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Computer Modeling of Epilepsy
Marianne J Case,1,+,* Robert J Morgan,1,* Calvin J Schneider,1 and Ivan Soltesz1

This chapter reviews current computational models and proposes future directions for computer modeling in the 
field of epilepsy. We consider the potential therapeutic applications of modeling in the both the treatment and 
prevention of epilepsy. Additionally, we discuss the benefits of computer modeling for research. The models 
discussed include single cells with mutated ion channels, mean-field network and detailed network models. We 
conclude by suggesting some excellent resources for those interested in learning more about computer modeling 
in neuroscience and epilepsy.

There are 50 million people worldwide already afflicted with epilepsy and for roughly 15 million of them existing 
epilepsy treatments are not sufficient.1 Such stark facts spur clinicians and researchers to consider dramatically 
different approaches to treatment, such as an implantable device that could characterize electrical activity in real 
time, immediately detect when the brain reaches a pre-ictal state and apply a counteracting current waveform, 
averting the seizure before it starts (see next section),2 or an individualized, detailed model of the patient’s brain 
– complete with patient-specific details such as genetic mutations or head trauma – to which doctors could 
administer virtual drugs to determine the best treatment regimen for that person. Such a tool would 
complement existing therapies by reducing the likelihood of patients being subjected to treatments for which 
they are unresponsive.

Notably, both the implantable device and the individualized brain model use computer modeling. The device 
employs computer modeling in its development and in the algorithms it uses to detect the seizure and formulate 
an appropriate response, whereas the individualized model would use an interactive, large-scale, biologically 
realistic computational model.

And then there are the 2.4 million people worldwide who will develop epilepsy over the next year due to a 
variety of causes.1 Ideally, we could prevent epileptogenesis in these people entirely, and computer modeling can 
help us achieve this goal. For example, in people who have experienced head trauma, an ideal therapy might be a 
drug that could be administered to prevent the ensuing of epileptogenic alterations without disrupting the brain 
further. Computational models could help us determine which of the alterations are most clinically significant 
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and also help characterize the therapeutic and side effects of any proposed treatment. In patients with gene 
mutations, a method to induce expression of a “therapeutic” ion channel could counteract the epileptic effects of 
a mutated ion channel.3 Again, an individualized computational model of the brain could help by predicting the 
likelihood of epileptogenesis (and therefore the need for treatment) in someone exposed to a particular 
environmental or genetic factor.

Such ideas may sound impractical, even outlandish given the current state of epilepsy therapy. However, work 
has already begun on projects similar to the ideas above. For example, the Blue Brain Project has created a 
detailed, 10,000 neuron model of a rat neocortical column4 and aims to build a detailed, biologically realistic 
model of the human brain.5 Also impressive, there are several implantable devices undergoing clinical trials, 
some of which use algorithms that can be individually tuned for each subject by their doctor to detect and 
respond to seizures.2

Clearly, there is a role for computer modeling in the development and operation of epilepsy therapies. Not only 
can it be applied directly to therapies, like the examples above, but it can also guide researchers in choosing and 
designing experiments and can provide a framework for organizing experimental results. In fact, computational 
models have already advanced our understanding of disorders such as schizophrenia,6 Parkinson’s disease,7 

Figure 1. Functional computational models can be partially organized by their scope and detail. The icons above represent a few 
possible modeling approaches mentioned in this chapter. A: Macroscopic, mean-field network models, which usually incorporate at 
least an excitatory and an inhibitory neuronal population. B: Detailed network models, which include individual cells modeled at 
variable amounts of detail. Note that both A and B can describe networks or even systems that can perform higher-level functions. C – 
D: Model cells at variable levels of detail, from integrate-and-fire models (C) to cells with simple morphology and mechanisms 
representing ion channels, receptors, and gap junctions (D). E - F: Ion channels and other subcellular mechanisms can also be 
represented at variable levels of detail, from their conductances in each state (E) to detailed protein structures that capture 
conformational changes and binding sites (F).
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stroke,8 and, of course, epilepsy.9 Within the field of computational epilepsy modeling, approaches include 
single-cell10–12 models (simple or detailed) and network models ranging from mean-field13–14 to large-scale, 
detailed models15–19 (Figure 1).

