U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Carlson LM. Provisional Peer-Reviewed Toxicity Values for Perylene (CASRN 198-55-0). Cincinnati (OH): U.S. Environmental Protection Agency; 2023 Feb.

Cover of Provisional Peer-Reviewed Toxicity Values for Perylene (CASRN 198-55-0)

Provisional Peer-Reviewed Toxicity Values for Perylene (CASRN 198-55-0).

Show details

APPENDIX BREFERENCES

  1. ACGIH (American Conference of Governmental Industrial Hygienists). (2021). 2021 TLVs and BEIs: Based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. Cincinnati, OH. https://portal​.acgih​.org/s/store#/store/browse​/detail/a154W00000BOag7QAD
  2. Anderson D; Styles JA. (1978). Appendix II. The bacterial mutation test: Six tests for carcinogenicity. Br J Cancer 37: 924–930. 10.1038/bjc.1978.134 [PMC free article: PMC2009665] [PubMed: 354673] [CrossRef]
  3. Anderson JG; Mccalla DR; Bryant DW; Mccarry BE; Bromke AM. (1987). Metabolic activation of 3-nitroperylene in the Salmonella/S9 assay. Mutagenesis 279: 279–285. 10.1093/mutage/2.4.279 [PubMed: 3325759] [CrossRef]
  4. Anderson RS; Anderson LM. (1987). Lack of effect of perylene as an initiator of lung tumors or as a promoter of skin tumors in mice [Abstract]. Fed Proc 46: 746.
  5. Archibong AE; Inyang F; Ramesh A; Greenwood M; Nayyar T; Kopsombut P; Hood DB; Nyanda AM. (2002). Alteration of pregnancy related hormones and fetal survival in F-344 rats exposed by inhalation to benzo(a)pyrene. Reprod Toxicol 16: 801–808. 10.1016/S0890-6238(02)00058-8 [PubMed: 12401509] [CrossRef]
  6. Asada S; Sasaki K; Tanaka N; Takeda K; Hayashi M; Umeda M. (2005). Detection of initiating as well as promoting activity of chemicals by a novel cell transformation assay using v-Ha-ras-transfected BALB/c 3T3 cells (Bhas 42 cells). Mutat Res Genet Toxicol Environ Mutagen 588: 7–21. 10.1016/j.mrgentox.2005.07.011 [PubMed: 16260176] [CrossRef]
  7. Asokan P; Das M; Bik DP; Howard PC; Mccoy GD; Rosenkranz HS; Bickers DR; Mukhtar H. (1986). Comparative effects of topically applied nitrated arenes and their nonnitrated parent arenes on cutaneous and hepatic drug and carcinogen metabolism in neonatal rats. Toxicol Appl Pharmacol 86: 33–43. 10.1016/0041-008X(86)90397-2 [PubMed: 3490018] [CrossRef]
  8. ATSDR (Agency for Toxic Substances and Disease Registry). (1995). Toxicological profile for polycyclic aromatic hydrocarbons - Update [ATSDR Tox Profile]. (CIS/97/00215). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. https://www​.atsdr.cdc​.gov/substances/toxsubstance​.asp?toxid=25
  9. ATSDR (Agency for Toxic Substances and Disease Registry). (2021). Toxic substances portal: Toxicological profiles [Database]. Atlanta, GA. Retrieved from https://www​.atsdr.cdc​.gov/toxprofiledocs/index.html
  10. Bahri R; Saidane-Mosbahi D; Rouabhia M. (2010). Cytokine release and cytotoxicity in human keratinocytes induced by polycyclic aromatic hydrocarbons (1-methylpyrene and perylene). J Toxicol Environ Health A 73: 552–564. 10.1080/15287390903566617 [PubMed: 20391135] [CrossRef]
  11. Boyland E; Sims P. (1964). Metabolism of polycyclic compounds. 23. The metabolism of pyrene in rats and rabbits. Biochem J 90: 391–398. 10.1042/bj0900391 [PMC free article: PMC1202629] [PubMed: 5836889] [CrossRef]
  12. CalEPA (California Environmental Protection Agency). (2020). Consolidated table of OEHHA/CARB approved risk assessment health values. Sacramento, California. https://ww2​.arb.ca.gov​/resources/documents​/consolidated-table-oehha-carb-approved-risk-assessment-health-values
