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Chloride homeostasis and GABA signaling in 
temporal lobe epilepsy
Richard Miles,1 Peter Blaesse,2 Gilles Huberfeld,1,3 Lucia Wittner,4 and Kai Kaila2,*

Changes in neuronal chloride homeostasis affect GABAA receptor-mediated transmission and may contribute to 
epileptic activities. Work on human epileptic tissue suggests that Cl− homeostasis is impaired in some temporal 
lobe pyramidal cells. GABAergic depolarization of these neurons contributes to rhythmic, interictal events. 
Intra-neuronal Cl− is controlled in part by two electroneutral cation-chloride cotransporters. NKCC1 mediates 
Cl− influx, while KCC2 extrudes Cl− thus assuring that GABAergic signals hyperpolarize neurons. After stress, 
such as trauma or denervation, the expression and/or function of the cotransporters are altered. KCC2 is down-
regulated in some pyramidal cells from both patients with temporal lobe epilepsy and animals with acquired 
focal epilepsies. The resulting depolarising GABAergic signals contribute to the generation of interictal-like 
activity. Is a defective Cl− homeostasis also crucial for the genesis of ictal events? Ictal discharges are associated 
with intense interneuron firing and activation of GABA receptors. Depolarizing responses to GABA are evident 
during ictal events generated by convulsants in both animal epilepsy models and human tissue. K-Cl cotransport 
by KCC2 is increased by the Cl− load in neurons. Paradoxically, the resulting increase in extracellular K+ 

generates a prolonged depolarization that may sustain seizure discharges.

Defects in GABAergic signaling have often been linked to the epilepsies. Suppressing fast inhibition mediated by 
GABAA receptors initiates interictal-like activities in healthy brain tissue1,2 and specific subgroups of 
interneurones seem to be especially sensitive to the neuronal death associated with temporal lobe epileptic 
syndromes3–5. However, defects in the neuronal homeostasis of chloride have only recently been linked to 
epileptiform activities. Intra-neuronal levels of chloride control GABAergic signaling post-synaptically6. So 
changes in chloride homeostasis can affect the strength and even the sign of GABAergic signals. We will describe 
work on tissue from patients with pharmaco-resistant epilepsies of the temporal lobe which provided the first 
insight that chloride homeostasis might be altered in the epilepsies7,8. We will examine molecules that control 
chloride homeostasis, evidence that they are modulated by pathological stressors including denervation, anoxia 
and the sclerotic cell death associated with some focal epilepsies. We ask whether changes in chloride 
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homeostasis contribute to ictal events, arguing that potassium efflux mediated by K-Cl cotransporters may 
contribute to a prolonged ictal excitation. Finally, we examine how differences in chloride regulation may 
contribute to neonatal epilepsies and ask whether molecules targeting chloride homeostasis might be effective 
anti-epileptic drugs.

HUMAN INTERICTAL ACTIVITY AND Cl-HOMEOSTASIS
The first hint of a link between defects in Cl-homeostasis and temporal lobe epilepsy (TLE) emerged in work on 
slices of tissue from adult patients7. The subiculum, downstream from the sclerotic CA1 region, generated a 
spontaneous interictal-like activity. This population synchrony was suppressed by either GABAergic or 
glutamatergic antagonists, suggesting that both transmitter systems were involved in its expression. Depolarized 
reversal potentials for isolated GABA-mediated synaptic events in some subicular pyramidal cells suggested that 
Cl-homeostasis was altered.

More specific evidence of changes in Cl-homeostasis in brain tissue from patients with TLE, from in situ 
hybridisation and immunostaining, suggests expression of two cotransporter molecules, NKCC1 and KCC2 may 
be altered. Expression of the Na-K-2Cl cotransporter, NKCC19, which usually functions to import Cl−, appears 
to be increased in epileptic tissue, while expression of the Cl-extruding K-Cl cotransporter, KCC210, seems to be 
reduced8,11,12. NKCC1 appears to be functional in tissue from adult TLE patients and contributes to the genesis 
of interictal activity8. Earlier work on human epileptic tissue, showed some evidence suggestive of changes in Cl-
homeostasis13,14. Later results, from slice and animal models of focal epilepsies have confirmed that changes in 
Cl-homeostasis can contribute to epileptiform activities by reducing the strength of hyperpolarizing GABAergic 
signaling, sometimes resulting in depolarizing responses15–17.