This range of approaches is not surprising, given that epilepsy is a dynamical disorder that can be characterized 
at multiple levels of detail.20 Though there exists a wealth of data at each of these levels, the challenge of drawing 
connections across levels stands in the way of developing greater understanding and new treatments for the 
disorder. For example, it is difficult to understand how high level dynamics such as aggregate electrical activity 
during a seizure could be predicted from low level structural and functional factors like altered connectivity 
between cells or mutated ion channels. Furthermore, the many causes of epilepsy and its variable manifestations 
limit our ability to apply knowledge about one epilepsy model to other models. The challenges of integrating 
experimental research about epilepsy through multiple levels of detail and across multiple subcategories of the 
disorder can be addressed with computer modeling.

While a thorough survey of modeling techniques in the epilepsy field requires an entire book,9 much can be 
learned from a tour of recently developed models. Here, we first discuss computer modeling to benefit patients 
who already have epilepsy and those at risk for developing epilepsy. Then we illustrate how computer modeling 
can complement experimental research. After the reader has been introduced to several models, we explicitly 
describe the various approaches one may take for computer modeling of epilepsy. We conclude by assessing the 
future of computer modeling in epilepsy and suggest resources available to those interested in using computers 
to model epilepsy.

COMPUTER MODELING TO PREVENT SEIZURES
Computational modeling is not just useful for clinical applications indirectly via research; it is already directly 
applicable to clinical practice. Aside from the well-known application of computer modeling to the discovery 
and development of pharmaceutical agents,21–22 it has also been instrumental in designing therapies to prevent 
or reduce seizures, some of which have already been successfully used in human patients. For the purpose of this 
chapter, such therapies can be broadly classified into dynamic, which only exert their effects in response to 
seizures, and static, which exert their effects continuously (or continually, in some cases).

Dynamic Therapies
There have been promising developments in devices capable of online analysis of epileptic patients, for the 
detection of and response to seizures. At least one device, the RNS™ device designed by NeuroPace, has shown a 
significant reduction in seizure frequency during clinical trials, with an acceptable level of side effects.2 An 
application for premarket approval (PMA) for the RNS™ device was recently submitted to the FDA.23 Though 
the seizure detection and response algorithm used in the NeuroPace RNS™ device is proprietary, we can review 
other computational models to highlight some of the computational issues inherent in seizure detection and 
response.

Detection of seizures requires a reliable method of characterizing seizure and even pre-seizure activity, one that 
is robust enough to detect each seizure that occurs, despite known variability in individual seizure dynamics. A 
variety of neural properties have been proposed as suitable for monitoring to detect seizures, including EEG 
traces24 and localized glutamate transmission.25 One such method of characterization is matching pursuit, in 
which a signal (such as an EEG) is broken down into “atoms,” smaller and simpler signal elements.26 Using this 
analysis, researchers were able to show considerable similarity among onsets of seizures originating from the 
same foci in the same patient.26

Once a seizure has been detected, there is a variety of approaches to correcting the abnormal activity. In one 
approach, Lopour et al. (2010) produced a mean-field model that showed how a control system could analyze 
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the electrode signals from a seizing patient and apply a charge balanced potential to nearby electrodes to 
terminate the seizure activity.14 Using a charge balanced correction signal is thought to be less harmful to 
cortical tissue and is an important step in the eventual goal of using such a controller therapeutically.14

With online detection of seizures, much emphasis is placed on how quickly the seizure can be detected; the 
earlier the stereotyped seizure pattern can be recognized, the more useful such information becomes. Ideally, the 
events leading to the clinical onset of the seizure could also be characterized well enough to predict the onset of 
the seizure within a clinically meaningful time window. Seizure prediction cannot be covered in sufficient detail 
here, but other publications provide insight and discuss the controversies associated with computational 
modeling for prediction.27–28

Even if seizure dynamics could be characterized well enough that detection theoretically could be reliably 
performed early in the seizure, analysis speed is a challenge. With the Lopour et al. model (2010), we note that 
the model required five minutes of computation time to analyze seizure dynamics and then compute and deliver 
charge-balanced correction signal to end the seizure.14 However, most seizures self-terminate well within five 
minutes of onset.29 For such an approach to be helpful, the detection and analysis should finish in just a few 
seconds, a speed increase of two orders of magnitude. The speed could be shortened by running the analysis at a 
lower resolution,14 and more computational resources could be devoted to the task, but some technical 
innovation will be required for this algorithm to be incorporated in a portable seizure detection device.

