had normal screening 
examination at time of Dx, clinical stage 
T1C, PSA <4ng/mL and nonsuspicious 
DRE; Controls: 611 recruited as healthy 
control subjects for genetic studies from 
the national Prostate Cancer Coalition 
screening study (2007); controls had 
PSA<4.0ng/mL, normal DRE, no prior Hx 
of a prostate biopsy 
Washington University, St Louis, MO; and 
Northwestern University Chicago, IL. 
97.5% treated by same surgeon 
1997 - 2009 

NR 
  
NR 
 
1,459 

Nam
195

 2009 Validation (models from Zheng, 
et al., 2008

188
) and model 

development 
 
Case-control 
 
 

Recruited from prostate centers of the 
University of Toronto (Sunnybrook and 
Women's College Health Sciences Center 
and University Health Network) 
 
Toronto, Ontario, Canada.  
 
June 1999 - June 2007 
 

Cases=  
Inclusion: PSA values ≥4.0ng/mL or an abnormal DRE; All 
patients underwent 1 or more transrectal ultrasonography-
guided needle core biopsies; Primary endpoint was histological 
presence of adenocarcinoma of the prostate in biopsy 
specimen based on Gleason score 
Exclusion: PSA >50ng/mL (where the decision to biopsy would 
be considered unequivocal), not capable of giving consent to 
participate in the study, could not provide sufficient baseline 
information, or had a Hx of CaP  
Controls=  
Inclusion: no inclusion criteria reported aside from no presence 
of histologic adenocarcinoma of the prostate from biopsy 
Exclusion: Hx of CaP 
 
Source: men who were part of a screening program, selection 
was based on biopsy confirmed CaP; Samples were obtained 
using a systematic pattern and additional targeted samples 
were taken of suspicious areas; Those with histological 
presence of adenocarcinoma of the prostate were cases, while 
those that were not were controls  
 
3,108 
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Table 8. Characteristics of included studies (continued) 

Author 
Year 

Study Objective 
Study Design 

Setting 
Location 
Dates of Data Collection 

Study Participants 
Eligibility 
Source and Method of Selection 
Number Assessed for Eligibility 

Penney
197

 
2009 

Model development 
 
Physician Health Study (PHS) 
labeled nested case-control but 
also referred to as a prospective 
cohort by authors 
 
Dana Farber Harvard Cancer 
Center SPORE (Gelb center) 
case series; No controls 
 
FHCRC King County Case-
control; 2 population-based case-
controls 

PHS:  
Randomized controlled trial of aspirin and 
beta carotene 
 
U.S. 
 
Blood samples 1982 – 1984; Followup 
through March ,1 2008 
 
Gelb Center: 
Referral hospital-based case series 
 
Boston, U.S. 
 
1976 - 2007 
 
FHCRC: 
2 population-based case-control; Incident 
cases with histologically confirmed 
prostate cancer ascertained from Seattle 
SEER cancer registry 
 
King County, Washington, U.S. 
 
Study I: Jan 1, 1993 – Dec 31, 1996; 
Study II: Jan 1, 2002 – Dec 31, 2005 

PHS: 
Inclusion: Healthy U.S. physicians; Excluded at baseline if any 
serious medical conditions including all cancers except non-
melanoma skin cancer; Restricted participation to self-reported 
Caucasians; Controls selected by risk-set sampling matched 
on age, smoking status & followup time; Caucasians only 
 
Self-reported prostate cancer cases verified through medical 
record and pathology review 
 
1,438 
 
Gelb Center: 
Inclusion: Healthy U.S. physicians; Excluded at baseline if any 
serious medical conditions including all cancers except 
nonmelanoma skin cancer; Restricted participation to self-
reported Caucasians 
 
Self-reported prostate cancer cases verified through medical 
record and pathology review 
 
NR 
 
FHCRC: 
Inclusion: Healthy U.S. physicians; excluded at baseline if any 
serious medical conditions including all cancers except 
nonmelanoma skin cancer; Restricted participation to self-
reported Caucasians 
 
Incident cases with histologically confirmed prostate cancer 
from SEER cancer registry  
Controls identified with one-step random digit dialing, matched 
by age; Only Caucasians included 
 
2,448 
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Table 8. Characteristics of included studies (continued) 

Author 
Year 

Study Objective 
Study Design 

Setting 
Location 
Dates of Data Collection 

Study Participants 
Eligibility 
Source and Method of Selection 
Number Assessed for Eligibility 

Salinas
189

 
2009 

Model development validation of 
Zheng

188
 

 
Case-control  

Cases recruited from Seattle-Puget SEER 
cancer registry 
 
Participants from King County, 
Washington, U.S. (study I and II) 
 
Study I: Jan 1, 1993 - Dec 31, 1996; 
Study II: Jan 1, 2002 - Dec 31, 2005 

Inclusion: Cases = histologically confirmed CaP from cancer 
registry, Caucasian 
Controls = residents of King County, no self-reported Hx of 
CaP, Caucasian 
 
Control selection: Residence of King County, without self-
reported Hx of CaP, identified using a step random digit dialing 
frequently matched to cases by 5y age groups, recruited 
evenly throughout both ascertainment periods for case 
patients; Complete census information obtained for 94% and 
81% of residential numbers contacted in Study I and II, 
respectively  
 
2,244 CaP patients identified; 2,448 met control eligibility 
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Table 8. Characteristics of included studies (continued) 

Author 
Year 

Study Objective 
Study Design 

Setting 
Location 
Dates of Data Collection 

Study Participants 
Eligibility 
Source and Method of Selection 
Number Assessed for Eligibility 

Sun
190

 2008 Model is validating previously 
reported model from Zheng, et 
al.

188
 

 
Case-control 
 

JHH: 
Samples from JHH (Baltimore, MD), 1999 
- 2006 
 
CGEMS: 
Cases and controls from PLCO cancer 
screening trial (United States), 1992 - 
2008 
 
CAPS: 
Cases = 4 regional cancer registries; 
Controls = Swedish Population Registry 
 
Sweden 
 
July 2001 - October 2003 

JHH: 
Cases = European-American men undergoing CaP treatment; 
Controls = European-American men undergoing CaP 
screening, >55 years of age, normal digital rectal exam, 
<4.0ng/mL PSA 
 
Cases = 1,562; Controls = 576 
 
CGEMS: 
European-American men selected from PLCO Cancer 
Screening Trial using incidence density sampling strategy 
 
Cases = 1,172; Controls = 1,157 
 
CAPS: 
Biopsy-confirmed or cytologically verified adenocarcinoma of 
the prostate, diagnosed between July 2001 and October 2003 
 
Cases: 6 cancer registries; Method of selection apart from 
inclusion criteria not reported; Controls recruited concurrently 
and randomly selected from Swedish Population Registry 
 
Cases = 3,648; Controls = 3,153  
 
Combined cumulative analysis (all three study populations): 
Cases = 5,628; Controls = 3,514 
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Table 8. Characteristics of included studies (continued) 

Author 
Year 

Study Objective 
Study Design 

Setting 
Location 
Dates of Data Collection 

Study Participants 
Eligibility 
Source and Method of Selection 
Number Assessed for Eligibility 

Sun
194

 2008 Model development 
 
Case-control 
 

HPC families were studied at Brady 
Urology Institute at Johns Hopkins 
Hospital; Non-HPC cases = same 
hospital; Controls = CaP screening from 
the hospital and greater Baltimore area.  
 
Baltimore, MD, U.S. 
 
HPC cases = described previously (Xu, et 
al., 2001

223
)  

Non-HPC = 1999 - 2006 
 

Cases: HPC case criterion = prostate cancer (CaP) patients 
who have at least 2 first degree relatives diagnosed with CaP; 
non-HPC case criteria = patients undergoing radical 
prostatectomy for treatment of CaP at Johns Hopkins Hospital 
between 1999 to 2006 with DNA samples indicating normal 
seminal vesicle tissues; European Ancestry inclusion criterion 
for all cases;  
Controls: normal DRE, PSA <4.0ng/mL, and older than 55 
years of age;  
Quality control checks: HPC cases = CaP was verified by 
medical records for each affected male studied; non-HPC 
cases = tumors from each patient were graded and staged 
using uniform criteria established and implemented by a single 
pathologist  
 
HPC Cases = 221 index CaP patients (probands) of European 
ancestry met the HPC criterion, while 168 of these probands 
had DNA sampled from affected and nonaffected relatives for 
linkage; Non-HPC cases = not specified, however 1,404 were 
collected DNA samples isolated from normal seminal vesicle 
tissue;  
 
Controls = 560 met eligibility 
Number assessed NR 

Sun
198

 
2011 

Model development 
 
Cohort within a population case-
control 

Cases from regional cancer registries in 
Sweden, controls randomly selected from 
Swedish Population Registry and 
matched according to expected age 
distribution of cases (groups of 5 year 
intervals) and geographic region 
 
Sweden 
 
NR 

Pathologically or cytologically verified adenocarcinoma of the 
prostate 
NR 
2,899 
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Table 8. Characteristics of included studies (continued) 

Author 
Year 

Study Objective 
Study Design 

Setting 
Location 
Dates of Data Collection 

Study Participants 
Eligibility 
Source and Method of Selection 
Number Assessed for Eligibility 

Wiklund
201

 
2009 

Model development 
Population-based case-control  

CAPS: 
Cases = 4 of 6 regional cancer registries 
in Sweden  
Controls = Swedish population registry 
 
Sweden 
 
July 2001 - October 2003 

Histologically or cytologically verified adenocarcinoma of the 
prostate (ICD-10:C61) 
NR 
 
2,875 Cases 

Xu
193

 2009 Model development and 
validation 
 
Case-control 

CAPS: 
Cases = 4 of 6 cancer registries in 
Sweden 
Controls = Swedish population registry 
 
Sweden 
 
July 2001 - October 2003 
 
PLCO: 
Independent Study Population from PLCO 
trial 
 
United States 
 
1992 - 2009 

CAPS: 
Cases = 2,899; Controls = 1,722 
 
PLCO: 
Cases = 1,172; Controls = 1,157 
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Table 8. Characteristics of included studies (continued) 

Author 
Year 

Study Objective 
Study Design 

Setting 
Location 
Dates of Data Collection 

Study Participants 
Eligibility 
Source and Method of Selection 
Number Assessed for Eligibility 

Zheng
192

 
2009 

Model development and 
validation 
 
Case-control (CAPS study) 
 

Cases = 4 of 6 cancer registries in 
Sweden 
Controls = Swedish population registry 
 
Sweden 
 
July 2001 - October 2003 

Case eligibility: Pathologic or cytologically verified 
adenocarcinoma of the prostate, Diagnosed between July 
2001 and October 2003 
Aggressive case eligibility: Consent to participate, T3/4, N+, 
M+, Gleason score sum ≥8, or PSA >50ng/mL; Otherwise they 
were classified as nonaggressive (localized) cases 
Control eligibility: consent to participate (PSA obtained but not 
used for exclusion) 
 
Cases: From 4 of 6 regional cancer registries in Sweden, 
method of selection not reported 
Controls: Recruited by invitation and randomly selected 
concurrently with case subjects, from Swedish Population 
Registry 
 
Cases = 3,648; Controls = 3,153 

Zheng
188

 
2008 
 

Model Development 
 
Case-control 

Cases = 4 regional cancer registries; 
Controls = Swedish Population Registry 
 
Sweden 
 
July 2001 - October 2003 

Biopsy-confirmed or cytologically verified adenocarcinoma of 
the prostate, diagnosed between July 2001 and October 2003 
 
Cases: 6 cancer registries; Method of selection apart from 
inclusion criteria not reported; Controls recruited concurrently 
and randomly selected from Swedish 
 
Cases = 3,648; Controls = 3,153 

Abbreviations: CaP = prostate cancer; CAPS = cancer of the prostate in Sweden; CGEMS = cancer genetic markers of susceptibility; DNA = deoxyribonucleic acid; DRE = digital 

rectal examination; Dx = diagnosis; FHCRC = Fred Hutchinson cancer research center; GWA = genome-wide association; HPC = hereditary prostate cancer; Hx = history; JHH = 

Johns Hopkins Hospital; NR = not reported; PLCO = prostate lung cancer ovarian; PSA = prostate specific antigen; SEER = surveillance epidemiology and end results; SNP = 

single nucleotide polymorphism; SPORE = specialized programs of research excellence; y = year(s) 
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Table 9. Characteristics of included studies: SNPs 

Author 
Year 

SNP’s 
Number genotyped 
and considered for 
inclusion in panel 
 
Was genotyping done 
blind to participant 
status? 

Hardy Weinberg Equilibrium (HWE) 
 
Assessed?  
If yes, method? In controls? 
If no, in all participants? 
Result(s) [indicate whether this was for 
all SNPs considered for inclusion, or 
just those in the model(s) developed or 
evaluated 

How were SNPs handled in analysis? (e.g., 
dominant or recessive effects per SNP, per allele, 
genotype categories, risk scores [explain which 
of alleles/genotypes is considered to be risk 
variant]) 

Other variables 
included in SNP 
panel 

Aly
200

 
2011 

Cases = 2,135; 
Controls = 3,108 
 
NR 

HW calculations were performed to verify 
that each marker was within an allelic 
equilibrium in the control population. 