However, cellular studies in human tissue reveal a situation more complex than a uniform down-regulation of 
KCC2 and up-regulation of NKCC1. Firstly, GABA reversal potential (EGABA) differs between cells suggesting 
that basal Cl-homeostasis is not affected similarly in all neurones. Instead there is quite a wide variation in 
driving force for GABAergic inhibition: in most principal cells it remains hyperpolarizing while GABAergic 
events depolarize only a minority of ~20 % of subicular pyramidal cells (Figure 1). The proportion of cells 
depolarized during interictal events was similar to that of cells where EGABA was depolarized with respect to 
resting potential8. Secondly, immunostaining reveals no KCC2 signal in only a proportion of this minority of 
cells8. Perhaps low levels of KCC2 in some neurones of this interictal network cannot effectively assure 
hyperpolarizing responses to GABA, possibly KCC2 is expressed but inactivated by post-transcriptional 
mechanisms, perhaps other Cl-regulating molecules are involved. Thirdly, while changes in Cl-homeostasis seem 
to account for the generation of interictal-like activity in the subiculum, distinct mechanisms, possibly involving 
rearrangements in excitatory synaptic connectivity, may be responsible for a distinct interictal-like activity 
generated in the CA2 region18. Finally mechanisms of the interictal population synchrony remain to be 
explored. A population activity dependent on both GABAergic and glutamatergic signaling seems at first similar 
to the giant depolarizing potentials (GDPs) of immature hippocampus19 where interneurones may play a 
permissive role in rhythmogenesis20,21. However interictal events of human epileptic tissue seem to be initiated 
by inhibitory cell firing22, suggesting some interneurones should induce principal cell firing in the human 
epileptic subiculum.

GABA AND Cl− REGULATION SYSTEMS
These data point to a defect in GABAergic signaling due to altered Cl-homeostasis in some epilepsies. Neuronal 
Cl-homeostasis depends in part on Cation Chloride Cotransporters (CCCs). They are glycoproteins with 12 
membrane-spanning segments and two cytosolic termini23,24. Adult pyramidal neurons are known to express 
the Na-K-2Cl cotransporter (NKCC1) and the K-Cl cotransporter isoforms, KCC2 and KCC325. The KCC2 
isoform is exclusively expressed in central neurons. Alternatively spliced variants may support distinct 
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regulatory mechanisms, via phosphorylation for instance, but their physiological role is unclear. The available 
evidence suggests that CCCs exist as homodimers in vivo and dimerization probably plays a role in the 
regulation of their function26–28.

Neuronal CCCs are secondary transporters that do not consume ATP but rather derive energy for ion transport 
from gradients established by the Na-K ATPase. Thus, Cl− extrusion via KCCs is driven by the K+ gradient, 
while NKCC1-mediated Cl− uptake depends on the Na+ gradient29–31. Since KCC2 operates close to its 
thermodynamic equilibrium, even a small increase in extracellular K+ will reverse transport, from Cl− efflux to 
influx. Even so, activity-dependent increases in internal Cl− shift the equilibrium so that KCC2 may induce large 
transient increases in external K+. CCCs are electroneutral with a stoichiometry for KCCs of 1:1; K:Cl and for 
NKCC1 of 1:1:2; Na:K:Cl. Thus electrophysiological methods cannot directly measure CCC transport. Most 
work has relied instead on Cl-permeable channels, such as GABAA and glycine receptors, to estimate 
intracellular Cl− which has also been measured with specific optical probes32–34.

Synaptic events mediated by GABA or glycine have often been used to assess cotransporter function, but two 
reservations should be noted. First, while the basal IPSP reversal potential is related to cotransporter action, 
function is better measured by imposing a defined Cl− load on a neuron and measuring the consequent shift of 
EGABA6,35,36. A second distinct point is that the direction – hyperpolarizing or depolarizing – of post-synaptic 
potential changes provoked by a GABA or glycine mediated synaptic event does not completely describe its 

Figure 1. Correlation of pyramidal cell behavior during interical discharges with KCC2 expression in the human postoperative 
subiculum. (A) Combined intracellular (top trace) and extracellular recordings (bottom trace) of a pyramidal cell inhibited by 
GABA(≈80%, upper recording) and a pyramidal cell depolarized and excited by GABA (≈20%, lower recording) during interictal 
events.
(B) Immunostaining for KCC2 (green) in cells identified by biocytin filling (red). All cells hyperpolarized during epileptiform events 
expressed KCC2 (yellow on merging, top cell). Most cells depolarized during interictal discharges did not express KCC2 (middle cell) 
but some of them have a clear staining for KCC2 (bottom cell).
Modified from7,8.
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effects on post-synaptic excitability. The conductance increase due to receptor activation reduces local 
excitability at the synaptic site, whether the membrane is depolarized or hyperpolarized37,38.