Even with a therapeutic device in the FDA approval process, novel approaches to seizure detection and 
intervention are still relevant. Not all patients respond to the RNS™ device30 and for those that do, the 
therapeutic effects are not immediate. Tuning these devices to properly detect seizures currently takes many 
months, even for patients with relatively frequent seizures (i.e. at least three times a month).31 For people with 
less frequent seizures, it is possible that the detection tuning process could take over a year.

Because seizure dynamics vary so widely among patients, it seems that a calibration period will be unavoidable 
for any detection device. However, as the field of seizure detection advances, calibrating the detection algorithm 
will likely require fewer seizures and fewer hours of physicians’ time. Ideally, devices would be able to calibrate 
themselves. Current devices are already monitoring the patients’ response continuously, even when the patient is 
receiving the therapeutic correction signal they produce in response to a seizure. As we develop a better 
understanding of seizure dynamics, that knowledge can be translated into intelligent devices, capable of 
analyzing and correcting their own performance.

Static Therapies
In contrast to devices that detect and respond to seizures, there are also devices that deliver scheduled pulses, 
i.e., their activity is defined by a preset pattern (periodic pacing), independently of when the patient seizes. Such 
devices have also shown promising reduction in seizure frequency and do not require an extended calibration 
period as they do not need to detect seizures.2

Other therapies that exert their effects independently of the patient’s state include pharmacological 
treatments.21–22 These agents affect subcellular mechanisms, such as ion channels, transporters, pumps, and 
receptors. Computational models that incorporate these subcellular mechanisms can help identify therapeutic 
targets and also show how their modulation may influence dynamics at the cellular and network levels.

Here, we will introduce a computational model used by Dyhrfjeld-Johnsen et al. (2008) to illustrate the effect of a 
channelopathy on cellular excitability. Channelopathies - pathological changes in the expression or function of 
ion channels - are of great interest in the field of epilepsy because they have been linked to both inherited and 
acquired epilepsies. For those inherited epilepsies whose mutations have been discovered, the mutations have 
been predominantly channelopathies.32

4 Jasper's Basic Mechanisms of the Epilepsies
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One common channelopathy occurring in epileptic animal models affects the hyperpolarization-activated, cyclic 
nucleotide-gated (HCN) channel responsible for an inward, mixed-cation current (Ih). Most experimental 
paradigms report that seizures reduce Ih a reduction thought to increase hyperexcitability33 because it would 
lessen the shunting effect associated with Ih. However, in an experimental febrile seizure model, the 
hyperexcitable dendrites of CA1 pyramidal cells show a marked increase in Ih.38 Computer modeling provided 
an explanation for these seemingly contradictory results.

Using a computational model, Dyhrfjeld-Johnsen et al. (2008) altered the h-current and examined the effects on 
the excitability of three detailed pyramidal cell models (Figure 2).38 The models indicated that an increased Ih 
can contribute to hyperexcitability (Figure 2A). Analysis of the mechanism by which Ih enhanced excitability 
showed that the upregulated Ih depolarized the dendritic resting membrane potential, shifting it closer to 
threshold. When cells with increased Ih were held at the control resting membrane potential, no increase in 
excitability was observed (Figure 2B). These results highlight the complex relationship between Ih and neuronal 
excitability; perhaps functional effects cannot be predicted by looking at only the direction of changes in Ih.

Knowing that the hyperexcitability seen in increased Ih is related to the more positive resting membrane 
potential, we can then propose possible therapeutic interventions. For example, a pharmacological agent that can 
counteract the more depolarized membrane potential38 with minimal disturbance to physiological functions, 
perhaps mediated by the M-current,38–40 should be sufficient to reduce the Ih-associated network 
hyperexcitability seen in the above-mentioned febrile seizure model.38

COMPUTER MODELING TO PREVENT EPILEPTOGENESIS
Understanding how the healthy brain becomes capable of seizing requires knowledge of the detailed changes 
associated with epileptogenesis. These alterations include cell loss, changes in network connectivity, mutated ion 
channels, and altered gene expression profiles. Quite often, multiple changes occur together, obscuring each 
factor’s contribution to the seizure-prone brain. In this scenario, untangling the role of each factor may be far 
easier in computational models than experimental ones.