NR Nongenetic model 
included log total 
PSA, log free to total 
PSA ratio, age at 
biospy and family Hx 
of CaP. The genetic 
model also included 
the genetic risk score. 

Beuten
196

 
2009 

2,452 samples 
 
NR 

Checked for each SNP; rs6201 showed 
deviation from HW equilibrium in cases and 
controls of all 3 ethnic groups; In 
Caucasians, rs10923823 not in HW 
equilibrium in cases or controls and 
rs3751592 out of HW equilibrium in non-
Hispanic Caucasians; SNPs not in HW 
equilibrium left out of further statistical 
analyses 

OR and 95% CI was estimated by unconditional 
logistic regression as a measure of the association 
between genotype and CaP risk. Tested for additive, 
dominant, and recessive associations. Generalized 
linear model function with all SNPs were entered into 
a single multivariate logistic regression model (SNPs 
with additive effects). The random forest algorithm 
was applied. The generalized multifactor 
dimensionality reduction was also used. 

NR 

Helfand
191

 
2010 

Cases = 687; Controls 
= 777  
 
Was done elsewhere 
and previously 
described 

Yes, but methods not shown; all genetic 
variants were in HWE. 

Differences in alleles between cases and controls 
were tested for each SNP using a logistic regression 
model; CaP risk OR was estimated from regression 
coefficients. For each genetic variant, genotype 
information was compared using Akaike's information 
criteria to choose the best fit genetic model (dominant 
or recessive). 

No 

Helfand
199

 
2011 

Cases = 203; Controls 
= 611 
 
NR 

Tests for HWE were performed for each 
SNP separately among control subjects 
with the use of Fisher's Exact Test. The 
genotypes and frequencies of the 17 
different risk alleles were determined for all 
cases and controls and found to be in HW 
equilibrium. 

The genotype information was compared using 
Aikake's Information Criteria to choose the best fit 
genetic model (dominant or recessive). 

Positive family Hx 
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Table 9. Characteristics of included studies: SNPs (continued) 

Author 
Year 

SNP’s 
Number genotyped 
and considered for 
inclusion in panel 
 
Was genotyping done 
blind to participant 
status? 

Hardy Weinberg Equilibrium (HWE) 
 
Assessed?  
If yes, method? In controls? 
If no, in all participants? 
Result(s) [indicate whether this was for 
all SNPs considered for inclusion, or 
just those in the model(s) developed or 
evaluated 

How were SNPs handled in analysis? (e.g., 
dominant or recessive effects per SNP, per allele, 
genotype categories, risk scores [explain which 
of alleles/genotypes is considered to be risk 
variant]) 

Other variables 
included in SNP 
panel 

Nam
195

 
2009 

3,004 men underwent 1 
or more biopsies (and 
had sufficient leukocyte 
DNA available for SNP 
analysis): 
Cases = 1,389; 
Controls = 1,615 
 
NR 

Yes, HWE assessed among controls; 6 of 
25 SNPs (rs983085, rs6983561, 
rs7214479, rs6501455, rs4242382, ETV1) 
were not in HWE ( p <0.001) 

The authors examined 25 SNPs; 15 were reported by 
Zheng, et al., 2008,

188
 from chromosomal regions 

8q24 and 17q. They also examined 10 other SNPs 
previously shown to be associated with CaP, from 
KLK2, TNF, HOGG,9p22, and ETV1-rs2348763 and 
ETv1-rs13225697 genes and from locus of HPC1 on 
chromosome 1q24. Also included were 2 SNPs from 
ERG genes (TMPRSS2:ERG). Genotype groupings 
were tested based on additive, dominant, and 
recessive genetic models for each SNP and the one 
with the highest LRT was chosen as the best model. 
For SNPs examined by Zheng, et al., they used their 
genotype groupings. 

SNP panels for 
independent 
assessment: no 
additional variables 
included; Model 1, 2, 
and 3: adjusted for 
age, family Hx of 
prostate cancer, 
ethnicity, presence of 
urinary voiding 
symptoms, PSA level, 
free: total PSA ratio, 
and DRE. 

Penney
197

 
2009 

Physicians Health 
Study: Cases = 1,347; 
Controls = 1,462 
SPORE:  
Cases = 3,714 FHCRC 
King County Case-
control:  
Cases = 1,308; 
Controls = 1,266  
 
Yes (all 3 studies) 

No SNPs violated HWE in controls for 
Physicians Health Study or FHCRC King 
County case-control 

SNPs that had a minor allele frequency of >10% 
were analyzed under a codominant model, whereas 
the less common SNPs were analyzed assuming a 
dominant inheritance model. 

NR 
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Table 9. Characteristics of included studies: SNPs (continued) 

Author 
Year 

SNP’s 
Number genotyped 
and considered for 
inclusion in panel 
 
Was genotyping done 
blind to participant 
status? 

Hardy Weinberg Equilibrium (HWE) 
 
Assessed?  
If yes, method? In controls? 
If no, in all participants? 
Result(s) [indicate whether this was for 
all SNPs considered for inclusion, or 
just those in the model(s) developed or 
evaluated 

How were SNPs handled in analysis? (e.g., 
dominant or recessive effects per SNP, per allele, 
genotype categories, risk scores [explain which 
of alleles/genotypes is considered to be risk 
variant]) 

Other variables 
included in SNP 
panel 

Salinas
189

 
2009 

Cases = 1,457 
genotyped of the 1,754 
interviewed;  
Controls = 1,645 were 
interviewed;  
Included in panel: 
Caucasian cases 
=1308; Caucasian 
controls = 1,266 
 
Yes 

HWE for the 5 SNPs in Caucasian control 
was assessed using Fisher's Exact Test; 
pairwise linkage equilibrium (LD) between 
SNPs estimated based on r2 

For each SNP genotype, models adjusted for age 
were used to test dominant, recessive and additive 
(0,1, or 2 copies of associated allele) genetic models. 

Model 1 (Cumulative 
risk of 5 SNPs): 
adjusted for age and 
family Hx;  
Model 2: adjusted for 
age only 

Sun
190

 
2008a 

JHH study:  
Cases = NR; Controls = 
<4.0ng/ml;  
CGEMS and CAPS 
study = NR 
 
Case-only analysis: 
data not shown 

NR NR Not applicable (current 
study is validation 
study) 

Sun
194

 
2008b 

HPC families = 168;  
Non-HPC cases = 
1,404; Controls = 560 
 
Duplicated and water 
sampled = yes; 
otherwise blinding not 
reported 

Yes, for each SNP, tested whether 
observed genotype distributions were 
consistent with HWE expected proportions, 
separately for HPC probands, non-HPC, 
and controls using exact test, Tests for 
pairwise LD among SNPs in control 
subjects, and estimates for D' and r2 
obtained using Haploview software. To 
minimize impact of multiple testing, for 
each SNP, only the "best" mode of 
inheritance model, suggested by earlier 
studies, was evaluated. 

Comparisons of frequencies of alleles and genotypes 
between HPC probands and non-HPC patients and 
between HPC probands and unaffected controls 
were performed. For each SNP, homogeneity of 
allele frequencies was tested using a X2 test, with 1 
degree of freedom. Genotype frequency differences, 
assuming an additive, dominant, or recessive mode-
of-inheritance model, was tested using unconditional 
logistic regression models. Risk genotypes were 
compared to reference genotypes for each SNP 
(e.g., SNP: rs10086908, position 128,081,119 = 
TC/TT (risk) vs. TT and ORs produced for 

Models 1 and 2: 
adjusted for age 
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Table 9. Characteristics of included studies: SNPs (continued) 

Author 
Year 

SNP’s 
Number genotyped 
and considered for 
inclusion in panel 
 
Was genotyping done 
blind to participant 
status? 

Hardy Weinberg Equilibrium (HWE) 
 
Assessed?  
If yes, method? In controls? 
If no, in all participants? 
Result(s) [indicate whether this was for 
all SNPs considered for inclusion, or 
just those in the model(s) developed or 
evaluated 

How were SNPs handled in analysis? (e.g., 
dominant or recessive effects per SNP, per allele, 
genotype categories, risk scores [explain which 
of alleles/genotypes is considered to be risk 
variant]) 

Other variables 
included in SNP 
panel 

comparison between groups). 

Sun
198

 
2011 

Cases = 2,899  
 
NR 

NR NR Family Hx 

Wiklund
201

 
2009 

Cases = 2,875 
 
NR 

Each of the SNPs in autosomal 
chromosomes was in HWE (P>=0.05). 

NR NR 

Xu
193

 
2009 

CAPS: 
Cases = 2,899; 
Controls = 1,722  
PLCO: 
Cases = 1,172; 
Controls = 1,157 
 
NR 

HWE for each SNP among control subjects 
in each study using Fisher’s Exact Test. 

The association between the number of risk alleles 
and family Hx with CaP risk was tested using a 
logistic regression model. 

Family Hx 

Zheng
192

 
2009 
 
 

Cases = 2,899; 
Controls = 1,722  
 
NR 
 

Yes; Each of the SNPs in the autosomal 
chromosomes was in HWE (p >0.05) 
among controls. Tests for HWE done for 
each SNP separately among cases and 
controls using Fisher's Exact Test. 
Pairwise disequilibrium (LD) was tested for 
SNPs within same chromosomal region in 
control subjects. 

Allele frequency differences, between case patients 
and control patients were tested for each SNP using 
x2 test with 1 degree of freedom.  

Independent 
association of prostate 
cancer risk with each 
of the SNPs: adjusted 
for other SNPs as well 
as age, geographic 
region, and family Hx. 
ROC for three models 
including one with age, 
family Hx and 11 
SNPs. 

Zheng
188

 
2008 

Cases = 2,893; 
Controls = 1,781  
 
NR 

Yes, for each SNP separately (cases and 
controls) using Fishers' Exact test. 
Pairwise linkage disequilibrium tested for 
SNPs within each of the 5 chromosomal 

For genotypes, a series of tests assuming an 
additive, dominant, or recessive genetic model were 
performed for each of the 5 SNPs with the use of 
unconditional logistic regression. Differences in allele 

Family Hx, age, and 
geographic region. 
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Table 9. Characteristics of included studies: SNPs (continued) 

Author 
Year 

SNP’s 
Number genotyped 
and considered for 
inclusion in panel 
 
Was genotyping done 
blind to participant 
status? 

Hardy Weinberg Equilibrium (HWE) 
 
Assessed?  
If yes, method? In controls? 
If no, in all participants? 
Result(s) [indicate whether this was for 
all SNPs considered for inclusion, or 
just those in the model(s) developed or 
evaluated 

How were SNPs handled in analysis? (e.g., 
dominant or recessive effects per SNP, per allele, 
genotype categories, risk scores [explain which 
of alleles/genotypes is considered to be risk 
variant]) 

Other variables 
included in SNP 
panel 

 
 

regions (controls). frequencies between cases and control subjects 
were tested for each SNP with the use of chi-square 
test with 1 degree of freedom. 

Abbreviations: CaP = prostate cancer; CAPS = cancer of the prostate in Sweden; CGEMS = cancer genetic markers of susceptibility; DNA = deoxyribonucleic acid; DRE = digital 

rectal examination; ERG = ETS related gene; ETS = E-twenty six; ETV1 = ETS translocation variant 1; FHCRC = Fred Hutchinson cancer research center; HOGG = human 8-

oxoguanine glycosylase; HPC = hereditary prostate cancer; HPC1 = hereditary prostate cancer 1; HW = Hardy Weinberg HWE = Hardy Weinberg equilibrium; Hx = history; JHH 

= Johns Hopkins hospital; KLK2 = kallikrein-2; LD = linkage disequilibrium; LRT = likelihood ratio test; NR = not reported; OR = odds ratio; PLCO = prostate lung cancer 

ovarian; PSA = prostate specific antigen; ROC = receiver operating characteristic; SNP = single nucleotide polymorphism; SPORE = specialized programs of research excellence; 

TMPRSS2 = transmembrane protease serine 2; TNF = tumor necrosis factor  
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Table 10. Characteristics of included studies: Analysis and results 

Author 
Year 

Analysis 
Method of constructing SNP panel  
Method of validating SNP panel 
 

Analysis 
Missing data  
Measures used 
to evaluate SNP 
panel  

Results 
Number of 
participants included 
in analysis 
Mean age (SD) (by 
group) 
1st degree family Hx 
CaP 

Risk Score 
AUC 
ΔAUC 
Other Measure 
Subgroup analysis of risk score, AUC, delta AUC or other 
measure 

Aly
200

 
2011 

35 SNPs, log total PSA, log free to 
total PSA ratio, age at biopsy, family 
Hx of CaP 
 
Allelic ORs were calculated using 
logistic regression models. For each 
man a genetic risk score was created 
by summing the number of risk alleles 
at each of the 35 SNPs multiplied by 
the log of that SNPs OR. 