  13. CalEPA (California Environmental Protection Agency). (2022). OEHHA chemical database [Database]. Sacramento, CA: Office of Environmental Health Hazard Assessment. Retrieved from https://oehha​.ca.gov/chemicals
  14. Carver JH; Machado ML; MacGregor JA. (1985). Petroleum distillates suppress in vitro metabolic activation: Higher [S-9] required in the Salmonella/microsome mutagenicity assay. Environ Mutagen 7: 369–379. 10.1002/em.2860070311 [PubMed: 3899627] [CrossRef]
  15. Carver JH; Machado ML; Macgregor JA. (1986). Application of modified Salmonella/microsome prescreen to petroleum-derived complex mixtures and polynuclear aromatic hydrocarbons (PAH). Mutat Res 247: 247–253. 10.1016/0165-7992(86)90042-4 [PubMed: 3526138] [CrossRef]
  16. Casto BC; Pieczynski WJ; DiPaolo JA. (1973). Enhancement of adenovirus transformation by pretreatment of hamster cells with carcinogenic polycyclic hydrocarbons. Cancer Res 33: 819–824. [PubMed: 4121284]
  17. Casto BC; Pieczynski WJ; Janosko N; DiPaolo JA. (1976). Significance of treatment interval and DNA repair in the enhancement of viral transformation by chemical carcinogens and mutagens. Chem Biol Interact 13: 105–125. [PubMed: 816474]
  18. Chen C; Tang Y; Jiang X; Qi Y; Cheng S; Qiu C; Peng B; Tu B. (2012). Early postnatal benzo(a)pyrene exposure in Sprague-Dawley rats causes persistent neurobehavioral impairments that emerge postnatally and continue into adolescence and adulthood. Toxicol Sci 125: 248–261. 10.1093/toxsci/kfr265 [PubMed: 21984485] [CrossRef]
  19. Crespi CL; Thilly WG. (1984). Assay for gene mutation in a human lymphoblast line, AHH-1, competent for xenobiotic metabolism. Mutat Res 128: 221–230. 10.1016/0027-5107(84)90110-6 [PubMed: 6088974] [CrossRef]
  20. CTD (Comparative Toxicogenomics Database). (2022). Perylene: Comparative toxicogenomics database [Database]: MDI Biological Laboratory. Retrieved from http://ctdbase​.org/detail​.go?type=chem&acc=D010569
  21. Davis AP; Grondin CJ; Johnson RJ; Sciaky D; Wiegers J; Wiegers TC; Mattingly CJ. (2021). The comparative toxicogenomics database (CTD): update 2021 [Database]: MDI Biological Laboratory. NC State University. Retrieved from http://ctdbase​.org/
  22. De Flora S. (1981). Study of 106 organic and inorganic compounds in the Salmonella/microsome test. Carcinogenesis 2: 283–298. 10.1093/carcin/2.4.283 [PubMed: 7023727] [CrossRef]
  23. De Flora S; Zanacchi P; Camoirano A; Bennicelli C; Badolati GS. (1984). Genotoxic activity and potency of 135 compounds in the Ames reversion test and in a bacterial DNA-repair test [Review]. Mutat Res 133: 161–198. 10.1016/0165-1110(84)90016-2 [PubMed: 6374443] [CrossRef]
  24. DiPaolo JA; Popescu NC. (1974). Chromosome bands induced in human and syrian hamster cells by chemical carcinogens. Br J Cancer 30: 103–108. 10.1038/bjc.1974.120 [PMC free article: PMC2009233] [PubMed: 4422177] [CrossRef]
  25. Durant JL; Busby WF Jr; Lafleur AL; Penman BW; Crespi CL. (1996). Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res DNA Repair 371: 123–157. 10.1016/S0165-1218(96)90103-2 [PubMed: 9008716] [CrossRef]
  26. ECHA (European Chemicals Agency). (2022). Substance infocard: Perylene. Available online at https://www​.echa.europa​.eu/web/guest/substance-information​/-/substanceinfo/100​.005.365 (accessed April 5, 2022).