Head trauma is one model of epilepsy in which multiple changes are known to occur. These alterations affect, 
among other brain regions, the dentate gyrus, an area of the hippocampal formation sometimes thought to gate 
network activity in the healthy brain. Epileptogenic changes seen in the dentate gyrus after head trauma include 
mossy fiber sprouting and hilar cell loss. Mossy fiber sprouting, i.e., the development of new axonal branches by 
granule cells, accounts for recurrent excitation among granule cells, consequent to the establishment of 
reciprocal synaptic contacts that are not normally present in the healthy dentate gyrus. Hilar cell loss does not 
only affect inhibitory interneurons, but it also reduces the number of excitatory mossy cells. The effect of 
reducing the number of excitatory mossy cell synapses onto the granule cells is not well understood.

It is quite challenging to separate these alterations in experimental models of epilepsy, but computer modeling 
provides a flexible way to study the changes in isolation. Santhakumar et al. (2005), Dyhrfjeld-Johnsen et al. 
(2007), and Morgan and Soltesz (2008) studied, in progressively more detail, the effects of structural changes in 
the dentate circuitry on hyperexcitability.17–19 The first of these studies played a major role in demonstrating the 
promise of large-scale, data-driven models in epilepsy research as it detailed the construction of the dentate 
gyrus model, containing four biophysically realistic cell types, each connected via realistic synapses using 
connection probabilities derived from in vivo and in vitro experiments. Using the 500-cell model that was thus 
constructed, Santhakumar et al. (2005) were able to show that structural changes alone can predispose the 
dentate network to hyperexcitability.19

Dyhrfjeld-Johnsen et al. (2007) expanded the functional model of Santhakumar et al. (2005) to over 50,000 cells, 
a scale of 1:20 compared to the full-size rat dentate gyrus. Their experiments also used a complete 1:1 scale 
structural model of the dentate gyrus to determine the graph-theoretical characteristics of the dentate network. 
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The results of the structural model showed that the dentate gyrus is a small-world network. In a small-world 
network, cells make many connections to their close neighbors, yet the number of cells along a path from a given 
cell to any distant cell remains quite small due to the presence of a few long distance connections. By combining 
the structural model results with those of the functional model at varying levels of dentate injury, Dyhrfjeld-
Johnsen et al. (2007) showed that head injury causes substantial alterations to the small-world structure of the 
dentate gyrus, resulting in a hyperexcitability profile closely correlated with structural alterations.17

Because the specific pattern of new granule cell connections that occurs with mossy fiber sprouting is not 
known, Morgan and Soltesz (2008) studied the pathological alterations in the dentate gyrus circuitry in even 
more detail.18 They questioned whether the hyperexcitability of the sprouted network depends on the specific 
pattern of new connections.18 To answer the question, Morgan and Soltesz compared non-random patterns of 
connectivity to a control network in which the granule cells were connected together randomly (Figure 4A). In 
each case, the model had the same number of connections among granule cells, but the connections were 
distributed differently among the cells.

Figure 2. Altered h-current changes neuronal excitability. Both the modified control CA1 pyramidal neuron model38, 68 and models 
with altered Ih are subjected to a 1000 ms depolarizing current injection, with the membrane potential allowed to vary from control 
resting membrane potential (left column) or clamped at control resting membrane potential (right column). A, B: Example traces of 
simulated neuronal behaviors in response to depolarizing current injection (+210 pA), in the cases of pathologically depolarized (A) 
and controlled (B) resting membrane potential (RMP). C, D: For each amplitude of current injection, the activity of the models with 
altered Ih is contrasted with that of control models by comparing the number of action potentials fired. A positive difference means the 
pathophysiological model has become more excitable than control; a negative difference indicates the pathophysiological model is less 
excitable. The resting membrane potential of the pathophysiological model is either set to the pathophysiological, depolarized resting 
potential (C) or the controlled resting potential (D). Figure adapted from Dyhrfjeld-Johnsen et al. (2009).69
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They found that simply rewiring the granule cell network in certain ways could markedly increase excitability 
(Figure 5). In particular, if the connections were redistributed so that most granule cells had few granule cell 
connections, but some rare granule cells (“hubs”) had many connections (Figure 4B), network activity increased 
greatly. These highly connected cells made the dentate network significantly more excitable without changing the 
total excitatory drive of the network, demonstrating the potential importance of hub cells in seizures (compare 
Figure 5A and 5B). Experimental work has supported the presence of hub cells in the dentate gyrus after injury, 
thus beginning to validate the model’s prediction and pointing to the importance of understanding the 
microcircuit connectivity in seizure-prone networks.41 This work suggests that therapeutic efforts to prevent 
mossy fiber sprouting could reduce epileptogenesis in people who have experienced head trauma.