NR 
 
OR, AUC 

Cases = 2,135; Controls 
= 3,108 
 
Cases = 66; Controls = 
64 
 
Yes 
Cases = 29%; Controls 
= 22% 

When using the nongenetic model the AUC was 64.2%; By 
using the genetic model the AUC was significantly improved to 
67.4% (p=0.014). 
 
NR 
 
NR 
 
NR 

Beuten
196

 
2009 

 

116 SNPs initially considered 
 
NR 

Imputed for 
random forest and 
GMDR method. 
 
OR used for 
cumulative effects 
of risk variants. 
Testing accuracy 
& cross validation 
consistencies 
used for "best 
multi-genic 
models" . 

2,452 samples 
genotyped 
 
Cases = 65.5 (8.5); 
Controls = 60.8 (8.8)  
 
NR 

Non-Hispanic Caucasians # risk genotypes 0 ref, 1 OR 1.39 
(1.0 to 1.9), 2 OR 1.56 (1.11 to 2.20), 3 OR 2.87 (1.64 to 5.02) 
trend OR 2.20 (1.44 to 3.38) Hispanic Caucasians 0 Ref, 1 OR 
1.88 (1.17 to 3.02), 2 OR 4.58 (2.19 to 9.61), trend OR 4.29 
(2.11 to 8.72) 
 
NR 
 
NR 
 
Best multigenic models. 13 significant non-Hispanic 
Caucasians rs1538989-rs2479827-rs17523880-rs2470164 
testing accuracy 0.63 p0.001. 19 significant Hispanic. 
 
By ethnicity 
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Table 10. Characteristics of included studies: Analysis and results (continued) 

Author 
Year 

Analysis 
Method of constructing SNP panel  
Method of validating SNP panel 
 

Analysis 
Missing data  
Measures used 
to evaluate SNP 
panel  

Results 
Number of 
participants included 
in analysis 
Mean age (SD) (by 
group) 
1st degree family Hx 
CaP 

Risk Score 
AUC 
ΔAUC 
Other Measure 
Subgroup analysis of risk score, AUC, delta AUC or other 
measure 

Helfand
191

 
2010 
 

CaP cumulative risk was analyzed. 
The determined best fit genetic model 
for each genetic variant was used to 
examine the cumulative relationship 
between the original 5 SNPs and CaP 
risk in the population.

204
 

 
NR 

NR 
 
ROCs 
constructed with 
and without 
adjustment for 
age, compared 
as a ROC 
contrast 
statement in SAS 
for the models 
including 5 vs. 9 
genetic variants; 
CaP cumulative 
risk on best fit 
genetic model 
measured by OR 

Cases = 687; Controls = 
777 
 
Cases = 69.8 years; 
Controls = 58 years. No 
SDs given.  
 
NR 

Age to adjusted ORs (95% CIs): 5 SNPs along 8q24 +17q + 0 
to 1 carried variants = 1.00 (Ref); + 2 carried variants = 1.74 
(1.32 to 2.29);+ 3 carried variants = 2.00 (1.47 to 2.71);+ 4 to 5 
carried variants = 3.19(1.85 to 5.50); age to adjusted OR (95% 
CI): 2p15, 10q11, 11q13 + Xp11 SNPs + 0 to 1 carried variants 
= 1.00 (ref); + 2 carrier variants = 1.46 (0.74 to 2.86); +3 carrier 
variants = 2.46 (1.29 to 4.66); + 4 carrier variants = 3.05 (1.60 
to 5.79); + 5 carrier variants = 4.39 (2.24 to 8.61); + 6 or more 
carrier variants = 5.75 (2.50 to 13.24) 
 
Model including all 9 variants = 0.61; model including 5 variants 
= 0.58 
 
After adjustment for age, 9 variant model AUC = 0.66, and 5 
variant model = 0.65 
 
NR 
 
NR 

Helfand
199

 
2011 

NR 
 
NR 

NR 
 
AUC 

Cases = 203 
Controls = 611 
 
Cases = 58 
Controls = 58 
 
Yes 
Cases = 36% 
Controls = 15% 

When the presence of family Hx was included in the analysis, 
we found that carriers of >10 genetic risk factors had an 11.2 
fold increased risk of having CaP (p<0.0001) compared with 
men who were carriers of ≤5 risk alleles. 
 
AUC for the model including all the carrier numbers of all 17 
risk variants was 0.655 [p<0.000, OR 1.4 (1.3-1.6)] 
When family Hx was included AUC=0.706, p,0.001  
 
NR 
 
NR 
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Table 10. Characteristics of included studies: Analysis and results (continued) 

Author 
Year 

Analysis 
Method of constructing SNP panel  
Method of validating SNP panel 
 

Analysis 
Missing data  
Measures used 
to evaluate SNP 
panel  

Results 
Number of 
participants included 
in analysis 
Mean age (SD) (by 
group) 
1st degree family Hx 
CaP 

Risk Score 
AUC 
ΔAUC 
Other Measure 
Subgroup analysis of risk score, AUC, delta AUC or other 
measure 

Nam
195

 
2009 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A panel of 15 initially considered 
SNPs and independent comparisons 
of allele frequencies in cases/controls 
were examined. Based on those 
associated with CaP from Zheng, et 
al., 2008.

188
 A second panel of SNPs 

for independent assessment was 
based on the authors' previous 
findings (Nam, et al., 2008;

224
 Nam, et 

al., 2005;
225

 Nam, et al., 2006
226

). 
Model 1 was based on 5 SNPs 
defined by Zheng, et al. Model 2 used 
a similar approach to Zheng, but the 
authors chose 4 SNPs with the most 
significant p-values from a panel 
based on their previous work. Model 
3 used the two most significant SNPs 
selected from Zheng and two from 
Nam. 
 
NR 

NR 
 
Independent 
association of 
prostate cancer 
risk with each of 
SNPs measured 
by OR and 95% 
CI; Cumulative 
effects of 
selected SNPs 
as seen in 
combination SNP 
Models 1, 2, and 
3 measured 
using OR and 
95% CI for 
prostate cancer 
using univariate 
and multivariate 
analyses; ROC 
constructed to 
estimate AUC of 
the various SNP 
models 

Cases = 1,389;Controls 
= 1,615  
 
At time of biopsy, mean 
age is  
prostate biopsies =  
64.5 (range = 40 to 94 
years); 
controls = NR (range 
≤50 to ≥70 years  
 
Cases = 16.4%; 
Controls = 12.1%; 
obtained by research 
personnel through 
questionnaire and 
medical record review 

Panel of SNPs (validation of Zheng, et al.): OR (95% CI) in 
order of SNPs as previously listed: rs4430796 = 1.04 (0.9 to 
1.2), rs7501939 = 1.04 (0.8 to 1.3), rs3760511 = 1.02 (0.8 to 
1.3), rs1859962 = 1.34 (1.1 to 1.6), rs16901979 = 1.07 (0.9 to 
1.3), rs6983267 = 1.20 (1.0 to 1.4), rs7000448 = 1.16 (1.0 to 
1.4), rs1447295 = 1.61 (1.3 to 1.9), rs7017300 = 1.50 (1.3 to 
1.8), rs7837688 = 1.51 (1.2 to 1.8); Second Panel of SNPs 
from previous work. ERG rs2836431 = 1.36 (1.1 to 1.7), ERG 
rs8131855 = 1.34 (1.1 to 1.6), HOGG1 = 326 rs1052133 = 1.67 
(1.2 to 2.3), KLK2 rs198972 = 1.16 (1.0 to 1.3), KLK2 
rs2664155 = 1.24 (1.1 to 1.4), TNF rs1800629 = 1.27 (1.1 to 
1.5), rs1552895 (9p22) = 1.21 (1.0 to 1.4), HPC1 
(1q25,rs1930293) = 1.27 (1.1 to 1.5), ETV1 (7q21,rs2348763) 
= 1.25 (1.1 to 1.4);  
Combination models (0 associated genotypes (gt) = ref): model 
1: 1 gt = 1.40 (1.1 to 1.7), 2 gt = 1.47 (1.2 to 1.9), 3 gt = 1.58 
(1.1 to 2.2), ≤4 gt = 1.55 (0.9 to 2.8); model 2: 1 gt = 1.32 (0.9 
to 1.9), 2 gt = 1.44 (1.0 to 2.0), 3 gt = 1.69 (1.2 to 2.4), ≥4 gt = 
2.17 (1.3 to 3.6); model 3: 1 gt = 1.23 (1.0 to 1.5), 2 gt = 1.45 
(1.1 to 1.8), 3 gt = 2.22 (1.5 to 3.2), ≥4 gt = 5.09 (1.6 to 16.5); 
 
From multivariate ROC analysis: AUC for baseline model 
including age, family Hx, ethnicity, presence of urinary voiding 
symptoms, PSA level, free: total PSA ratio, DRE = 0.72 (95% 
CI, 0.70 to 0.74). Adding SNPs from Zheng, et al. (model 1) to 
multivariate model, AUC = 0.73 (0.71 to 0.75). AUC from model 
2 was 0.73 (0.71 to 0.74). AUC from model 3 was 0.74 (0.72 to 
0.76, p = 0.0001).  
 
AUC of predictive model: Removing SNP genotype 
combination and compared it with incremental drops of 
variables: SNP combination from model 3 = drop of 0.014); age 
= 0.022; family Hx = 0.003; symptom score = 0.001; PSA = 
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Table 10. Characteristics of included studies: Analysis and results (continued) 

Author 
Year 

Analysis 
Method of constructing SNP panel  
Method of validating SNP panel 
 

Analysis 
Missing data  
Measures used 
to evaluate SNP 
panel  

Results 
Number of 
participants included 
in analysis 
Mean age (SD) (by 
group) 
1st degree family Hx 
CaP 

Risk Score 
AUC 
ΔAUC 
Other Measure 
Subgroup analysis of risk score, AUC, delta AUC or other 
measure 

 
 
Nam

195
 

2009 
(cont’d) 

0.001; Free: total PSA ratio = 0.066; DRE = 0.010 
Positive predictive value (%) of PSA test based on established 
cut-off level of 4.0 ng/ml using genotype combination from 
model 3: 1 gt combinations = PPV 
 
Combination models (Caucasians only, OR, 95% CI): Model 1: 
1 gt = 1.41 (1.2 to 1.7), 2 gt = 1.53 (1.2 to 1.9), 3 gt = 1.33 (0.9 
to 2.0), ≥4 gt = 4.46 (1.4 to 13.9); Model 2: 1 gt = 1.22 (0.9 to 
1.7), 2 gt = 1.49 (1.1 to 2.1), 3 gt = 1.76 (1.2 to 2.5), ≥4 gt = 
2.38 (1.4 to 4.0); Model 3: 1 gt = 1.26 (1.0 to 1.6), 2 gt = 1.61 
(1.3 to 2.1), 3 gt = 3.05 (2.0 to 4.6), ≥4 gt = 3.81 (1.2 to 12.3) 

Penney
197

 
2009 
 

CaP incidence was investigated only 
in PHS and FHCRC, as there are no 
controls in GELB. 
 
NR 

NR 
 
Data analyzed by 
unconditional 
logistic 
regression, 
adjusting for 
matching factors 
to estimate OR; 
OR combined 
into summary 
estimate across 
PHS and FHCRC 
using random 
effects model 
with cohort as 
random effect 

PHS:  
Cases = 1,347; Controls 
= 1,462  
 
GELB:  
Cases = 3,714 (not in 
CaP incidence) 
 
FHCRC:  
Cases = 1,308; Controls 
= 1,266 
 
PHS: 70.5 (7.7) 
GELB: 62 (8.2) 
FHCRC: 59.9 (7.0) 
 
NR in any study 

Combined in PHS and FHCRC: rs13254738 AA = OR 1.00, AC 
OR = 1.03 (0.92 to 1.16), CC OR 1.28 (1.06 to 1.54); 
rs6983561 AA OR 1.00, AC/CC OR 1.54 (1.13,2.08); 
rs5693267 TT 1.00, GT OR 1.22(1.04 to 1.44), GG 1.41 (1.20 
to 1.64), rs7000448 CC 1.00, CT 1.04 (0.93 to 1.17), TT 0.92 
(0.78 to 1.09), rs1447295 CC 1.00, CA/AA 1.40 (1.23, 1.61), 
rs4430796 GG 1.00, AG 1.31 (1.11 to 1.54), AA 1.60 (1.37 to 
1.88), rs1859962 TT 1.00, GT 1.18 (0.90,1.54), 1.48 (1.27, 
1.73) in PHS only rs7008482 TT 1.00, GT 0.91 (0.77,1.07), GG 
0.87 (0.68,1.12) 
 
NR 
 
NR 
 
Comparison of CaP mortality (death vs. 10 year survival); 
Gleason score; Pathologic Stage; Age and PSA at Dx 
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Table 10. Characteristics of included studies: Analysis and results (continued) 

Author 
Year 

Analysis 
Method of constructing SNP panel  
Method of validating SNP panel 
 

Analysis 
Missing data  
Measures used 
to evaluate SNP 
panel  

Results 
Number of 
participants included 
in analysis 
Mean age (SD) (by 
group) 
1st degree family Hx 
CaP 

Risk Score 
AUC 
ΔAUC 
Other Measure 
Subgroup analysis of risk score, AUC, delta AUC or other 
measure 

Salinas
189

 
2009 

The best fitting models for each SNP 
(using Zheng, et al., 2008

188
) was 

selected based on the model with the 
greatest LRT. Confounding was 
evaluated by considering whether 
inclusion of other covariates changed 
the risk estimates ≤10%. P-values 
were derived from LRT statistics 
obtained by comparison of nested 
models. Goodness of fit was 
evaluated using the Hosmer-
Lemeshow Test. Gene-gene and 
gene-environment interaction was 
evaluated using the LRT test 
comparing the full model with the 
main effect and an interaction term. 
PAR% was calculated for each SNP 
based on the OR obtained from the 
multivariate models. Corrected PAR% 
was calculated by solving a quadratic 
equation in which the absolute risk is 
a function of the observed OR, 
exposure prevalence in controls, and 
background disease. 
 