  27. El-Bayoumy K; Hecht SS; Hoffmann D. (1982). Comparative tumor initiating activity on mouse skin of 6-nitrobenzo[a]pyrene, 6-nitrochrysene, 3-nitroperylene, 1-nitropyrene and their parent hydrocarbons. Cancer Lett 16: 333–337. 10.1016/0304-3835(82)90015-5 [PubMed: 6295624] [CrossRef]
  28. Finzi C; Daudel P; Prodi G. (1968). Interference among polycyclic hydrocarbons in experimental skin carcinogenesis. Eur J Cancer 3: 497–501. 10.1016/0014-2964(68)90087-X [PubMed: 5636119] [CrossRef]
  29. Flesher JW; Myers SR. (1990). Bioalkylation of benz(a)anthracene as a biochemical probe for carcinogenic activity: Lack of bioalkylation in a series of six noncarcinogenic polynuclear aromatic hydrocarbons. Drug Metab Dispos 18: 163–167. [PubMed: 1971567]
  30. Florin I; Rutberg L; Curvall M; Enzell CR. (1980). Screening of tobacco smoke constituents for mutagenicity using the Ames' test. Toxicology 15: 219–232. 10.1016/0300-483X(80)90055-4 [PubMed: 7008261] [CrossRef]
  31. Goldfarb JL; Suuberg EM. (2008). Vapor pressures and enthalpies of sublimation of ten polycyclic aromatic hydrocarbons determined via the Knudsen effusion method. Journal of Chemical and Engineering Data 53: 670–676. 10.1021/je7005133 [CrossRef]
  32. Gupta RC; Earley K; Sharma S. (1988). Use of human peripheral blood lymphocytes to measure DNA binding capacity of chemical carcinogens. PNAS 85: 3513–3517. 10.1073/pnas.85.10.3513 [PMC free article: PMC280242] [PubMed: 3368462] [CrossRef]
  33. Harris M; Kamps C; Safe S. (1988). Role of the 4–5S binding protein in the induction of aryl hydrocarbon hydroxylase in the rat. Carcinogenesis 9: 1475–1480. 10.1093/carcin/9.8.1475 [PubMed: 3402044] [CrossRef]
  34. Hera C; Pueyo C. (1988). Response of the L-arabinose forward mutation assay of Salmonella typhimurium to frameshift-type mutagens. Mutat Res 203: 39–45. 10.1016/0165-1161(88)90006-4 [PubMed: 3277045] [CrossRef]
  35. Ho CH; Clark BR; Guerin MR; Barkenbus BD; Rao TK; Epler JL. (1981). Analytical and biological analyses of test materials from the synthetic fuel technologies: IV. Studies of chemical structure-mutagenic activity relationships of aromatic nitrogen compounds relevant to synfuels. Mutat Res 85: 335–345. 10.1016/0165-1161(81)90224-7 [PubMed: 7029261] [CrossRef]
  36. Horton AW; Christian GM. (1974). Cocarcinogenic versus incomplete carcinogenic activity among aromatic hydrocarbons: Contrast between chrysene and benzo(b)triphenylene. J Natl Cancer Inst 53: 1017–1020. 10.1093/jnci/53.4.1017 [PubMed: 4427387] [CrossRef]
  37. IARC (International Agency for Research on Cancer). (1983). Evaluation of the carcinogenic risk of chemicals to humans. International Agency for Research on Cancer. World Health Organization.
  38. IARC (International Agency for Research on Cancer). (1998). Perylene. In Polynuclear aromatic compounds, part 1: Chemical, environmental and experimental data Summary of data reported and evaluation (pp. 51). Lyon, France: World Health Organization. https://monographs​.iarc​.fr/wp-content/uploads​/2018/06/mono32.pdf
  39. IARC (International Agency for Research on Cancer). (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures [IARC Monograph]. Lyon, France. http://monographs​.iarc​.fr/ENG/Monographs/vol92/mono92.pdf [PMC free article: PMC4781319] [PubMed: 21141735]
  40. IDEAconsult (IDEAconsult Ltd). (2018). Toxtree: Toxic hazard estimation by decision tree approach (Version 3.1.0) [Database]. Retrieved from https://apps​.ideaconsult​.net/data/ui/toxtree
  41. IPCS. (2020). INCHEM: Chemical safety information from intergovernmental organizations [Database]. Geneva, Switzerland: World Health Organization, Canadian Centre for Occupational Health and Safety. Inter-Organization Programme for the Sound Management of Chemicals. Retrieved from http://www​.inchem.org/
  42. Kaden DA; Hites RA; Thilly WG. (1979). Mutagenicity of soot and associated polycyclic aromatic hydrocarbons to Salmonella typhimurium. Cancer Res 39: 4152–4159. [PubMed: 383281]
  43. Lavoie EJ; Bedenko EV; Hirota N; Hecht SS; Hoffmann D. (1979). A comparison of the mutagenicity, tumor-initiating activity and complete carcinogenicity of polynuclear aromatic hydrocarbons. In Jones PW; P Leber (Eds.), Polynuclear aromatic hydrocarbons (pp. 705–721). Ann Arbor, MI: Ann Arbor Science Publishers, Inc.