Epileptogenic changes are not limited to neurons and their connections. Glia dysfunction has been implicated in 
epileptogenesis, and therefore deserves consideration as a possible therapeutic target.42–44 Its significance arises 
especially because of the glial role in regulating the concentration of extracellular potassium, and because of the 
ability of glial cells to interfere with inhibition,45 to release ATP,39 and to affect glutamate concentration at 
nearby synapses.11, 44, 46 Cressman et al. (2009) investigated the role of ion concentrations and glia in epileptic 
networks using a model of a single cell11 and a network.44

In this work, they first examined the effects of intracellular and extracellular ion concentrations on neuronal 
excitability and seizure frequency with a mathematical model of a neuron and its extracellular space, including 
the glia surrounding it.11 Using the model, they showed that this single cell was capable of producing abnormal 
bursts of action potentials, as may be seen during seizures. The model also illustrated how increased extracellular 
potassium could lead to depolarization block, during which the cell is depolarized but unable to spike. Some 
studies have implicated depolarization block in inhibitory interneurons during seizure-like events in brain slices, 
which could free excitatory cells to spike excessively in bursts.11, 47

Then, to examine the role of glia directly, they extended the single cell model to a 200 cell network model 
consisting of pyramidal and inhibitory cells and accounting for glial function, ion pumps, and diffusion. Their 
model illustrated how glial dysfunction could cause neural networks to be less resilient to small perturbations 
such that a network exhibiting normal persistent activity associated with higher level functions could suddenly 
transition to seizure-like activity.44 For example, they showed that the rearrangement of astrocytes associated 
with epileptogenesis leads to increased extracellular potassium concentration and a reduced ability to buffer the 
extracellular potassium, as well as increased strengths of excitatory synapses.44 The behavior of their model was 
consistent with several experimental results,44 and it underscores the potential of glia as therapeutic targets.

COMPUTER MODELING TO ASSIST RESEARCHERS
Computer modeling and experimentation are complementary in research and the development of therapeutics. 
Each approach provides unique benefits and is improved by contributions of the other. Though definitive 
confirmation of scientific fact requires experimental results, modeling serves the field by enabling a flexibility 
and efficiency not always possible in experiments and can help researchers design more focused experiments.39

One example of a scenario in which computer modeling allowed researchers to extend their experimental 
observations occurred during an electrophysiological study of hippocampal mossy cells (see also above) after 
head injury. These excitatory neurons, located in the dentate hilus, are among the most vulnerable neurons in 
the entire mammalian brain;48 factors including strong excitatory inputs, a sustained response to excitatory 
input, and a high level of spontaneous activity render them particularly susceptible to excitotoxicity.49 

Significant mossy cell loss is observed in human epileptic tissue and in animal models after experimental head 
trauma.50–52 However, several lines of evidence suggest that some mossy cells survive trauma49–50, 52 and that 
these surviving mossy cells may spread or amplify dentate network hyperexcitability.
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Howard et al. (2007) used a rat fluid percussion injury model to study the changes in surviving mossy cells after 
head trauma, comparing their I-F (current v. spike frequency) and I-V (current v. membrane potential) curves 
before and after trauma.53 Surprisingly, they found no significant difference. Yet on closer inspection, extensive, 
opposing alterations were found in various membrane currents and properties that together resulted in the 
unchanged I-F and I-V relationships observed in mossy cells after head trauma. The resting membrane potential 
was depolarized, the tetraethylammonium (TEA)-sensitive potassium current decreased, and the voltage-
dependent sodium channel required more depolarized potentials to activate.

Howard et al. then used computer modeling to understand whether each one of these changes would affect the 
dentate network when considered separately. Notably, when modeled alone, each of these alterations 
dramatically affected network excitability (Figure 3), despite cancelling each other when occurring together. In 
this case, the computational model complemented the experimental observations by vividly demonstrating the 

Figure 4. Reconnecting the granule cell network. In temporal lobe epilepsy, granule cells in the dentate gyrus sprout axon collaterals 
that synapse onto other granule cells, creating a recurrent excitatory circuit. A: In the control network, connections were modeled as 
random, constrained only by the extent of the granule cells’ axonal arbors.17 B: In theFPI network model, the same total number of 
connections are introduced, but the connectivity is different. A few cells are highly connected, while the rest remain sparsely connected. 
Note that the experimental network depicted here is only a visual guide to understanding the general connectivity of the network.
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importance of potentially homeostatic mechanisms54 in regulating overall levels of neuronal activity in large 
networks.