NR 

Men with missing 
genotype 
information for 
any SNP 
excluded from 
independent SNP 
analyses 
 
Models 1 and 2: 
OR and 95% CI; 
comparison of 
models (subset 
analysis): AUC; 
ROCs (shown in 
figure, not 
presented in 
report); prostate 
cancer-specific 
mortality 
associated with 
each of the SNPs 
= hazard ratios 
and 95% CI (data 
not within scope 
of current review) 

Main analyses (study I 
and II participants): 
Cases = 1,308  
Controls = 1,266  
Subset AUC analysis 
from Study I only: 
Cases = 475 
Controls = 364 
 
At Dx: 
Cases = 59.9 
Controls = 59.6  
 
Cases = 21.6%  
Controls = 11.1%; (time 
of Dx) obtained by 
trained male 
interviewers using 
standardized 
questionnaire 

Model 1 = cumulative effect of associated genotypes at 5 
SNPs: 1st degree family Hx of CaP = 2.31 (1.84 to 2.91), (0 
associated genotype (gt) = reference, 1 gt = 1.48 (1.09 to 
2.01), 2 gt = 1.88 (1.38 to 2.56), 3 gt = 2.97 (2.08), ≥4 gt = 3.36 
(1.90 to 6.08); Model 2: cumulative effect of genotypes at 5 
SNPs and family Hx: 0 gt (reference), 1 gt = 1.41 (1.02 to 
1.97), 2 gt = 2.25 (1.63 to 3.13), 3 gt = 3.43 (2.40 to 4.94), 4 gt 
= 3.65 (2.24 to 6.03), ≤5 gt = 4.92 (1.58 to 18.53); Independent 
SNP Effects Models (study I and II participants): family Hx = 
2.32 (1.85 to 2.92), Region 7q12: rs4430796 = 1.43 (1.19 to 
1.71), Region 17q24.3: rs1859962 = 1.25 (1.03 to 1.51), 
Region 8q24: rs6983561 = 1.76 (1.30 to 1.64), rs6983267 = 
1.34 (1.10 to 1.64), rs1447295 = 1.34 (1.10 to 1.63) 
 
Model with age at reference date, serum PSA (at Dx for cases, 
interviews for controls), and 1st degree relatives with CaP = 
0.63 compared to same model with 5 SNPs added = 0.66. This 
was based on random subset of Study I participants only 
(cases = 475/controls = 364). 
 
Difference between the curves = 0.03 (95% CI, -0.12 to +0.06) 
 
PAR(%) for SNPs in the 8q24, 17q12, and 17q24.3 
chromosomal regions: 1st degree family Hx of CaP = 11.8%, 
rs4430796 (AA gt) = 9.4%, rs1859962 (GG gt) = 5.3%, 
rs6983561 (CC+CA gts) = 4.5%, rs6983267 (GG+GT gts) = 
19.8%, rs1447295 (AA+AC gts) = 6.0%, all 5 at risk SNPs (as 
above) = 38.1%, all 5 SNPs & family Hx = 54.4% 
 
Subset analysis of Study I participants only, as reported under 
AUC scores 
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Table 10. Characteristics of included studies: Analysis and results (continued) 

Author 
Year 

Analysis 
Method of constructing SNP panel  
Method of validating SNP panel 
 

Analysis 
Missing data  
Measures used 
to evaluate SNP 
panel  

Results 
Number of 
participants included 
in analysis 
Mean age (SD) (by 
group) 
1st degree family Hx 
CaP 

Risk Score 
AUC 
ΔAUC 
Other Measure 
Subgroup analysis of risk score, AUC, delta AUC or other 
measure 

Sun
190

 
2008a 

Multivariate analyses were done 
where all 5 SNPs, family Hx 
(excluding JHH), and age were 
included. Cumulative effects of the 5 
SNPs were analyzed using the JHH 
study population and CGEMS study 
population (confirmation studies) 
using logistic regression. A 
subanalysis of the cumulative effect 
included family Hx because it was 
independent from the cumulative risk 
genotype effect. Cumulative effect of 
the 5 SNPs and family Hx on CaP in 
the CGEMS-prostate sample was 
estimated and compared to the CAPS 
sample and then combined, but not 
for the JHH sample, due to 
incomplete family Hx data. The 
combined analysis of 5 SNPs and 
family Hx was assessed by counting 
the number of prostate cancer 
associated genotypes (based on best 
fit genetic model from Zheng, et al., 
and coded as ‘1’ if the individual 
carried the risk factors and ‘0’ 
otherwise for each of the 6 factors in 
each subject.  
 
This model is validating the previously 
reported model from Zheng, et al., 
2008

188
 

One SNP 
(rs16901979) 
imputed from the 
adjacent 
genotyped SNPs 
at 8q24 using 
IMPUTE 
software; 
computed 
confidence 
scores to ensure 
reliable 
imputation 
 
Cumulative effect 
of 5 SNPs in 
three 
independent 
studies: OR for 
prostate cancer 
for men carrying 
any combination 
of 1,2,3, or ≥4 
risk genotypes 
estimated by 
comparing to 
men carrying 
none of the risk 
genotypes using 
logistic 
regression 

Combined cumulative 
analysis (all three study 
populations): 
Cases = 5,628 
Controls = 3,514 
 
NR 
 
JHH study - 'not 
complete'; CAPS and 
CGEMS studies - yes 

Cumulative Combined Effect of 5 SNPs Model 1 from 
Combining data from Johns Hopkins Study + CGEMS-prostate 
study + CAPS study : ORs (95% CI) all compared to reference 
0 SNPs: = 1 SNP: 1.41 (1.20 to 1.67), 2 SNP: 1.88 (1.59 to 
2.22), 3 SNPs: 2.36 (1.95 to 2.85), and ≥4 SNPs: 3.80 (2.77 to 
5.22); Cumulative Combined Effect of 6 Risk Variants (5 SNPs 
+ family Hx) Model 2 from the CAPS and CGEMS studies = 1 
SNP: 1.64 (1.34 to 2.00), 2 SNPs: 2.07 (1.70 to 2.51), 3 SNPs: 
2.82 (2.28 to 3.50), 4 SNPs: 4.61 (3.40 to 6.25), ≥5 SNPs: 
11.26 (4.74 to 24.75). Case-only analysis: no statistically 
significant association was found between 5 SNPs and 
Gleason score, age at Dx, presence of family Hx, (CGEMS 
only), or aggressiveness of prostate cancer  
 
 
NR 
 
Trend test was statistically significant in the CGEMS-prostate 
(p = 4.75 x 10 to 14) and in the combined CAPS and CGEMS-
prostate (p = 1.94 x 10 to 39). 
 
NR 
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Table 10. Characteristics of included studies: Analysis and results (continued) 

Author 
Year 

Analysis 
Method of constructing SNP panel  
Method of validating SNP panel 
 

Analysis 
Missing data  
Measures used 
to evaluate SNP 
panel  

Results 
Number of 
participants included 
in analysis 
Mean age (SD) (by 
group) 
1st degree family Hx 
CaP 

Risk Score 
AUC 
ΔAUC 
Other Measure 
Subgroup analysis of risk score, AUC, delta AUC or other 
measure 

Sun
194

 
2008b 

12 SNPs were selected based on the 
published literatureTo minimize the 
impact of multiple testing for each 
SNP, only the best mode-of-
inheritance model, was evaluated. 
OR and 95% CI was estimated for 
men with previously identified risk 
genotypes, compared to men without, 
under these genetic models. Family-
based association tests were 
performed utilizing data from nuclear 
families, sibships, or a combination of 
the two to test for linkage and linkage 
disequilibrium between traits and 
genotypes. An empirical variance 
estimator in FBAT was used to 
perform a valid test of association, 
accounting for the correlation of 
alleles among multiple affected 
individuals in the same family due to 
linkage. The LAMP computer 
program was used to jointly model 
linkage and association in the 168 
families with HPC, and to calculate 
the LRT of marker data conditional on 
trait data under several models. 
LAMP uses a LRT to test for linkage 
and/or linkage disequilibrium. 
 
NR 

NR 
 
Estimated 
genotype risk 
(Models 1) of 
8q24: OR and 
95% CI;  
Cumulative 
effects of 8q24 
risk variants 
(Models 2): OR 
and 95% CI (and 
p-values) 

Estimated Genotype 
Risk (models 1) :  
HPC = 221 
Controls = 560;  
Non-HPC Cases = 
1,404 
Controls = 560 
Cumulative effect of 
8q24 (models 2) = HPC 
vs. controls; Non-HPC 
vs. controls: 0 risk 
genotypes: 
HPC probands = 96;  
Non-HPC cases = 678; 
Controls = 560;  
1 risk genotypes: 
HPC = 97; 
Non-HPC = 559; 
Controls = 192; ≥2 risk 
genotypes: 
HPC = 28; 
Non-HPC cases = 167; 
Controls = 36;  
 
Described previously 
(Xu, et al., 2001)

223
 

 
221 HPC cases (at least 
2 additional 1st degree 
relatives diagnosed with 
prostate cancer) verified 
by medical records 

Model 1 (genotype risk vs. ref) OR (95%CI) (HPC vs. 
Controls): Region 1 = rs1447295: 2.25 (1.52 to 3.32), 
rs4242382: 2.37 (1.61 to 3.50), rs7017300: 1.86 (1.29 to 2.67), 
rs10090154: 2.33 (1.57 to 3.45), rs7837688: 2.51 (1.71 to 
3.70); Region 2 = rs10086908: 0.88 (0.63 to 1.22), 
rs13254738: 0.99 (0.68 to 1.32), rs6983561:1.76 (1.05 to 2.94), 
rs16901979: 1.70 (1.02 to 2.84); Region 3 = rs6983267: 1.29 
(0.89 to 1.86) , rs7000448: 0.54 (0.30 to 0.96), Region c to 
MYC = rs6470572 : 1.09 (0.78 to 1.52); (Non to HPC vs. 
controls): Region 1 = rs1447295: 1.73 (1.33 to 2.26), 
rs4242382: 1.81 (1.38 to 2.34), rs7017300: 1.44 (1.14 to 1.82), 
rs10090154: 1.74 (1.33 to 2.27), rs7837688: 1.80 (1.38 to 
2.36); Region 2: rs10086908: 0.92 (0.76 to 1.12), rs13254738: 
1.00 (0.82 to 1.22), rs6983561:1.14 (0.80 to 1.62), rs16901979: 
1.13 (0.79 to 1.60); Region 3 = rs6983267: 1.42 (1.14 to 1.78) , 
rs7000448:1.26 (0.95 to 1.67); Region c to MYC = rs6470572 : 
0.91 (0.74 to 1.12); Model 2 (Cumulative Effect) OR (95% CI): 
HPC vs. Controls: 0 risk genotypes = ref., 1 risk genotype = 
1.76 (1.24 to 2.49), ≥2 risk genotypes = 2.94 (1.67 to 5.15), 
Non to HPC vs. Controls: 1 genotype = 1.42 (1.15 to 1.75), = 
>2 genotypes = 2.23 (1.52 to 3.28) 
 
NR 
 
NR 
 
NR 
 
NR 
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Table 10. Characteristics of included studies: Analysis and results (continued) 

Author 
Year 

Analysis 
Method of constructing SNP panel  
Method of validating SNP panel 
 

Analysis 
Missing data  
Measures used 
to evaluate SNP 
panel  

Results 
Number of 
participants included 
in analysis 
Mean age (SD) (by 
group) 
1st degree family Hx 
CaP 

Risk Score 
AUC 
ΔAUC 
Other Measure 
Subgroup analysis of risk score, AUC, delta AUC or other 
measure 

Sun
198

 
2011 

Family Hx, 5 SNPs, 11 SNPs, 28 
SNPs sequentially discovered from 
GWAs in the 4 years preceding 
December 2009 
 
Multiplicative model; Estimated 
sensitivity and specificity, PPV, and 
NPV, and used AUC statistic 

NR 
 
AUC 

Cases = 2,899; 
Controls = 1,722 
 
Cases = 66; 
Controls = 67 
 
Yes 
Cases = 19%; 
Controls = 9% 

AUC was 0.60 for 5 SNPs, 0.61 for 11 SNPs and 0.62 for 28 
SNPs 
 
NR 
 
NR 
 
NR 

Wiklund
201

 
2011 

16 SNPs selected from 4 GWAs 
 
NR 

NR 
 
Survival Analysis, 
Cox regression 
methods 

Cases = 2,875 
 
Age = 35 – 79 
 
NR 

NR 
 
NR 
 
NR 
 
NR 
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Table 10. Characteristics of included studies: Analysis and results (continued) 

Author 
Year 

Analysis 
Method of constructing SNP panel  
Method of validating SNP panel 
 

Analysis 
Missing data  
Measures used 
to evaluate SNP 
panel  

Results 
Number of 
participants included 
in analysis 
Mean age (SD) (by 
group) 
1st degree family Hx 
CaP 

Risk Score 
AUC 
ΔAUC 
Other Measure 
Subgroup analysis of risk score, AUC, delta AUC or other 
measure 

Xu
193

 
2009 

The association of a number of risk 
alleles and family Hx with CaP risk 
was tested using a logistic regression 
model adjusted for age and 
geographic region (CAPS). 
 