  44. Lipniak M; Brandys J. (1993). Toxicokinetics of fluoranthene, pyrene and benz(a)anthracene in the rat. Polycycl Aromat Compd 3: 111–119. 10.1080/10406639308047863 [CrossRef]
  45. Lofroth G; Toftgard R; Nilsson L; Agurell E; J-A G. (1984). Short-term bioassays of nitro derivatives of benzo(a)pyrene and perylene. Carcinogenesis 5: 925–930. 10.1093/carcin/5.7.925 [PubMed: 6329540] [CrossRef]
  46. Mersch-Sundermann V; Mochayedi S; Kevekordes S. (1992). Genotoxicity of polycyclic aromatic hydrocarbons in Escherichia coli PQ37. Mutat Res 278: 1–9. 10.1016/0165-1218(92)90279-9 [PubMed: 1370113] [CrossRef]
  47. Mukhtar H; Link CM; Cherniack E; Kushner DM; Bickers DR. (1982). Effect of topical application of defined constituents of coal tar on skin and liver aryl hydrocarbon hydroxylase and 7-ethoxycoumarin deethylase activities. Toxicol Appl Pharmacol 64: 541–549. 10.1016/0041-008X(82)90251-4 [PubMed: 6982545] [CrossRef]
  48. Neubert D; Tapken S. (1978). Some data on the induction of monooxygenases in fetal and neonatal mouse tissues. In Role of pharmacokinetics in prenatal and perinatal toxicology: Third Symposium on Prenatal Development, Berlin, 1978. Stuttgart, Germany: Thieme.
  49. Neubert D; Tapken S. (1988). Prenatal induction of benzo-a-pyrene hydroxylases in mice. Arch Toxicol 62: 192–199. 10.1007/bf00570139 [PubMed: 3196153] [CrossRef]
  50. NIOSH (National Institute for Occupational Safety and Health). (2018). NIOSH pocket guide to chemical hazards. Index of chemical abstracts service registry numbers (CAS No.). Atlanta, GA. http://www​.cdc.gov/niosh/npg/npgdcas​.html
  51. NIST (National Institute of Standards and Technology). (2022). NIST Chemistry WebBook, SRD 69. Perylene (CAS 198-55-0). Available online at https://webbook​.nist​.gov/cgi/cbook.cgi?ID​=C198550&Mask=4#ref-18
  52. NLM (National Library of Medicine). (2022a). ChemIDplus advanced [Database]. Bethesda, MD: National Institutes of Health, National Library of Medicine. Retrieved from https://chem​.nlm.nih.gov/chemidplus/
  53. NLM (National Library of Medicine). (2022b). PubChem compounds summary: Benzo[a]pyrene, 50-32-8. Available online at https://pubchem​.ncbi​.nlm.nih.gov/compound/2336
  54. NLM (National Library of Medicine). (2022c). PubChem compounds summary: Perylene, 198-55-0. Available online at https://pubchem​.ncbi​.nlm.nih.gov/compound/9142
  55. NLM (National Library of Medicine). (2022d). PubChem compounds summary: Pyrene, 129-00-0. Available online at https://pubchem​.ncbi​.nlm.nih.gov/compound/31423
  56. NTP (National Toxicology Program). (2021). Report on carcinogens, fifteenth edition. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service. 10.22427/NTP-OTHER-1003 [CrossRef]
  57. OCHEM (Online Chemical Database). (2022). ToxAlerts (Version 4.2.151) [Database]: Online Chemical Database with Modeling Environment. Helmholtz Zentrum Muenchen - Deutsches Forschungszentrum fuer Gesundheit und Umwelt. Retrieved from https://ochem​.eu/alerts/home.do
  58. OECD (Organisation for Economic Co-operation and Development). (2022). The OECD QSAR toolbox [version 4.5] [Database]. Retrieved from http://www​.oecd.org/chemicalsafety​/risk-assessment​/oecd-qsar-toolbox.htm