Figure 5. Highly interconnected granule cell hubs greatly augment network excitability. Both A and B represent raster plots of 
granule cell firing in a network with 50% of maximal granule cell-to-granule cell connections, where stimulation was delivered via the 
perforant path to 1% of the granule cells. Both networks have the same number of added connections, just distributed differently. 
Representative firing patterns of cells in the network are shown on the right of the raster plots. A: The sprouted connections are 
randomly distributed throughout the network. B: The sprouted connections are distributed such that 5% of granule cells make 210 
more connections than the average granule cell and thus serve as hubs. Figure adapted from Morgan et al. (2008), PNAS, used with 
permission; copyright (2008), National Academy of Sciences, U.S.A.18
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SUMMARY OF APPROACHES TO MODELING EPILEPSY
The models described above vary in their level of detail and scope (see Figure 1) and there are valid reasons for 
the different approaches. Researchers seeking an overall description of seizure dynamics would not necessarily 
want it to be in terms of the activity of thousands of neurons. For them a higher level approach, based on the 
assumption that the neural network can be characterized in aggregate terms, would be more appropriate. These 
aggregate, macroscopic models, such as the Lopour et al. model described above,14 are often called mean-field 
models (Figure 1A), indicating that their base components are entire populations of neurons similar enough to 
be grouped together and described in terms of average properties. Most such approaches are based on a 
computational model developed by Wilson and Cowan55 that had two interconnected neuronal populations, 
one excitatory and one inhibitory. Though the cells are described as populations, using an average, rather than 

Figure 3. Individual post-traumatic changes to intrinsic properties of mossy cells have robust effects on dentate gyrus network 
hyperexcitability. Dentate gyrus network activity in response to a single simulated perforant path stimulation at t = 5 ms is plotted as 
cell number versus time. Each single dot represents an action potential in one cell (blue: granule cell; green: mossy cell; red: basket cell; 
black: hilar-perforant path associated (HIPP) cell). Note that the scale for granule cell numbers is smaller than that for other cells. A: 
Network activity of the dentate gyrus in the fluid percussion injury (FPI) model with biologically realistic levels of mossy fiber 
sprouting and hilar cell loss. All subsequent simulations were performed with these anatomical changes in place. B: Network 
hyperexcitability is increased when mossy cell Vm is depolarized by 3 mV in the FPI model. C: Hyperexcitability of the network is also 
increased when the model is implemented with an increased mossy cell-to-granule cell synaptic conductance, representing the effect of 
the increased mossy cell action potential width due to change in tetraethylammonium (TEA)-sensitive potassium current. D: Network 
hyperexcitability is decreased significantly when the activation curve of INa in mossy cells is shifted by 5 mV. Note that only 2 of the 
750 mossy cells fire during the 500 ms simulation. Figure adapted from Howard, et al. (2007), Journal of Neurophysiology, Am. Physiol. 
Soc., used with permission.53
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individually, the average properties are still informed by physiological data. The models often produce results in 
the form of EEG traces, directly comparable to patient data.

Such models may also make predictions about the role of a cell population in seizure dynamics, such as one 
model that split the inhibitory population into separate fast and slow components while maintaining a single 
excitatory population.13 The model was fit to real patient EEG data taken from pre-ictal, pre-onset, and ictal 
time periods, and it could produce realistic EEG waveforms. The model made several experimentally verifiable 
predictions about the role of excitatory and inhibitory populations in seizures, including – paradoxically – that 
slow inhibition increases prior to seizure onset, but contributes to overall excitation by inhibiting mainly the fast 
inhibition component.13

These macroscopic models have an advantage for describing seizure dynamics because they require relatively 
few computational resources. Their smaller computational requirements enable them to simulate the longer time 
periods required to model transitions into and out of the seizure state. Understanding what prompts the 
transition from non-epileptiform activity to the seizure state is crucial for seizure detection and intervention, 
and high level models are well suited to describe such system level dynamics.56