NR 
 

NR 
 
Absolute risk 
estimated based 
on OR, calibrated 
incidence rate of 
CaP for men with 
most common 
number of risk 
alleles, negative 
family Hx, and 
mortality rate for 
all causes 
excluding CaP in 
Sweden and the 
U.S. 

CaPs: 
Cases = 2,899; 
Controls = 1,722  
 
PLCO screening trial:  
Cases = 1,172; 
Controls = 1,157 
 
NR 
 
1

st
 and 2

nd
 degree 

relative +ve CaPs: 
Cases = 550/2,898; 
Controls = 163/1,721 
 
PLCO: 
Cases = 1,36/1,176; 
Controls = 67/1,101 

OR (95%CI)  
CaPs with no family Hx 0 to 7 risk alleles 0,71 (0.55 to 0.91), 8 
risk alleles 0.78 (0.61 to 1.01), 9 r.a. 0.95 (0.76 to 1.21), 10 r.a. 
0.99 (0.80 to 1.24), 11 r.a. 1.00 (baseline), 12 r.a.1.13 (0.91 to 
1.41), 13 r.a. 1.41 (1.10 to 1.79), ≥14 2.26 (1.79 to 2.86)  
CaPs with family Hx 0 to 7 risk alleles 1.54 (1.12 to 2.12), 8 
r.a.1.70 (1.24 to 2.33), 9 r.a. 2.07 (1.54 to 2.80), 10 r.a. 2.16 
(1.61 to 2.89), 11 r.a., 2.17 (1.80 to 2.63),12 r.a. 2.45 (1.84 to 
3.27), 13 r.a. 3.06 (2.25 to 4.15), ≥14 4.92 (3.64 to 6.64) 
 
NR 
 
NR 
 
NR 
 
NR 
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Table 10. Characteristics of included studies: Analysis and results (continued) 

Author 
Year 

Analysis 
Method of constructing SNP panel  
Method of validating SNP panel 
 

Analysis 
Missing data  
Measures used 
to evaluate SNP 
panel  

Results 
Number of 
participants included 
in analysis 
Mean age (SD) (by 
group) 
1st degree family Hx 
CaP 

Risk Score 
AUC 
ΔAUC 
Other Measure 
Subgroup analysis of risk score, AUC, delta AUC or other 
measure 

Zheng
192

 
2009 

The panel consisted of the 
independent association of prostate 
cancer risk with each SNP 
(significantly associated from an 
allelic test). The model with the 
highest LRT was considered as the 
best-fitting genetic model for the 
respective SNP. Backward selection 
was used for independent association 
with each of the significantly 
associated SNPs (adjusting for age, 
geographic location and family Hx). 
To assess the utility of these SNPs 
and family Hx in predicting men with 
and without CaP, sensitivity and 
specificity for predicting CaP was 
estimated using various cutoffs of 
number of alleles and family Hx. AUC 
statistics were estimated for several 
predictive models after fitting a 
logistic regression, including model 3 
= age, family Hx, and genetic 
variants. 
 
CaP risk and 19 SNPs identified from 
previous GWA studies imply its 
validation of previously reported 
significantly associated SNPs. No 
validation within the study was 
reported for ROCs and AUC 
statistics. 

Missing data 
treated as 
missing values in 
the analyses 
 
Independent 
association of 
prostate cancer 
risk with each of 
SNPs measured 
by OR and 95% 
CI; Overall 
predictive 
performance of 
predictive models 

Cases = 2,899; 
Controls = 1,722 
 
At enrolment:  
Aggressive cases = 
68.04 (7.32); 
Nonaggressive cases = 
65.14 (6.74) 
All cases = 66.36 (7.13); 
Controls = 67.15 (7.39) 
 
[No family Hx: 
Aggressive cases = 
82.29%; 
Nonaggressive cases = 
79.99% 
All controls = 90.57%] 
Overall:  
Cases = 19.1%;  
Controls = 14% (same 
as Zheng, et al.) 

Independent Association with each SNP: ORs (95% CI) = 
family Hx only = 2.19 (1.80 to 2.67); age only = 1.02 (1.00 to 
1.03); geographic region = 0.46 (0.38 to 0.54); rs2660753 = 
1.32 (1.12 to 1.55); rs9364554 = 1.08 (0.98 to 1.19); 
rs10486567 = 1.39 (1.04 to 1.85); rs6465657 = 1.14 (1.04 to 
1.25); rs16901979 = 1.65 (1.32 to 2.08); rs6983267 = 1.22 
(1.12 to 1.34); rs1447295 = 1.16 (1.01 to 1.34); rs1571801 = 
1.15 (1.04 to 1.27); rs10993994A = 1.16 (1.06 to 1.27); 
rs10896449B = 1.12 (1.02 to 1.22); rs4430796 = 1.22 (1.11 to 
1.33); rs1859962 = 1.17 (1.07 to 1.28); rs5945619C = 1.19 
(1.05 to 1.36). No interactions were statistically significant (p 
>0.05) (data not shown). 
 
Predictive Models: model 1 (age) = 0.58 (0.56 to 0.59), model 2 
(age and family Hx) = 0.61 (0.59 to 0.62), model 3 (age, family 
Hx, 11 SNPs = 0.65 (0.63 to 0.66), model 4 (age, family Hx, 
geographic region & 5 previously evaluated SNPs (Zheng 
2008) = 0.63 (0.62 to 0.65) 
 
Difference AUC mode 2 to model 1 = 0.03 ; difference between 
model 3 and 2 = 0.04; Difference in AUC statistically significant 
between models 2 and 1 for additional effect of family Hx: p = 
1.36 x 10 to 7, and between models 3 and 2: p = 2.3 x 10 to 
10. 
 
Among 23 risk factors (22 risk alleles from 11 SNPs and family 
Hx), cutoff of 11 risk factors = sensitivity and specificity (0.25 
and 0.86, respectively) which were similar to PSA level cutoff 
of 4.1ng/ml. 
 
Sensitivity and specificity of the genetic factors to predict 
specific types of this cancer: No differences were found for any 
specific types of prostate cancer 
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Table 10. Characteristics of included studies: Analysis and results (continued) 

Author 
Year 

Analysis 
Method of constructing SNP panel  
Method of validating SNP panel 
 

Analysis 
Missing data  
Measures used 
to evaluate SNP 
panel  

Results 
Number of 
participants included 
in analysis 
Mean age (SD) (by 
group) 
1st degree family Hx 
CaP 

Risk Score 
AUC 
ΔAUC 
Other Measure 
Subgroup analysis of risk score, AUC, delta AUC or other 
measure 

Zheng
188

 
2008 

The likelihood ratio test (LRT) for the 
best fitting genetic model of individual 
SNPs, adjusting for age and 
geographic region were given. The 
independent effect of the 5 regions 
were given by including the most 
significant SNP from each of the 5 
regions in a logistic regression model 
using backwards selection. 
Multiplicative interactions were tested 
for each pair of SNPs by including 
both main effects and an interaction 
term using logistic regression. 
Cumulative effect of the 5 SNPs was 
tested by counting the number of 
genotypes associated with prostate 
cancer (from single SNP analysis) for 
the 5 SNPs in each subject. 
Subanalysis included cumulative 
effect, including 5 SNPs and family 
Hx. 
 
NR 

NR 
 
OR, AUC, PAR 
for each model 

Aggressive disease 
cases = 1,231; 
Localized disease 
cases = 1,619; 
Controls = 1,781 
 
Cases = 66.4 (7.1); 
Controls = 67.2 (7.2) 
 
Cases = 19.0%; 
Controls = 9.4%  
 
 

OR (95% CI): Age + 0 SNPs = 1.01 (1.00 to 1.02); Geographic 
region + 0 SNPs = 0.47 (0.40 to 0.55); 1 SNp = 1.62(1.27 to 
2.08); 2 SNPs = 2.07 (1.62 to 2.64); 3 SNPs = 2.71 (2.08 to 
3.53); 4 SNPs = 4.76 (3.31 to 6.84); ≥5 SNPs = 9.46 (3.62 to 
24.72) 
 
63.3 (95% 61.7 to 65.0) for model 3 (age, region, family Hx, 
and # genotypes associated with CaP at the 5 SNPs) 
 
NR 
 
NR 
 
NR 

Abbreviations: AUC = area under the curve; ΔAUC = change in the area under the curve; CaP = prostate cancer; CAPS = cancer of the prostate in Sweden; CGEMS = cancer 

genetic markers of susceptibility; DNA = deoxyribonucleic acid; DRE = digital rectal examination; Dx = diagnosis; ERG = ETS related gene; ETS = E-twenty six; ETV1 = ETS 

translocation variant 1; FBAT-family based association test; FHCRC = Fred Hutchinson cancer research center; GMDR = generalized multifactor dimensionality reduction; 

HOGG = human 8-oxoguanine glycosylase; HPC = hereditary prostate cancer; HPC1 = hereditary prostate cancer 1; HW = Hardy Weinberg HWE = Hardy Weinberg equilibrium; 

Hx = history; JHH = Johns Hopkins hospital; KLK2 = kallikrein-2; LAMP = linkage and association modeling for pedigrees; LD = linkage disequilibrium; LRT = likelihood ratio 

test; NR = not reported; OR = odds ratio; PAR = population attributable risk; PHS = physicians‘ health study; PLCO = prostate lung cancer ovarian; PPV = positive predictive 

value; PSA = prostate specific antigen; ROC = receiver operating characteristic; SAS = statistical analysis software; SD = standard deviation SNp = single nucleotide 

polymorphism; TNF = tumor necrosis factor 
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Table 11. Focus 5 test 
5-SNP Panel (Focus 5)  

Chromosome rs Number 
Replicated in 
GWA Studies 

Zheng
188

 Salinas
189

 Sun
190

 Nam
195

 model 1 Helfand
191

 Zheng
192

 

8q24 (region 
1) 

rs1447295 Yes x x x x x x 

8q24(region2) rs16901979 Yes x x
a
 

x (imputed in 
PLCO) 

 
x 

x
b 

x 

8q24(region3) rs6983267 Yes x x x x x
b
 x 

17q12 rs4430796 Yes x x x x x
c
 x 

17q24 rs1859962 yes x x
c
 x x x x 

Variables adjusted for  

Age, 
geographic 
region and 
family Hx 

Age (and serum 
PSA, family Hx 
in AUC 
analysis) 

 

None and age, family 
Hx, ethnicity, urinary 
symptoms, PSA, free: 
total PSA ratio and 
DRE 

Age 
In AUC 
analysis, age 
and family Hx 

Variables added to model 
containing SNPs 

 Family Hx Family Hx Family Hx    

a substituted by rs6983561, with which it was perfectly correlated 
b additive model, in contrast to other five studies in which 5-SNP panel assessed 
c dominant model, in contrast to other five studies in which 5-SNP panel assessed 

Abbreviations: AUC = area under the curve; DRE = digital rectal exam; GWA = genome-wide association studies; Hx = history; PLCO = Prostate Lung Colon and Ovarian Cancer 

Screening Trial; PSA = prostate specific antigen; SNP = single nucleotide polymorphism  
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Table 12. Summary of SNPs and other variables included in test panels 

SNP  
9-SNP 
Panel

191
 

17-SNP 
Panel

199
 

11-SNP 
Panel

192
 

14-SNP 
Panel 

16-SNP 
Panel 

28-SNP 
Panel 

3 SNPs 
in 8q24 

4-SNP 
Test 

4-SNP 
Test 

3-SNP 
Test 

2-SNP 
Test 

6-SNP 
Panel 

35-
SNP 
Panel 

Chromosome rs number 
Replicated 
in GWA 
studies

§
 

Helfand 
191

 
Helfand 
199

 
Zheng

192
 Xu

193
 Wiklund

201
 Sun

198
 Sun

194
 Nam

195
 

model 
2 

Nam
195

 
model 
3 

Beuten
196

 
Beuten
196

 
Penney
197

 
Aly

200
 

1q25 rs1930293         x      

2p15 
rs2710646  x             

rs721048 yes  x (ass)  x x       x 

2p21 rs1465618       x       x 

2p21  
THADA 

rs1465618 yes  
 

  
  