  59. OSHA (Occupational Safety & Health Administration). (2021a). Air contaminants: Occupational safety and health standards for shipyard employment, subpart Z, toxic and hazardous substances. (OSHA Standard 1915.1000). Washington, DC. https://www​.osha.gov​/laws-regs/regulations​/standardnumber/1915/1915.1000
  60. OSHA (Occupational Safety & Health Administration). (2021b). Safety and health regulations for construction: Occupational health and environmental controls: Gases, vapors, fumes, dusts, and mists. Washington, DC. https://www​.osha.gov​/laws-regs/regulations​/standardnumber/1926/1926.55
  61. OSHA (Occupational Safety & Health Administration). (2021c). Table Z-1: Limits for air contaminants. Occupational safety and health standards, subpart Z, toxic and hazardous substances. Washington, DC. https://www​.osha.gov​/laws-regs/regulations​/standardnumber/1910/1910.1000TABLEZ1
  62. Penman BW; Kaden DA; Liber HL; Skopek TR; Thilly WG; Hites RA. (1980). Perylene is a more potent mutagen than benzo(a)pyrene for S. typhimurium. Mutat Res 271: 271–277. 10.1016/0165-1218(80)90060-9 [PubMed: 6991922] [CrossRef]
  63. Piskorska-Pliszczynska J; Keys B; Safe S; Newman MS. (1986). The cytosolic receptor binding affinities and AHH induction potencies of 29 polynuclear aromatic hydrocarbons. Toxicol Lett 34: 67–74. 10.1016/0378-4274(86)90146-3 [PubMed: 3024361] [CrossRef]
  64. Popescu NC; Amsbaugh SC; DiPaolo JA. (1980). Enhancement of N-methyl-N'-nitro-N-nitrosoguanidine transformation of Syrian hamster cells by a phorbol diester is independent of sister chromatid exchanges and chromosome aberrations. Proc Natl Acad Sci USA 7282: 7282–7286. 10.1073/pnas.77.12.7282 [PMC free article: PMC350486] [PubMed: 6938975] [CrossRef]
  65. Popescu NC; Turnbull D; Dipaolo JA. (1977). Sister chromatid exchange and chromosome aberration analysis with the use of several carcinogens and noncarcinogens. J Natl Cancer Inst 59: 289–293. 10.1093/jnci/59.1.289 [PubMed: 406414] [CrossRef]
  66. Rády P; Arany I; Boján F; Kertai P. (1980). Effect of carcinogenic and non-carcinogenic chemicals on the activities of four glycolytic enzymes in mouse lung. Chem Biol Interact 31: 209–213. 10.1016/0009-2797(80)90007-1 [PubMed: 6446419] [CrossRef]
  67. Rády P; Arany I; Uzvolgyi E; Bojan F. (1981). Activity of pyruvate kinase and lactic acid dehydrogenase in mouse lung after transplacental exposure to carcinogenic and noncarcinogenic chemicals. Toxicol Lett 8: 223–228. 10.1016/0378-4274(81)90105-3 [PubMed: 6791312] [CrossRef]
  68. Reddy MV; Gupta RC; Randerath E; Randerath K. (1984). 32 P-postlabeling test for covalent DNA binding of chemicals in vivo: Application to a variety of aromatic carcinogens and methylating agents. Carcinogenesis 5: 231–244. 10.1093/carcin/5.2.231 [PubMed: 6697441] [CrossRef]
  69. Sakai M; Yoshida D; Mizusaki S. (1985). Mutagenicity of polycyclic aromatic hydrocarbons and quinones on salmonella typhimurium TA97. Mutat Res 156: 61–67. 10.1016/0165-1218(85)90007-2 [PubMed: 3889628] [CrossRef]
  70. Salamone MF; Heddle JA; Katz M. (1979). The mutagenic activity of thirty polycyclic aromatic hydrocarbons (PAH) and oxides in urban airborne particulates. Environ Int 2: 37–43. 10.1016/0160-4120(79)90092-8 [CrossRef]