In contrast, there are questions that call for much lower level, detailed computational models. For example, 
researchers interested in how a particular ion channel mutation affects network hyperexcitability would need a 
highly detailed, biologically realistic model that could incorporate well-characterized ion channel properties and 
output precise spike times for each cell in the network (Figure 1B). Such computational models are also useful 
for exploring the altered connectivity and cell loss seen in most models of epilepsy.19 The various models from 
the Soltesz lab described above are examples of large scale, highly detailed, biologically realistic network 
models.17–19, 38, 53

Even within network models that include multiple, distinct cells, there are a wide variety of approaches. Neurons 
can be modeled at various levels of detail, ranging from morphologically detailed models with over a thousand 
compartments or morphologically simplified cells with detailed subcellular mechanisms (Figure 1D) to 
integrate-and-fire neurons (Figure 1C) and even simpler representations.34 The level of sophistication at which a 
neuron should be modeled depends on the complexity of the computation it is expected to perform. While 
integrate-and-fire neurons may be sufficient to produce expected spiking patterns in some cases,19 specific 
distributions of ion channels and synapses along dendrites may be necessary to model more complicated 
functions performed by neurons, such as coincidence detection.34 The Cressman et al. models described 
above11, 44 employed mathematical neurons with subcellular and extracellular mechanisms described by a few 
equations. This level of detail was sufficient to answer the questions they posed in the model, and enabled them 
to run the longer simulations necessary to characterize the dynamics in the ion concentrations. To model the 
astrocytic rearrangement more concretely, as they propose for future work, a more detailed model that 
incorporated 3D cell positions would probably be necessary.44

As mentioned in passing above, computer modeling is limited by time and resource availability. If a model 
contains very detailed components (such as numerous ion channel types or detailed cell morphology), it may be 
necessary to remove complexity from another area of the model, either the scope (number of cells) or the length 
of simulation time (whether the model simulates activity occurring over a few milliseconds or several days). For 
this reason, often the more detailed a model is, the smaller its scope and simulation time.

Because of the above limits, computational models used in epilepsy generally describe only part of the 
disorder,20 such as aggregate electrical dynamics during seizures13 or altered neural connectivity found in the 
affected areas of the epileptic brain.19 While partial models can provide much insight, there is significantly more 
explanatory power in a model that answers questions covering multiple levels simultaneously, such as: “how do 
the altered firing patterns of cell type ‘A’ influence the EEG signal after seizure onset?”
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THE FUTURE OF COMPUTER MODELING OF EPILEPSY
Given the rapid rate at which technology is developed, it is easy to imagine that computers will soon be fast 
enough to support a detailed, biologically realistic model of the entire human brain that could answer questions 
such as the one above.5 Today modelers must pick between modeling seizure dynamics and transitions (which 
require lengthy simulation times) or detailed biological structures and mechanisms; in the future it will be 
possible to do both at once. Such a powerful model would represent a significant tool for understanding overall 
seizure and transition dynamics in terms of network and cell-level activity, an area of epilepsy research that 
needs significant development.47

Already, advances in neural simulation tools allow them to run simulations in parallel (on multiple computers at 
once) in a fraction of the time it would take to run the same simulation on a single processor. These parallel 
models can support far more neurons and detail so that, for example, network models focusing on altered 
connectivity in epilepsy can be scaled up to full size to enable more realistic neural connectivity. Additionally, 
detailed network models of particular brain regions could be made bilateral. Both computational models and in 
vitro experiments generally approach epilepsy “unilaterally,” without regard to which side of the brain is being 
observed or any effects of the contralateral hemisphere. However, the two sides of the brain vary remarkably in 
ways relevant to epilepsy. For example, there is known to be significant asymmetry between the bilateral 
connections of the hippocampal formation.57 Bilateral models could address the effects of contralateral 
connections and asymmetry57 on seizures and seizure generalization.