      
 

2q31 rs10207654               

2q31.1 rs12621278       x       x 

3 rs10934853       x        

3p12 rs2660753 yes   x x          

3q21.3 rs4857841              x 

3q21.3 rs10934853 yes  x            

4q22  
PDLIM5 

rs17021918   
 

  
  

      
 

4q22.3 
rs12500426              x 

rs17021918       x       x 

4q24 rs7679673 yes              

5p15 Rs2736098   x            

5p15 Rs401681   x            

6q25 rs9364554 yes   x           

6q25.3 rs9364554      x x       x 

7p15.2 rs10486567      x        x 

7q21.3 rs6465657      x        x 

7p15 rs10486567 yes   x x          

7q21 
rs6465657 yes   x x          

rs2348763         x x     
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Table 12. Summary of SNPs and other variables included in test panels (continued) 

SNP  
9-SNP 
Panel

191
 

17-SNP 
Panel

199
 11-SNP 

Panel
192

 
14-SNP 
Panel 

16_SNP 
Panel 

28-SNP 
Panel 3-SNPs in 

8q24 
4-SNP 
Test 

4-SNP 
Test 

3-SNP 
Test 

2-SNP 
Test 

6-SNP 
Panel 

35-
SNP 
Pan
el 

Chromosome rs number 
Replicated 
in GWA 
studies

§
 

Helfand 
191

 
Helfand 
199

 
Zheng

192
 Xu

193
 Wiklund

201
 Sun

198
 Sun

194
 Nam

195
 

model 
2 

Nam
195

 
model 3 

Beuten
196

 
Beuten
196

 
Penney

1

97
 

Aly
2

00
 

8 
rs2928679       x        

rs1512268       x        

8p21 rs1512268 yes              

8p21.2 rs1512268              x 

8q24 rs7008482             x  

8q24 Rs16902094 yes  x    x       x 

8q24  
(region 1) 

rs1447295 yes x x x x x  x  x   x x 

rs4242382 yes       (ass)       

rs7017300        (ass) x      

rs10090154        (ass)       

rs7837688 yes       (ass) x      

rs6470572        (ass)       

8q24  
(region 2) 

rs16901979 yes x 
x 

x 
x 

(imputed 
in PLCO) 

x  
x      

x 

rs10086908        (ass)      x 

rs13254738        (ass)     x  

rs6983561             x x 

8q24  
(region 3) 

rs6983267 yes x x x x x  x x    x  

rs7000448        (ass) x    x  

8q24.21 

rs12543663              x 

rs1016343              x 

rs13252298              x 

rs445114              x 

rs620861       x       x 

rs6983267              x 
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Table 12. Summary of SNPs and other variables included in test panels (continued) 

SNP  
9-SNP 
Panel

191
 

17-SNP 
Panel

199
 11-SNP 

Panel
192

 
14-SNP 
Panel 

16_SNP 
Panel 

28-SNP 
Panel 3-SNPs in 

8q24 
4-SNP 
Test 

4-SNP 
Test 

3-SNP 
Test 

2-SNP 
Test 

6-SNP 
Panel 

35-
SNP 
Pan
el 

Chromosome rs number 
Replicated 
in GWA 
studies

§
 

Helfand 
191

 
Helfand 
199

 
Zheng

192
 Xu

193
 Wiklund

201
 Sun

198
 Sun

194
 Nam

195
 

model 
2 

Nam
195

 
model 3 

Beuten
196

 
Beuten
196

 
Penney

1

97
 

Aly
2

00
 

rs16902104               

rs445114 yes  x            

9p22 rs1552895         x      

9q33 rs1571801    x           

10q11 
rs10993994 yes x x x x          

rs7920517    (ass)           

10q11.23 rs10993994      x        x 

10q26 rs4962416 yes   (ass)           

10q26.13 rs4962416      x x       x 

11p15.5 rs7127900       x       x 

11q13 

rs7931342 yes   (ass)           

rs10896450  x x            

rs11228565   x            

11q13 
(region1) 

rs10896449 yes  
 

x  
  

      
 

11q13 
(region2) 

rs12418451   
 

  
  

      
 

11q13.2 

rs12418451       x       x 

rs11228565              x 

rs10896449      x        x 

17q12 Rs11649743   x           x 

17q12 rs4430796 yes x x x
b
 x x   x    x x 

17q12 rs7501939 yes        x      

17q12 rs3760511         x      

17q24 rs1859962 yes x x x
b
 x x    x   x x 

19q13.2 rs8102476 yes  x    x       x 
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Table 12. Summary of SNPs and other variables included in test panels (continued) 

SNP  
9-SNP 
Panel

191
 

17-SNP 
Panel

199
 11-SNP 

Panel
192

 
14-SNP 
Panel 

16_SNP 
Panel 

28-SNP 
Panel 3-SNPs in 

8q24 
4-SNP 
Test 

4-SNP 
Test 

3-SNP 
Test 

2-SNP 
Test 

6-SNP 
Panel 

35-
SNP 
Pan
el 

Chromosome rs number 
Replicated 
in GWA 
studies

§
 

Helfand 
191

 
Helfand 
199

 
Zheng

192
 Xu

193
 Wiklund

201
 Sun

198
 Sun

194
 Nam

195
 

model 
2 

Nam
195

 
model 3 

Beuten
196

 
Beuten
196

 
Penney

1

97
 

Aly
2

00
 

19q13  
(KLK2/KLK3) 

rs2735839 yes   (ass)  x x       x 

rs5759167 yes              

22q13      x          

22q13.1 rs9623117              x 

22q13.2 rs5759167       x       x 

ERG rs2836431         x      

ERG rs8131855         x      

CYP19 rs12439137           x (nHW)    

CYP19 rs2470152           x (nHW)    

CYP19 rs10459592            x (HW)   

CYP24A11 rs3787554            x (HW)   

HOGG1-326 rs1052133         x      

HSD3B2 rs1819698           x (nHW)    

KLK2 rs198972         x      

KLK2 rs2664155         x      

Region c-MYC rs6470572   
 

  
  

(ass)      
 

TERT rs401681 
With serum 
PSA levels 

 
 

  
  

      
 

TNF rs1800629         x x     

Xp11.22 rs5945619      x        x 

Xp11 
rs5945572 yes x x (ass)           

rs5945619 yes   x           

11p15 rs7127900 yes              
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Table 12. Summary of SNPs and other variables included in test panels (continued) 

SNP  
9-SNP 
Panel

191
 

17-SNP 
Panel

199
 11-SNP 

Panel
192

 
14-SNP 
Panel 

16_SNP 
Panel 

28-SNP 
Panel 3-SNPs in 

8q24 
4-SNP 
Test 

4-SNP 
Test 

3-SNP 
Test 

2-SNP 
Test 

6-SNP 
Panel 

35-
SNP 
Pan
el 

Chromosome rs number 
Replicated 
in GWA 
studies

§
 

Helfand 
191

 
Helfand 
199

 
Zheng

192
 Xu

193
 Wiklund

201
 Sun

198
 Sun

194
 Nam

195
 

model 
2 

Nam
195

 
model 3 

Beuten
196

 
Beuten
196

 
Penney

1

97
 

Aly
2

00
 

Variables adjusted for  Age 

 

In AUC 
analysis, 
age, and 
family Hx 

 

  

  

age, 
family 
Hx, 
ethnicity
, US, 
PSA, 
free: 
total 
PSA 
ratio 
and 
DRE 

   

 

Variables added to model 
containing SNPs 

  
 

 
Family 
Hx 

  
      

 

§ based on information in Table 1 
a substituted by rs6983561, with which it was perfectly correlated 
b additive model, in contrast to other five studies in which 5-SNP panel assessed 
c dominant model, in contrast to other five studies in which 5-SNP panel assessed 

Abbreviations: AUC = area under the curve; ass = assessed in single SNP analysis, but not included in panel; DRE = digital rectal exam; HW = Hispanic whites; nHW = Non-

Hispanic whites; Hx = history; PSA = prostate specific antigen; rs = Reference SNP; US=urinary symptoms 
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Table 13. Genetic variants tested for by deCODE ProstateCancer 

Chromosome rs Number 

8q24 (region 1) rs1447295 

8q24 (region2) 
rs16901979 

rs10086908 

8q24 (region3) rs6983267 

17q12 rs4430796 

17q24 rs1859962 

19q13.2 rs8102476 

19q13 (KLK2/KLK3) 
rs2735839 

rs5759167 

2p15 rs2710646 

3p12 rs2660753 

6q25 rs9364554 

7p15 rs10486567 

7q21 rs6465657 

10q11 rs10993994 

11q13 (region1) rs10896449 

Xp11 rs5945572 

4q22 PDLIM5 rs17021918 

TERT rs401681 

11p15 rs7127900 

8p21 rs1512268 

4q24 rs7679673 

2q31 rs10207654 

3q21.3 rs10934853 

8q24.21 rs16902104 

2p21 THADA rs1465618 

8q24.21 rs445114 
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Table 14a. Newcastle-Ottawa Scale:
185

 Case-control studies  

 Study 

Question 

Zheng
188

  
Salinas
189

 
Sun 
190

 
Sun 
190

 
JHH 

Helfand
191

 
Zheng
192

 
Xu 
193

 
Sun 
194

 
Nam 
195

 
Beuten 
196

 
Penney
197

 
PHS & 
FHCRC 

Penney 
197

 
Gelb Center 
companion 
227

 

Aly 
200

 
Helfand 
199

 
Sun 
198

 

Is the case definition 
adequate? 

A* = yes, with 
independent validation 

B = yes, e.g., record 
linkage or based on 
self-reports 

C = no description 

A* A* C C A* A* PR B A* A* A* C B C A* 

Representativeness of 
the cases 

A* = consecutive or 
obviously 
representative series of 
cases 

B = potential for selection 
biases or not stated 

B A* A* A* A* A* PR A* A* B B B B B B 

Selection of Controls 

A* = community controls 
B = hospital controls 
C = no description 

A* A* A* B C A* PR B B A* A* C A* C A* 

Definition of Controls 

A* = no Hx of disease 
(endpoint) 

B = no description of 
source 

B A* B B B B PR B A* A* A* B A* A* B 

Comparability of cases 
and controls on the 
basis of the design of 
analysis 

A* = study controls for 
(select most important 
factor) 

B* = study controls for 
any additional factor 

A*B A*&B* A*&B* A* A* A*&B* PR A*&B* A*&B A*&B* A*&B* A* A*&B* A* A*&B* 
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Table 14a. Newcastle-Ottawa Scale:
185

 Case-control studies (continued)    

 Study 

Question 

Zheng
188

  
Salinas
189

 
Sun 
190

 
Sun 
190

 
JHH 

Helfand
191

 
Zheng
192

 
Xu 
193

 
Sun 
194

 
Nam 
195

 
Beuten 
196

 
Penney
197

 
PHS & 
FHCRC 

Penney 
197

 
Gelb Center 
companion 
227

 

Aly 
200

 
Helfand 
199

 
Sun 
198

 

Ascertainment of 
exposure: quality 
control & blinding 

A* = secure record (e.g., 
surgical records) 

B = structured interview 
where blind 
case/control status 

C = interview not blinded 
to case/control status 

D = written self-report or 
medical record only 

E = no description 

A* A* E E E E PR A* E D A* A* A* A* E 

Same method of 
ascertainment for 
cases & controls 

A* = yes 
B = no 

B B A* A* B B PR B A* A* A* A* A* B PR 

Non-Response rate 

A* = same rate for 
both groups 
B = nonrespondents 
described 
C = rate different and 
no designation 

B B C C C B PR C C C C C C C C 

NOS Star Rating (out of 
9) 

5 7 5 3 3 5 NA 4 6 6 7 3 6 2 4 

Abbreviations: FHCRC = Fred Hutchinson Cancer Research Center; Hx = history; JHH = Johns Hopkins Hospital; NA = not available; PHS = Physician‘s Health Study; PR = 

previously reported 
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Table 14b. Newcastle-Ottawa Scale:
185

 Cohort studies 
Study Representativeness 

of the exposed 
cohort  
A* truly 
representative of 
the average 
prostate cancer 
patient in the 
community  
B* somewhat 
representative  
C selected group of 
users (volunteers)  
D no description of 
derivation of cohort 
 

Selection of 
the non 
exposed 
cohort  
A* from 
same 
community 
as exposed  
B from 
different 
source  
C no 
description 
 

Ascertainment 
of exposure 
A* secure 
records 
(surgical)  
B* structured 
interview  
C written self 
report  
D no 
description 
 

Demonstration 
that outcome 
of interest was 
not present at 
start of study  
A* yes  
B no 
 

Comparability 
of cohorts on 
the bases of 
the design or 
analysis  
 
A* most 
important 
factor study 
controls for  
 
B* additional 
factor 

Assessment 
of outcome  
A* 
independent 
blind 
assessement  
B* record 
linkage  
C self report  
D no 
description 
 