  71. Schwarzenbach RP; Gschwend PM; Imboden DM. (2016). Environmental organic chemistry (3rd ed.). Hoboken, NJ: Wiley.
  72. Shimada T; Fujii-Kuriyama Y. (2004). Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1 [Review]. Cancer Sci 95: 1–6. 10.1111/j.1349-7006.2004.tb03162.x [PubMed: 14720319] [CrossRef]
  73. Sirianni SR; Huang CC. (1978). Sister chromatid exchange induced by promutagens/carcinogens in Chinese hamster cells cultured in diffusion chambers in mice. Proc Soc Exp Biol Med 158: 269–274. 10.3181/00379727-158-40186 [PubMed: 674231] [CrossRef]
  74. TCEQ (Texas Commission on Environmental Quality). (2015). TCEQ guidelines to develop toxicity factors: revised September 2015. (RG-442). Austin, TX. https://web​.archive.org​/web/20170305201245/http://www​.tceq.texas​.gov/publications/rg/rg-442.html/
  75. TCEQ (Texas Commission on Environmental Quality). (2022). TRRP protective concentration levels. Retrieved from https://www​.tceq.texas​.gov/remediation/trrp/trrppcls.html
  76. Thayer KA; Angrish M; Arzuaga X; Carlson LM; Davis A; Dishaw L; Druwe I; Gibbons C; Glenn B; Jones R; Kaiser JP; Keshava C; Keshava N; Kraft A; Lizarraga L; Persad A; Radke EG; Rice G; Schulz B; ... Vetter N. (2022). Systematic evidence map (SEM) template: Report format and methods used for the US EPA Integrated Risk Information System (IRIS) program, Provisional Peer Reviewed Toxicity Value (PPRTV) program, and other "fit for purpose" literature-based human health analyses. Environ Int 169: 107468. 10.1016/j.envint.2022.107468 [PubMed: 36174483] [CrossRef]
  77. Thilly WG; Longwell J; Andon BM. (1983). General approach to the biological analysis of complex mixtures. Environ Health Perspect 48: 129–136. 10.2307/3429464 [PMC free article: PMC1569051] [PubMed: 6337832] [CrossRef]
  78. U.S. EPA (U.S. Environmental Protection Agency). (1990). Integrated Risk Information System (IRIS) chemical assessment summary for pyrene (CASRN 129-00-0). Washington, DC: National Center for Environmental Assessment, Integrated Risk Information System. https://cfpub​.epa.gov​/ncea/iris/iris_documents​/documents/subst/0445_summary.pdf
  79. U.S. EPA (U.S. Environmental Protection Agency). (1991). Guidelines for developmental toxicity risk assessment. Fed Reg 56: 63798–63826.
  80. U.S. EPA (U.S. Environmental Protection Agency). (1994). Methods for derivation of inhalation reference concentrations and application of inhalation dosimetry [EPA Report]. (EPA600890066F). Research Triangle Park, NC. https://cfpub​.epa.gov​/ncea/risk/recordisplay​.cfm?deid=71993&CFID​=51174829&CFTOKEN​=25006317
  81. U.S. EPA (U.S. Environmental Protection Agency). (2005). Guidelines for carcinogen risk assessment [EPA Report]. (EPA630P03001F). Washington, DC. https://www​.epa.gov/sites​/production/files​/2013-09/documents​/cancer_guidelines_final_3-25-05.pdf
  82. U.S. EPA (U.S. Environmental Protection Agency). (2007). Provisional peer-reviewed toxicity values for pyrene (CASRN 129-00-0) [EPA Report]. Cincinnati, OH. https://cfpub​.epa.gov​/ncea/pprtv/documents/Pyrene.pdf
  83. U.S. EPA (U.S. Environmental Protection Agency). (2011a). Chemical assessment clustering engine (ChemACE). Retrieved from https://www​.epa.gov/tsca-screening-tools​/chemical-assessment-clustering-engine-chemace
  84. U.S. EPA (U.S. Environmental Protection Agency). (2011b). Health effects assessment summary tables (HEAST) for superfund [EPA Report]. Washington, DC. https://epa-heast​.ornl.gov/heast.php
  85. U.S. EPA (U.S. Environmental Protection Agency). (2012). Estimation Programs Interface Suite for Microsoft® Windows, v 4.11 [Computer Program]. Washington, DC. Retrieved from https://www​.epa.gov/tsca-screening-tools​/epi-suitetm-estimation-program-interface