An adequate pharmacology would facilitate work on the function of these cotransporters. The loop diuretic 
furosemide blocks both NKCC1 and KCCs with similar potency at millimolar (mM) concentrations, but also 
affects N-methyl D-aspartate (NMDA) and GABAA receptors39. The diuretic, bumetanide, has a much higher 
affinity for NKCC1 than for KCC2 and 1–10 uM provides a selective inhibition24. Intracellular Cs+, sometimes 
used in pipette solutions to enhance space clamp, is an antagonist of KCC224,40.

NKCC1 and KCC2 seem to be expressed at distinct subcellular neuronal sites. Immuno-histochemistry shows 
significant expression of KCC2 on somatic and dendritic membrane including spines but not at axonal sites41,42. 
This localization agrees with point measurements of EGABA43–45. KCC2 expression by dendritic spines may 
contribute to morphogenic functions. KCC2 interacts with the cytoskeleton and may be involved in neuronal 
maturation46 and specifically in spine formation47. Defining patterns of neuronal NKCC1 expression is difficult 
due to a questionable specificity of available antibodies25.

A heterogenous membrane expression of KCC2 and NKCC1, should impose gradients in subcellular Cl− and so 
generate differences in basal EGABA at different neuronal sites. Indeed physiological data suggests an NKCC1-
mediated Cl− import may occur at the axon initial segment of mature neurons. Depolarized reversal potentials 
have been measured for GABAergic synaptic events induced by axo-axonic cells43,45 and responses to 
GABA44,48 at the axon initial segment. However EGABA is typically measured from somatic responses to the 
activation of GABAergic synapses and axo-axonic inputs may have a relative small influence on this value. Other 
transporters, including the Cl−/HCO3− exchanger, AE3, may also contribute to control of somatic levels of 
Cl−44.

The GABAA receptor is permeable to HCO3− as well as Cl− 49,50. HCO3− carries significant current, which may 
exceed Cl− currents in neurons with especially hyperpolarized resting potentials in vitro51. Resting membrane 
potential (Vm) is more positive in hippocampal neurons in vitro, so their EGABA values are less strongly 
influenced by the HCO3− current6. Slice preparation may affect internal Cl− values52 and of course values of 
EGABA determined for neurons in slices do not provide accurate data on EGABA values in the intact animal, 
where Cl-loads may be much higher.

CHANGES IN Cl− REGULATING SYSTEMS IN PATHOLOGICAL STATES
Neuronal Cl-regulation is affected in multiple pathophysiological conditions53,54. KCC2 expression is down-
regulated, leading to a decreased efficacy of inhibition, or even to excitatory actions of GABA, in response to 
kindling55, in models of concussion56, and by ischemia57–59, after axotomy60, 61, after mechanical isolation of 
the neocortex16, and in nerve section models of chronic spinal pain62–64. Such trauma-induced down-
regulation of KCC2 is often accompanied by an up-regulation of NKCC18,65.

Thus the acquired epilepsies17 may be a particular example of a more general response to brain trauma. Possibly, 
changes in KCC2 and NKCC1 expression and function participate in epileptogenesis, alternatively they may be 
protective or adaptive mechanisms triggered by the trauma. Thus the down-regulation of KCC2 could usefully 
decrease energy expenditure in pathological states associated with an energy deficit25. In a similar way, the Na-K 
ATPase is down-regulated by neuronal damage66,67. Alternatively, changes in Cl-homeostasis could contribute 
to more general processes of neuronal de-differentiation induced by trauma. They may, for instance, tend to 
promote rewiring of damaged circuitry for recovery7,24.

In these diverse traumatic situations, KCC2 down-regulation may be related to activation of the TrkB receptor 
by BDNF (Brain Derived Nerve growth Factor)62. Exogenously applied BDNF was first shown to down-regulate 
KCC2 via TrkB receptors in culture55. Similarly, following epileptiform activity induced by zero-magnesium, the 
efficacy of Cl− extrusion is reduced in parallel with KCC2down-regulation36, a mechanism aggravated by 
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NKCC1 dependent Cl− import52. Work with animals expressing specific point mutations of the TrkB receptor 
has shown that both the Shc/FRS-2 (src homology 2 domain containing transforming protein/FGF receptor 
substrate 2) and PLCγCREB (phospholipase Cγ-cAMP response element-binding)pathways must be activated to 
reduce KCC2 transcription. In contrast, the activation of Shc/FRS-2 alone via the TrkB receptor enhances KCC2 
synthesis36. This observation points to divergent actions of BDNF on neuronal Cl− regulation. It could explain 
how BDNF exerts opposing actions on KCC2 synthesis in mature and immature, or in intact and damaged 
neurons65. The source of the BDNF involved in the different forms of trauma is not always clear. BDNF is 
secreted by various types of neurons68. It seems more likely however, that the BDNF involved in responses to de-
afferentation is liberated by activated microglia. In a nerve section model of spinal neuropathic pain, microglia 
migrate to sites of damage and liberate BDNF thus altering Cl-homeostasis via TrkB receptors62,63.