Was 
follow-
up long 
enough 
for 
outcome
s to 
occur  
A* yes  
B no 
 

Adequacy 
of follow up 
of cohorts  
A* complete 
follow up  
B*small 
number lost 
(%) or 
description 
of those 
lost,  
C % lost 
and no 
description 
of lost  
D no 
statement 

NOS 
Star 
Rating 
(out of 
9) 

Wiklund
20

1
 

A* (PR) A* A* A* (PR) A* B* A* A* 8 

 

 
Table 14c. Selected items from QUADAS

186 

Question Zheng 
188

 
Salinas
189

 
Sun
190

 
Helfand
191

 
Zheng
192

 
Xu 
193

 
Sun 
194

 
Nam 
195

 
Beuten
196

 
Penney
197

 
Penney 
197

 
Penney 
197

 
Aly 
200

 
Helfand
199

 
Sun 
198

 
Wiklund 
201

 

Spectrum of 
participants 
representative 
of the patients 
who would 
receive the test 
in practice 

yes yes yes no yes NA no no yes no 
(PHS) 

yes 
(FHCRC) 

 UC 
(Gelb 
Center) 

yes yes yes yes 

Selection 
criteria clearly 
described 

yes yes yes no yes NA UC yes yes yes yes yes* yes yes yes yes 

Reporting of 
uninterpretable
indeterminate, 
or intermediate 
test results 

yes yes no no yes NA no UC no no no no yes yes yes yes 

* yes, if look at companion 
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Abbreviations: FHCRC = Fred Hutchinson Cancer Research Center; NA=not applicable; PHS = Physician‘s Health Study, UC=unclear 
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Discussion 
The purpose of this review was to establish the evidence base behind using single nucleotide 

polymorphism-based panels in prostate cancer risk assessment, which includes risk stratification, 

screening for undiagnosed disease, and assessing prognosis. The high incidence of prostate 

cancer, the problems associated with current test methods (particularly prostate-specific antigen 

[PSA] screening in asymptomatic men), the difficulty of determining prognosis in many affected 

men, and the lack of clarity on the utility of different therapeutic approaches, mean that other 

avenues need to be explored with some energy. Even fairly modest improvements in risk 

classification could translate into large health gains in absolute terms.  

It is of crucial conceptual importance to recognize that this review is based on a framework 

of risk prediction, as distinct from causal inference. In the situation of risk prediction, it is 

relevant to compare models that include standard risk factors with models that include the same 

risk factors together with single nucleotide polymorphisms (SNPs). This contrasts with the 

situation of causal inference in which the SNP status of an individual is ―assigned‖ at birth (and 

is by definition unconfounded). In a clinically-oriented, test evaluation approach, such concerns 

are secondary to assessing performance as a predictor of a particular outcome.  

The review was structured around the ACCE framework, which emphasizes technical 

assessment as well as clinical performance, although the intent was always to draw conclusions 

to guide current clinical practice. This was not achieved because of the dearth of evidence 

relating to most of the questions of interest. 

We identified a number of SNP panels that we considered fulfilled the definition of ―close to 

commercially available‖. They were widely variable in their makeup, containing a range of 

different SNPs, many combined with other risk factor data in predictive algorithms. There was a 

lack of published data describing the technical protocols and analytical accuracies achieved for 

the specific SNPs by panel, and of information describing the laboratory protocols used to 

demonstrate the analytical validity of SNP panels used for clinical service testing. The limited 

data available suggest that the analytic validity of genotyping of the 5-SNP panel is high in 

research settings, but questions remain about potential errors which could influence test results in 

a clinical setting. This concern also applies to the other panels assessed, for which data were only 

available from single studies.  

With regard to the clinical validity of the 5-SNP panel, the studies were predominantly done 

with participants of European origin, and so the generalizability of these findings to men of other 

ancestral or ethnic groups is limited. None of the analyses showed any substantial increment in 

AUC when the SNPs were added to other risk factors in the models evaluated. The AUCs with 

the inclusion of SNPs ranged between 63 and 73 percent, and would not in themselves be 

considered useful for individual risk prediction. In general, proposed tests with an AUC of 75 

percent or less are unlikely to be clinically useful.
228,229

 In the single study of the 5-SNP panel 

that investigated mortality, there was no difference between SNP-based and non-SNP-based 

models. In the single study of the panel that addressed differences by Gleason score, and 

aggressive and nonaggressive disease, there was no association with scores derived from the 5-

SNP panel. 

There were only single studies of the other panels, almost all of which reported on panel 

development, with no information on internal or external validation. When AUC was reported, it 

was in the range of 62 to 74 percent, and would not in itself be considered useful for individual 

risk prediction. Any increase in AUC compared with models not incorporating the SNP 

combinations was small. In the few studies that investigated the distinction between clinically 
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important and latent/asymptomatic prostate cancer or prognosis, no associations were observed 

with risk scores derived from the SNP panels. 

Thus currently available or documented SNP panels proposed for prediction of risk for 

prostate cancer have poor discriminative ability. Only one of the panels was tested in data 

independent of the data in which the panel was developed, and by independent teams of 

investigators. None of the articles considered calibration, that is, the agreement between the 

proportion predicted to have the outcome and the proportion observed in the participants in 

which the panel was tested. Evaluation of calibration is important if predictions based on a test 

panel are used to inform those tested or health professionals in making decisions.
230

 Moreover, 

discrimination and calibration have limited usefulness for clinical decisionmaking. On the one 

hand, a panel with good discrimination in a research context may not be clinically useful if the 

threshold for clinical decision making is outside the range of predictions provided by the 

panel.
230

 On the other hand, a model with relatively poor discrimination may be clinically useful 

if there is little evidence or consensus to guide clinical choice between alternative managements; 

none of the studies use a decision-analytic approach.
231

 

No evidence was found which addressed the important questions of clinical utility. This is 

unsurprising, given that this field is in the early stages of development.
232,233

 However, even if 

the review had identified more compelling evidence to support clinical validity (the ability to 

accurately predict or detect prostate cancer), this would not in itself provide any direct evidence 

of the value of SNP-based test panels in reducing morbidity and mortality.  

Even if SNP-based panels were determined to be useful in improving prostate cancer 

screening (i.e., the detection of undiagnosed but clinically important cancer), the overall benefits 

would also depend on the consistent application of appropriate diagnostic strategies, which in 

turn would depend at least partly on clinicians‘ willingness to trust the results of initial screening. 

The most important limitation with PSA-based screening is its lack of specificity (i.e., high rate 

of false positives).
88,102,103

 Improving on this by using SNP-based panels would reduce 

unnecessary diagnostic investigations and their associated morbidity and costs. However, this 

will only be successful if patients are willing to trust in negative screen results, given a 

prevailing culture that seems to promote higher levels of screening as ‗better‘ screening 

practice.
234-239

 Thus, SNP-based screening panels will need not only to demonstrate increased 

specificity, but may also need to demonstrate superior levels of sensitivity compared with PSA-

based screening in order for patients and their physicians to have confidence in their use. 

SNP-based panels may also have a role in stratifying future risk of prostate cancer in men 

who are currently unaffected. This would permit tailoring of surveillance strategies according to 

risk category: those at highest risk would presumably be offered more frequent screening and 

those at lowest risk could avoid unnecessary surveillance. However, this assumes that it would 

be possible to optimize surveillance strategies and ensure valid screening tests. It might also be 

assumed that men at higher risk would be more motivated to make positive lifestyle changes, 

although there is no evidence that this actually occurs from studies based on other forms of risk 

stratification (family history or genetic testing).
240,241

 It has also been argued that while the risk 

of a disease outcome varies between risk strata, the risk of harm from treatment is more 

uniform.
242

 Thus, some individuals could benefit more from treatment than others, but all would 

be at similar risk of harm. 

It is also hoped that SNP-based panels may improve the overall tailoring of treatment so that 

only those men who are at risk of aggressive disease are offered radical surgical interventions. 

Evaluations of the prognostic accuracy of such panels would be a first step, but definitive 
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evidence from rigorous trial would still be required to determine the overall utility of such an 

approach. To date, there is limited evidence from randomized controlled trials (RCTs) about the 

efficacy of radical prostatectomy compared with watchful waiting in men with clinically 

localized prostate cancer,
70,71,81

 and syntheses of observational evidence are significantly 

hampered by serious methodological issues.
243

 Two RCTs comparing watchful waiting with 

radical prostatectomy are ongoing, one in the U.K.,
82

 and one in the United States.
84

 

Taken together, therefore, benefits from improvements in prostate cancer risk prediction, 

screening, and prognostic stratification will depend to a large extent on clearer evidence that 

surveillance, diagnostic, and treatment strategies in themselves lead to reductions in morbidity 

and mortality. 

Applicability 
At present it would be premature to apply the results of this review to a clinical population.



 

75 

Conclusion 
The potential value of using single nucleotide polymorphism-based panels in prostate cancer 

risk assessment includes risk stratification, screening for undiagnosed disease, and assessing 

prognosis. We identified 15 single nucleotide polymorphism (SNP) panels that we considered 

fulfilled the definition of ‗close to commercially available‘. They were widely variable in their 

makeup, containing 2-35 different SNPs, many combined with other risk factor data in predictive 

algorithms.  

With regard to stratifying future risk and/or screening for current disease, a 5-SNP panel was 

evaluated in six articles. The other 14 panels were investigated in single studies only. Areas 

under the curve (AUCs) across all panels ranged between 58 and 74 percent. Thus, all of the 

panels had AUCs below 75 percent, the threshold below which tests are in general considered 

unlikely to be clinically useful. Moreover, within individual studies, the incremental gain in 

AUC observed when the predictive model including the SNP data was compared against the best 

alternative non-SNPs model (i.e., the absolute improvement in AUC) was very small.  

Evaluations of the use of SNP-panels to distinguish between clinically important and 

latent/asymptomatic prostate cancer were available for four panels. None of the evaluations 

suggested that any of the four panels performed well in distinguishing between more and less 

aggressive disease. Prediction of prostate cancer mortality in affected men was evaluated for 

three panels. There was no association between risk alleles and prostate cancer mortality for any 

of the panels. 

Not surprisingly, given that this field is in the early stages of development, no evidence was 

found which addressed the important questions of clinical utility. However, even if the review 

had identified more compelling evidence to support clinical, this would not in itself provide any 

direct evidence of the value of SNP-based test panels in reducing morbidity and mortality. Any 

benefit from improvements in prostate cancer risk prediction, screening, and prognostic 

stratification will depend to a large extent on clearer evidence that surveillance, diagnostic, and 

treatment strategies in themselves lead to reductions in morbidity and mortality.
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Future Research 
We identified a number of evaluations of diverse single nucleotide polymorphism (SNP) 

panels. We could not draw robust conclusions regarding their analytic validity. These studies 

showed statistically significant associations between combinations of SNPs and risk of prostate 

cancer. However, when assessed using test evaluation designs, the risk models which 

incorporated the SNP panels improved the area under the curve only marginally compared with 

non-SNP-based tests in their ability to distinguish cases from noncases, clinically meaningful 

from latent or asymptomatic cancer, or in stratifying the prognosis of confirmed cases. These 

evaluations were not conducted in routine clinical settings. No evidence was identified to address 

the question of clinical utility.  

Future research should focus on evaluating the clinical validity of SNP-based panels more 

extensively and robustly, in participants more representative of general clinical populations, and 

compared directly with existing standards of care. In addition to the consideration of 

discrimination and calibration, it would be helpful to use decision-analysis methods.
219

 

Incorporation of additional SNPs that increase the proportion of the polygenic variance 

accounted for by measured genetic variants would be expected to increase the absolute 

difference in risk between extreme tails of the distribution of a SNP panel.
244

 It has also been 

observed that adding a polygenic risk score (that is, a score based on SNP alleles associated with 

disease that do not achieve either nominal statistical significance (p<0.05) or stringent genome-

wide statistical significance) does not improve risk prediction for prostate cancer over replicated 

SNPs from genome-wide association (GWA) studies.
245

 These observations would suggest a 

need to identify and validate further genetic markers to enable larger SNP panels to be 

developed. However, it is also the case that SNPs identified from GWA studies are markers for 

the region of risk in which the causal SNP is located. The magnitude of risk associated with truly 

causal variants would be expected to be greater than with the risk markers so far identified. 

Therefore, the quest to develop future panels useful in risk stratification will depend on further 

characterization of the regions of genetic risk already identified, as well as possible additional 

markers. More emphasis needs to be placed on distinguishing aggressive and nonaggressive 

disease, and investigators should consider the possibility for subgroup analyses at the planning 

stage of studies. 
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Appendix A. Search Strings 

 

Search Strategy SNPs 

 

Medline 

1. Prostatic Neoplasms/ 

2. *Neoplasms/ 

3. ((prostate or prostatic) adj2 (cancer$ or neoplasm$ or carcinom$ or tumo?r$)).ti,ab. 