  86. U.S. EPA (U.S. Environmental Protection Agency). (2017a). Toxicological review of benzo[a]pyrene (CASRN 50-32-8) [EPA Report]. (EPA635R17003Fa). Washington, DC: U.S. Environmental Protection Agency, Integrated Risk Information System. https://cfpub​.epa.gov​/ncea/iris/iris_documents​/documents/toxreviews/0136tr.pdf
  87. U.S. EPA (U.S. Environmental Protection Agency). (2017b). Toxicological review of benzo[a]pyrene (CASRN 50-32-8): Supplemental information [EPA Report]. (EPA635R17003Fb). Washington, DC: U.S. Environmental Protection Agency, Integrated Risk Information System. https://cfpub​.epa.gov​/si/si_public_file_download​.cfm?p_download_id​=535926&Lab=NCEA
  88. U.S. EPA (U.S. Environmental Protection Agency). (2018). 2018 Edition of the drinking water standards and health advisories tables [EPA Report]. (EPA 822-F-18-001). Washington, DC: U.S. Environmental Protection Agency, Office of Water. https://nepis​.epa.gov/Exe/ZyPURL​.cgi?Dockey=P100U7U8.txt
  89. U.S. EPA. (2020a). CompTox Chemicals Dashboard: Perylene [Bioactivity, invitrodb version 3.3] [Database]. Retrieved from https://comptox​.epa.gov​/dashboard/chemical​/details/DTXSID4047753
  90. U.S. EPA. (2020b). CompTox Chemicals Dashboard: Perylene [Bioactivity, PubChem] [Database]. Retrieved from https://comptox​.epa.gov​/dashboard/chemical​/details/DTXSID4047753
  91. U.S. EPA. (2020c). CompTox Chemicals Dashboard: Perylene [GenRA] [Database]. Retrieved from https://comptox​.epa.gov​/dashboard/chemical​/details/DTXSID4047753
  92. U.S. EPA (U.S. Environmental Protection Agency). (2021). TSCA chemical substance inventory. Download the non-confidential TSCA inventory. Available online at https://www​.epa.gov/tsca-inventory​/how-access-tsca-inventory
  93. U.S. EPA (U.S. Environmental Protection Agency). (2022a). CompTox chemicals dashboard. Washington, DC. Retrieved from https://comptox​.epa.gov/dashboard
  94. U.S. EPA (U.S. Environmental Protection Agency). (2022b). CompTox chemicals dashboard: Benzo(a)pyrene. Available online at https://comptox​.epa.gov​/dashboard/chemical​/details/DTXSID2020139 (accessed August 2, 2022).
  95. U.S. EPA (U.S. Environmental Protection Agency). (2022c). CompTox chemicals dashboard: Perylene [Database]. Retrieved from https://comptox​.epa.gov​/dashboard/chemical​/details/DTXSID4047753
  96. U.S. EPA (U.S. Environmental Protection Agency). (2022d). CompTox chemicals dashboard: Pyrene. Available online at https://comptox​.epa.gov​/dashboard/chemical​/details/DTXSID3024289 (accessed August 2, 2022).
  97. U.S. EPA (U.S. Environmental Protection Agency). (2022e). Integrated risk information system (IRIS) database [Database]. Washington, DC. Retrieved from http://www​.epa.gov/iris/
  98. Van Duuren BL; Sivak A; Goldschmidt BM; Katz C; Melchionne S. (1970). Initiating activity of aromatic hydrocarbons in two-stage carcinogenesis. J Natl Cancer Inst 44: 1167–1173. [PubMed: 5514475]
  99. von der Hude W; Behm C; Gürtler R; Basler A. (1988). Evaluation of the SOS chromotest. Mutat Res 203: 81–94. 10.1016/0165-1161(88)90023-4 [PubMed: 3280989] [CrossRef]
  100. Wang NC; Zhao QJ; Wesselkamper SC; Lambert JC; Petersen D; Hess-Wilson JK. (2012). Application of computational toxicological approaches in human health risk assessment. I. A tiered surrogate approach. Regul Toxicol Pharmacol 63: 10–19. 10.1016/j.yrtph.2012.02.006 [PubMed: 22369873] [CrossRef]
  101. White KL; Lysy HH; Holsapple MP. (1985). Immunosuppression by polycyclic aromatic hydrocarbons: A structure-activity relationship in B6C3F1 and DBA/2 mice. Immunopharmacology 9: 155–164. 10.1016/0162-3109(85)90011-6 [PubMed: 4040508] [CrossRef]
  102. Zhao W; Ramos KS. (1995). Inhibition of DNA synthesis in primary cultures of adult rat hepatocytes by benzo[a]pyrene and related aromatic hydrocarbons: Role of Ah receptor-dependent events. Toxicology 99: 179–189. 10.1016/0300-483X(94)03028-Z [PubMed: 7610464] [CrossRef]
Bookshelf ID: NBK601586

Views

Other titles in this collection

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...