In these studies, traumatic stimuli reduce KCC2 transcription and thus the total cellular pool of the transporter, 
typically measured by immunoblots of the protein. However, KCC2 function depends on the fraction of cellular 
protein present in the cell membrane, rather than the total protein pool. Thus, as for other transporters, changes 
in membrane trafficking contribute crucially to KCC2 function69,70. Cotransporter function might also be 
modulated by changes in the intrinsic ion-transport rate, but details of whether and how this parameter is 
modulated are not yet clear.

NKCC1 and KCC2 function is also regulated by phosphorylation. For instance, the kinases WNK (With No 
lysine (K) kinase) and SPAK(Ste20p-related Proline Alanine-rich Kinase)/OSR1(oxidative-stress-responsive 
kinase1) both activate NKCC1, and inhibit KCC271–73. The phosphorylation state of KCC2 is changed by 
trauma, oxidative stress, or epilepsy69,74. It affects trafficking including degradation69,70,74, and may alter the 
rate of co-transport by KCC274. Early work stressed a reciprocal regulation in which phosphorylation activates 
NKCC1 and inhibits KCCs while de-phosphorylation inhibits NKCC1 and activates KCCs75. However more 
recent work has shown that phosphorylation at different sites of the KCC2 molecule may exert opposing 
functional effects69,70.

Both short- and relatively long-term changes in transporter function can be explained by changes in membrane 
expression or co-transport rate due to phosphorylation state or by changes in expression due to altered 
transcription. But transporter function may be persistently altered over months and years after traumatic 
injuries and in the epilepsies7,8. One possible explanation is that of a maintained stimulus due perhaps to 
chronic inflammation. Maintained neuropathic pain is associated with the persistent release of pro-
inflammatory cytokines and chemokines from glial cells76. Pro-inflammatory molecules are also involved in the 
pathogenesis of epilepsy and are present in the chronically epileptic brain77. Cells of the blood-brain barrier, 
whose permeability increases after a seizure, are targets for cytokine signaling78. Thus inflammatory 
mechanisms may contribute to the evolution of chronic epilepsy79. It would be especially interesting if pro-
inflammatory molecules control, directly or indirectly, neuronal cotransporter function.

Cl-HOMEOSTASIS AND ICTAL ACTIVITIES
Mechanisms of initiation of ictal events in focal epilepsies are not well understood. The human condition is quite 
well modeled by chronic animal models such as pilocarpine or kainate-treatment80. They exhibit a similar 
pattern of sclerotic hippocampal cell death and show a delay between an initial convulsion and the emergence of 
recurring seizures. However, chronic epilepsy models have so far provided few insights into mechanisms of 
ictogenesis. Instead most concepts derive from work on slices from healthy animals exposed to convulsants81–
83.

Recent work on the genesis of epileptiform activities has emphasized a glial contribution84–86 and glial control 
of external levels of both potassium and glutamate may be compromised in an epileptic brain78,87. However 
synaptic mechanisms involving both glutamatergic and GABAergic signaling certainly contribute to ictal 
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discharges. Indeed convulsants activate interneurones particularly strongly88,89 and ictal events are suppressed 
by agents, such as opiate receptor agonists, that selectively reduce interneurone activity81.

The chloride flux due to high-frequency activation of inhibitory synapses engages Cl-homeostatic mechanisms. 
The cotransporters KCC2 and NKCC1 may then contribute to, and even favour, seizures. If Cl-extrusion 
mechanisms cannot maintain low levels of intracellular chloride48,90,91, synaptic signals mediated by inhibitory 
cell firing may change from hyperpolarizing to depolarizing. Such a dynamic switch should enhance and 
prolong an ictal event. Furthermore, even if the polarity of GABAergic events is reversed, the KCC2 transporter 
continues to export not only Cl− but also K+ ions92. The strong activation of GABAA receptors during an ictal 
event leads to a large electrogenic uptake of Cl driven by the depolarizing HCO3− current (Figure 2). The 
resulting surge in external K+93 adds to that due to massive neuronal firing. It increases neuronal excitability at 
both somato-dendritic and also axonal sites with a consequent increase in antidromic firing94,95. The water 
influx into cells tends to reduce extracellular volume, enhances ephaptic neuronal interactions and increases 
local concentrations of glutamate and K+96.