The computational models all described so far have been simulations, in which software is configured to produce 
the model. However, as we create models with increasing numbers of cells, it is worth noting that a model of the 
whole human brain would be quite resource-intensive. For example, the Blue Brain project mentioned above 
uses 8,192 processors to model 10,000 highly detailed, multi-compartmental neurons with 100 million 
synapses.5, 58 A model of the whole human brain would need to include 100 billion neurons and 10 quadrillion 
synapses, an expensive endeavor that is projected to require millions of processors and roughly 100 megawatts of 
power.58

To overcome these limitations, another approach toward modeling has been developed. Rather than configure 
software, some modelers are configuring hardware to emulate neural networks, such as the recent Neurogrid 
project.58 The resulting neuromorphic chips can be combined to produce a device capable of emulating a 
million neurons and six billion synapses in real time. Though these neurons are less detailed than those on the 
Blue Brain computer, they still contain multiple compartments and realistic ion channels. Highly detailed 
neurons can be modeled as well if the overall number of neurons is decreased; models with hundreds of 
compartments and any number of distinct ion channel types are not unfeasible.58

One of the main arguments against hardware modeling is its lack of flexibility. However, significant 
improvements have been made against this limitation. The current Neurogrid device can support 16 different 
cell types, with each type having its own combination of ion channels.58 The connections between cells are 
programmed using random access memory (RAM) and can be changed on demand. The results of the 
neuromorphic simulations can be viewed on an interactive display in real time at various levels, from the spike 
patterns of a single cell to the activity of a whole cortical layer. The applications of such a tool to epilepsy 
research are apparent: the ability to quickly model such a large number of neurons over a large simulation time is 
just what we need to characterize seizure dynamics in terms of cell and ion channel activity.

COMPUTER MODELING RESOURCES
Computer modeling is a useful research tool available to almost everyone. The monetary investment in 
computer modeling can be small, requiring resources available to anyone with a computer and internet access or, 
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for more intensive modeling, resources readily accessible at research institutions or through multipurpose shared 
resources such as the National Science Foundation’s TeraGrid.59

Researchers and clinicians interested in computer modeling are urged to explore the many computational 
models freely available online at the ModelDB website.60 In most cases, the software used to create such models 
are also freely available online (e.g. the neural simulators NEURON61 and GENESIS62) or through network 
licenses at academic institutions (MATLAB63). The time required to learn these programs is comparable to the 
time required to learn various experimental techniques and results can be obtained quickly. Importantly, the 
researcher has far more control over the factors important to obtaining results from models than is possible with 
experiments.

The large scale, detailed, biologically realistic models referenced above employed NEURON, but many successful 
models have employed GENESIS as well. For example, van Drongelen et al. (2007) produced a detailed, 656 cell 
neocortical network with GENESIS.64 The model included two types of pyramidal cells, basket cells, and 
chandelier cells, with small world connectivity. The cells contained realistic ion channels and gap junctions. They 
used this model to explore the effect of synapse weights on the ability of the cortical network to form and sustain 
seizure-like oscillations and to observe the activity displayed by subpopulations of neurons during these 
oscillations. Surprisingly, among other results, they found that a weakening of excitatory connections in the 
neocortex may enable the propagation of seizure-like activity and concluded that strong excitatory connections 
are not always necessary for a network to produce seizures.64

Both NEURON and GENESIS can be run in parallel, which allows for a near linear speed increase in modeling 
time; to run a model for the same simulation on two processors will take roughly half the time taken to run the 
model on one processor. The authors recently ran a 1000 ms simulation of over one million detailed cells in 
under 2 hours, using parallel NEURON on 608 processors.65 MATLAB can be run in parallel as well, using its 
Parallel Computing Toolbox.

All three of these software programs have extensive online documentation, tutorials, and user forums supported 
by the software developers. Both NEURON and MATLAB regularly hold in-person workshops as well. While 
both NEURON and GENESIS have graphical user interfaces (GUIs), these GUIs are generally most useful when 
building single cell models. For network models, there is a simulation software-independent tool called 
NeuroConstruct, which provides an interface to NEURON, GENESIS, and other programs for those who prefer 
not to work with code directly.66

In addition to software-specific resources, there are some excellent books on computational neuroscience in 
general67 and computational modeling of epilepsy in particular,9 useful for the potential modeler or anyone 
wanting a deeper understanding of computer modeling in neuroscience and epilepsy.

CONCLUSION
A detailed model of the entire human brain, which could be accessed at any level of detail and be personalized 
for individualized patient treatment analysis no longer looks quite so outlandish. Likewise, it appears that an 
implantable seizure detection and intervention device will be available as a standard treatment option before 
long. Such exciting advancements made possible through computer modeling should inspire researchers and 
clinicians to be even more creative in their approaches to epilepsy therapies. We look forward to the advances 
the next decade will bring in computer modeling of epilepsy.
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