4. 1 or 2 or 3 

5. Polymorphism, Single Nucleotide/ 

6. SNP?.tw. 

7. *Genetic Predisposition to Disease/ge [Genetics] 

8. or/5-7 

9. 4 and 8 

10. limit 9 to english language 

11. limit 10 to (comment or editorial) 

12. 10 not 11 

 

EMBASE  

1. Polymorphism, Single Nucleotide/  

2. SNP?.tw. 

3. exp *genetic predisposition/  

4. 1 or 2 or 3  

5. exp prostate cancer/  

6. *Neoplasms/  

7. ((prostate or prostatic) adj2 (cancer$ or neoplasm$ or carcinom$ or tumo?r$)).ti,ab.  

8. 5 or 6 or 7  

9. 4 and 8  

10. limit 9 to english language  

11. limit 10 to (editorial or note)  

12. 10 not 11  

 

Cochrane Central Register of Controlled Trials  

1. Prostatic Neoplasms/  

2. *Neoplasms/  

3. ((prostate or prostatic) adj2 (cancer$ or neoplasm$ or carcinom$ or tumo?r$)).ti,ab.  

4. 1 or 2 or 3  

5. Polymorphism, Single Nucleotide/  

6. SNP?.tw.  

7. *Genetic Predisposition to Disease/ge [Genetics]  

8. or/5-7  

9. 4 and 8
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Appendix B. Data Abstraction Forms 
 

SNP Screening Forms 

Level 1 Title and Abstract Screening Form 

1. Is this citation in English? 

⃝  YES/Can’t tell 

⃝  NO (STOP) 

2. Is this citation a full report of a research study and does it include the use of the acronym or phrase 

SNP (single nucleotide polymorphism) testing? (NOT a commentary, editorial, or narrative review; 

nor GWAS or family study) 

OR include genetic testing AND polymorphic variants of multiple genes AND (not) gene expression 

⃝  YES/Can’t tell 

⃝  NO (STOP) 

3. Is this citation a full report of a SINGLE research study? (NOT a systematic review) 

⃝  YES/Can’t Tell 

⃝  NO (an SR, so STOP) 

4. Does this citation focus on human SNPs research? (rather than an animal model, such as mouse) 

⃝  YES/Can’t tell 

⃝  NO (STOP) 

5. Does this citation include some proportion of subjects who do not have prostate cancer? 

⃝  YES/Can’t tell 

⃝  NO (continue) 
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Full Text Screening Level 1 Form 
 
1. Is this study about Prostate Cancer? 

⃝  YES 

⃝  NO (exclude) 

2. Does this study include a test panel of human SNPs? 
A test panel is defined as a list of SNPs (or other genetic sequence analytes) included in the assay. The 

included SNPs can either be informative (i.e., provide test results utilize in the interpretation of the 

result), or controls used to assist in determining the accuracy and conclusiveness of the test result. 

⃝  YES 

⃝  NO (exclude) 

⃝  Other (exclude, but specify…)  

3. Is the SNP test commercially available? 

Yes = Affymetrix, Illumina, Seqnenome iPlex, ABI SNplex, other multi-plex arrays 

NO = Sequencing for a single SNP, TaqMan assay, RFLP (restriction length fragment polymorphism) 

Can’t tell = anything that doesn’t seem to fit above, but please record the name if you can find it 

⃝  YES  

⃝  Don’t know (provide name)  

⃝  NO (exclude) 

4. Is the study design of this publication…..? 

⃝  COMPARATIVE design (case-control, population cohort, RCT, 2 or more group simulation study) 

⃝  SINGLE GROUP design (pre/post; no comparator) 

⃝  LABORATORY STUDY evaluating analytic validity/accuracy of SNP panel/platform 

⃝  Case report (exclude) 

⃝  Qualitative study (exclude) 

⃝  Diagnostic test evaluation 

⃝  Systematic review 

⃝  Other (exclude) – what kind – GWAs? Family? Other? _________________ 
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Full Text Screening Level 2 Form 

1. Does this study address SNP discovery in genes linked to Prostate Cancer cases only? 

⃝  YES, Genome wide association study GWAS (agnostic, hypothesis testing) approach; “Fishing 

expedition”. (Stop, Exclude) 

⃝  YES, By candidate gene approach (hypotheses about effects of variants of genes, or about genetic 

variation in a gene being associated with risk. The latter would be associated with terms like 

“tagging and/or “haplotypes”. (Stop, Exclude) 

⃝  No, This study is about gene-characterization containing SNPs associated with Prostate Cancer in 

previous studies (Continue) 

⃝  UNSURE (Specify and describe in box provided below this question) (Continue) 

 

2. Does this SNP study address the following? 

⃝  SNP(s) assessment in single gene only (Stop, Exclude) 

⃝  SNP(s) assessment ACROSS more than one gene (this may or may not include investigation of 

gene-gene or gene-environment interaction. (Continue) 

3. The aim of this study is to address the following? 

⃝  To determine whether a panel of specific SNPs (across genes) predicts risk (Stop, Include) 

⃝  Whether genetic variation in general at a specific genetic locus is associated with risk (Stop, 

Include) 

Full Text Screening Level 3 Form 

Does this study use a SNP assembled panel to assess clinical validity (risk prediction)?  

⃝  YES (included) 

⃝  NO (excluded) 
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SNP Data Abstraction Form 

Name:         Date:  

Please answer the following questions with regard to the selected articles: 

Author:  

Publication Year:  

Refid:  

 

Study Objective: 

⃝  Model development  

⃝  Validation  

⃝  Both  

 

Study Design 

1. Key elements (e.g., single or multiple case-control, nested case-control, cross-sectional, cohort, 
newly incident or prevalent cases, nature of control group[s]) 

 

 

2. Setting (in which participants were recruited): 

⃝  Hospitals 

⃝  Outpatient clinics 

⃝  Screening centers 

⃝  Registries 

⃝  Other (Specify)  

 

3. Location (country, region, city):  

 

 

4. Dates of data collection: to  
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Study Participants 

1. Eligibility (i.e., inclusion and exclusion) criteria for participants: 

 

 

2. Sources and methods of selection: 

 

 

3. Number assessed for eligibility: 
 

SNPs 

1. Number genotyped and considered for inclusion in panel: 

 

2. Type of laboratory in which genotyping done:  

 

3. Genotyping method:  

 

4. Was genotyping done blind to participant status? 

⃝  Yes 

⃝  No 

⃝  Unsure 

5. Genotyping call rate (range; or > % threshold; coverage [SNPs that were considered for inclusion 
but assay failed so not carried in to analysis]) 

 

 

6. Concordance rate for duplicate samples: 

 

 

7. Any other quality control checks (Specify): 
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8. Hardy Weinberg equilibrium (HWE): 

Assessed?  Yes ⃝  No ⃝  

If yes, method?  

In controls?  Yes ⃝  No ⃝  

If no, in all participants?  

Result(s) [indicate whether this was for all SNPs considered for inclusion, or just those in the 
model(s) developed or evaluated]  

 

 

9. SNPs (rs number and chromosomal region; if used in paper, please record alternative name for 
SNP as well) included in each model. When more than one model is developed or evaluated in a 
paper, the list of SNPs for each model should be given separately. 

 

 

10. How were SNPs handled in analysis? (e.g., dominant or recessive effects per SNP, per allele, 
genotype categories, risk scores [explain which of alleles/genotypes is considered to be risk 
variant]) 

 

 

 

11. Other variables included in SNP panel 

 

 

 

Analysis 

1. Method of constructing SNP panel (number of SNPs and number of other variables initially 
considered; variable selection procedure; horizon of risk protection [e.g., 5-year risk]) 

 

 

2. Method of validating SNP panel (procedure and data) 
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3. Missing data (imputation, other) 

 

 

4. Measures used to evaluate SNP panel (e.g., OR(s) by risk score, AUC, ∆AUC, maximum test 
accuracy and cross-validation consistency) 

 

 

 

Results 

1. Number of participants included in analysis (by group; one entry per analysis)  

2. Mean age (SD) (by group) Age:  SD:    

3. Ethnicity:             

 

4. First degree family history of prostate cancer? 

⃝  Yes 

⃝  No 

5. PSA:  ___________________________________________________________________  

6. Gleason score:  ___________________________________________________________  

7. Pathologic stage (TNM):  ___________________________________________________  

8. Aggressive Disease 

a. Definition:  ___________________________________________________________  

 __________________________________________________________  

b. Proportion of cases with aggressive disease:  % 

9. Risk Score:  ________________  

10. AUC:  ____________________  

11. ∆AUC: ____________________  

12. Other measure:  __________________________________________________________  
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13. Subgroup analysis of risk score, AUC, ∆AUC or other measure: 

 

 

14. Results of validation (if relevant):  

 

 

Funding 

15. Specified? 

⃝  Yes 

⃝  No 

16. Public or other?  
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NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE 

CASE-CONTROL STUDIES 
 

Note: A study can be awarded a maximum of one star (*) for each numbered item within the 

Selection and Exposure categories. A maximum of two stars can be given for Comparability. 

Selection 
1) Is the case definition adequate? 

a) yes, with independent validation * 

b) yes, e.g., record linkage or based on self reports 

c) no description 

2) Representativeness of the cases 

a) consecutive or obviously representative series of cases * 

b) potential for selection biases or not stated  

3) Selection of Controls 

a) community controls * 

b) hospital controls 

c) no description 

4) Definition of Controls 

a) no history of disease (endpoint) * 

b) no description of source 

Comparability 
1) Comparability of cases and controls on the basis of the design or analysis 

a) study controls for _______________ (Select the most important factor.) * 

b) study controls for any additional factor * (This criteria could be modified to indicate 

specific control for a second important factor.) 

Exposure 

1) Ascertainment of exposure 

a) secure record (eg surgical records) * 

b) structured interview where blind to case/control status * 

c) interview not blinded to case/control status 

d) written self report or medical record only 

e) no description 

2) Same method of ascertainment for cases and controls 

a) yes * 

b) no 

3) Non-Response rate 

a) same rate for both groups * 

b) non respondents described 

c) rate different and no designation 
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NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE 

COHORT STUDIES 

 

Note: A study can be awarded a maximum of one star for each numbered item within the 

Selection and Outcome categories. A maximum of two stars can be given for Comparability 

Selection 

1) Representativeness of the exposed cohort 

a) truly representative of the average _______________ (describe) in the community* 

b) somewhat representative of the average ______________ in the community ¯ 

c) selected group of users eg nurses, volunteers 

d) no description of the derivation of the cohort 

2) Selection of the non exposed cohort 

a) drawn from the same community as the exposed cohort* 

b) drawn from a different source 

c) no description of the derivation of the non exposed cohort 

3) Ascertainment of exposure 

a) secure record (e.g, surgical records)* 

b) structured interview* 

c) written self report 

d) no description 

4) Demonstration that outcome of interest was not present at start of study 

a) yes  

b) no 

Comparability 

1) Comparability of cohorts on the basis of the design or analysis 

a) study controls for _____________ (select the most important factor) * 

b) study controls for any additional factor* (This criteria could be modified to indicate 

specific control for a second important factor.) 

Outcome 

1) Assessment of outcome 

a) independent blind assessment* 

b) record linkage* 

c) self report 

d) no description 

2) Was follow-up long enough for outcomes to occur 

a) yes (select an adequate follow up period for outcome of interest) * 

b) no 

3) Adequacy of follow up of cohorts 

a) complete follow up - all subjects accounted for* 

b) subjects lost to follow up unlikely to introduce bias - small number lost - > ____ % (select 

an adequate %) follow up, or description provided of those lost) * 

c) follow up rate < ____% (select an adequate %) and no description of those lost 

d) no statement 
Wells, G. A, Shea, B., O'Connel, D. et al. The Newcastle-Ottawa scale (NOS) for assessing the quailty of nonrandomised studies 

in meta-analyses. http://www ohri ca/programs/clinical_epidemiology/oxford htm 2009 Feb 1   



 

B-11 

The QUADAS tool 

Item  Yes No Unclear 

    

1. 
Was the spectrum of patients representative of the 
patients who will receive the test in practice? 

( ) ( ) ( ) 

2. Were selection criteria clearly described? ( ) ( ) ( ) 

3. 
Is the reference standard likely to correctly classify 
the target condition? 

( ) ( ) ( ) 

4. 

Is the time period between reference standard and 
index test short enough to be reasonably sure that 
the target condition did not change between the two 
tests? 

( ) ( ) ( ) 

5. 
Did the whole sample or a random selection of the 
sample, receive verification using a reference 
standard of diagnosis? 

( ) ( ) ( ) 

6. 
Did patients receive the same reference standard 
regardless of the index test result? 

( ) ( ) ( ) 

7. 
Was the reference standard independent of the index 
test (i.e., the index test did not form part of the 
reference standard)? 

( ) ( ) ( ) 

8. 
Was the execution of the index test described in 
sufficient detail to permit replication of the test? 

( ) ( ) ( ) 

9. 
Was the execution of the reference standard 
described in sufficient detail to permit its replication? 

( ) ( ) ( ) 

10. 
Were the index test results interpreted without 
knowledge of the results of the reference standard? 

( ) ( ) ( ) 

11. 
Were the reference standard results interpreted 
without knowledge of the results of the index test? 

( ) ( ) ( ) 

12. 
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