A seizure-promoting action of KCC2 due to an increase in external K+ is also consistent with the anticonvulsant 
actions of carbonic anhydrase (CA) inhibitors. Intracellular CA activity is needed to replenish the HCO3− and 
drive further Cl− uptake50,93. A KCC2-mediated extracellular K+ transient may also partly explain the anti-
convulsant actions of furosemide97,98. However elevated extracellular K+99 reverses KCC2 co-transport of K 
and Cl75 so the surge in external K+ should be self-limiting.

Cl-REGULATION AND EPILEPTIFORM ACTIVITIES IN THE YOUNG
In contrast to the adult brain, seizure activity in neonatal rat hippocampus up-regulates KCC2 activity via 
activation of TrkB receptors100. Interestingly, TrkB may also trigger events that enhance KCC2 expression in the 
normal neonate, so initiating the hyperpolarizing shift of EGABA during development101. BDNF-TrkB signaling 
also affects GABAA receptor trafficking: in the neonate it induces an increase in membrane GABAA receptors, 
but a decrease is initiated in more mature neurons102. TrkB activation then synergistically enhances both the 
voltage and conductance effects of GABAergic inhibition in immature neurons, but has opposite effects in the 
mature brain possibly due to the activation of different signaling pathways.

In the adult, an activity-dependent acidosis may be a key factor in seizure termination103. In contrast, neonatal 
seizures may be terminated in part by a seizure-induced increase in the efficacy of GABAergic inhibition100. We 
note that carbonic anhydrase is not expressed by neonatal pyramidal neurons104. In its absence, transport 
mediated by KCC2 after strong GABAergic activity during a seizure should not produce a pro-convulsant 
increase in extracellular K+. NKCC1 may play a key role in loading neonatal pyramidal cells with Cl−, since the 
antagonist bumetanide seems to suppress neonatal seizures 105, and also reduces the resistance to pro-
GABAergic drugs that occurs due to Cl accumulation during recurring ictal-like events in slices52.

MOLECULES REGULATING Cl-HOMEOSTASIS AS TARGETS FOR ANTI-
EPILEPTIC DRUGS
There is a major need for new drug targets in temporal lobe epilepsies106,107. Might pathways controlling Cl-
homeostasis be a useful target?

A compromised control of intracellular Cl may contribute to interictal rhythmogenesis. However, as we have 
discussed, residual cotransporter activity should tend to elevate extracellular K+ in response to repetitive 
activation of inhibitory synapses and so contribute to the prolonged depolarization underlying an ictal event. 
Anti-epileptic drugs need to counter ictal rather than interictal events. Nevertheless there has been interest in 
the diuretic molecule, bumetanide108, which can be used to block the Cl-importing cotransporter, NKCC1, 
without affecting the exporting transporter, KCC2.
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Bumetanide should tend to shift the driving force for GABAergic actions in a hyperpolarizing direction. This 
action suffices to suppress interictal-like activity in slices of adult human epileptic tissue8. Similar results have 
been reported in different models of neonatal epilepsies52,109,110. However bumetanide is reported not to have 
anti-ictal effects in chronically epileptic animals111 and in some neonatal slice models111,112.

It has been suggested that compounds that selectively enhance KCC2 actions should increase the efficacy of 
postsynaptic inhibition and thereby act as anticonvulsant drugs108. Paradoxically, however, the role of KCC2 in 
promoting ictal discharges (Figure 1), suggests that the opposite may be true. Indeed, furosemide, which inhibits 
both KCC2 and NKCC1, has anti-epileptic actions in focal cortical epilepsies97,98, although the high doses 
needed to block KCC293 probably preclude the use of this molecule as an anticonvulsant.

Proteins that regulate the expression, trafficking and activity of the cation-chloride cotransporters may offer 
alternative targets for anticonvulsant drugs. In practice however, the importance of cotransporter function in 
regulating electrolyte balance and cell volume throughout the body implies that some means of targeting such 
molecules to neurons, or perhaps subsets of neurons, will also be needed
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