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Abstract

Low plasma levels of High Density Lipoprotein (HDL) cholesterol (HDL-C) are
associated with increased risks of atherosclerotic cardiovascular disease
(ASCVD). In cell culture and animal models, HDL particles exert multiple
potentially anti-atherogenic effects. However, drugs increasing HDL-C have
failed to prevent cardiovascular endpoints. Mendelian Randomization studies
neither found any genetic causality for the associations of HDL-C levels with
differences in cardiovascular risk. Therefore, the causal role and, hence, utility as
a therapeutic target of HDL has been questioned. However, the biomarker “HDL-
C” as well as the interpretation of previous data has several important limitations:
First, the inverse relationship of HDL-C with risk of ASCVD is neither linear nor
continuous. Hence, neither the-higher-the-better strategies of previous drug
developments nor previous linear cause-effect relationships assuming Mendelian
randomization approaches appear appropriate. Second, most of the drugs previ-
ously tested do not target HDL metabolism specifically so that the futile trials
question the clinical utility of the investigated drugs rather than the causal role of
HDL in ASCVD. Third, the cholesterol of HDL measured as HDL-C neither
exerts nor reports any HDL function. Comprehensive knowledge of structure-
function-disease relationships of HDL particles and associated molecules will be
a pre-requisite, to test them for their physiological and pathogenic relevance and
exploit them for the diagnostic and therapeutic management of individuals at
HDL-associated risk of ASCVD but also other diseases, for example diabetes,
chronic kidney disease, infections, autoimmune and neurodegenerative diseases.

Keywords

Apolipoprotein A-I · CETP · Cholesterol efflux · Fibrate · HDL mimetic · High
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1 Introduction

Low plasma levels of high density lipoprotein (HDL) cholesterol (HDL-C) are
associated with increased risks of atherosclerotic cardiovascular diseases
(ASCVD), notably coronary heart disease (CHD) (Emerging Risk Factors Collabo-
ration 2009; Madsen et al. 2021). HDL particles exert a broad spectrum of biological
activities many of which are considered as anti-atherogenic, for example mediation
of cholesterol efflux from macrophage foam cells and reverse transport of cholesterol
to the liver, promotion of endothelial integrity and function, inhibition of inflamma-
tion by suppression of myelopoiesis and transmigration of leukocytes through the
endothelium as well as macrophage activation, inhibition of lipid oxidation as well
as inactivation of oxidized lipids (Fig. 1) (Von Eckardstein and Kardassis 2015;
Robert et al. 2021; Rohatgi et al. 2021). Furthermore, atherosclerosis could be
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decreased or even reverted in several animal models by transgenic over-expression
or exogenous application of apolipoprotein (apoA-I), i.e. the most abundant protein
of HDL (Hoekstra and Van Eck 2015; Lee-Rueckert et al. 2016). However, in
humans, drugs increasing HDL-C such as fibrates, nicotinic acid (niacin), or
inhibitors of cholesteryl ester transfer protein (CETP) have failed to prevent fatal
or non-fatal cardiovascular endpoints (Keene et al. 2014; Riaz et al. 2019). Infusions
of reconstituted HDL (rHDL) did not lead to regression of atherosclerosis in
coronary or carotid arteries (He et al. 2021). Moreover, in several inborn errors of
human HDL metabolism and genetic mouse models with altered HDL metabolism,
low or high HDL-C levels were not always associated with the differences in
cardiovascular risk and atherosclerotic plaque load, respectively, that were expected
from epidemiology (Hoekstra and Van Eck 2015; Lee-Rueckert et al. 2016; Zanoni
and von Eckardstein 2020). For example, the loss of scavenger receptor B1 (SR-BI)
function aggravates the risk of ASCVD events in human carriers of SCARB1
mutations and promotes atherosclerosis in Scarb1 knock-out mice despite increasing
HDL-C levels (Hoekstra and Van Eck 2015; Lee-Rueckert et al. 2016; Zanoni et al.
2016). Because of these ambiguous data, the causal role of HDL in the pathogenesis
of atherosclerosis as well as the suitability of HDL-C as a therapeutic target is
nowadays scrutinized if not doubted (Madsen et al. 2021; März et al. 2017). Both
the previous euphoria and the current skepticism in the discussion of HDL’s role in
health and disease, specifically in ASCVD but also beyond, have been suffering
from several misconceptions, which are described in the first part of this review. As
the conclusion, several perspectives for the clinical exploitation of HDL are
presented in the second part.
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Fig. 1 Possible pathophysiological relationships of low HDL cholesterol with its associated
diseases (modified from Von Eckardstein and Kardassis 2015)
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2 Possible Reasons for HDL-C’s Clinical Futility

2.1 Lack of Causality

Mendelian randomization studies have been a successful tool to support the causality
of LDL cholesterol (LDL-C) in atherosclerosis: Single nucleotide polymorphisms
(SNPs) and rare genetic variants that are associated with lower or higher LDL-C
levels are associated with lower and higher risk, respectively, of ASCVD events. The
associations of genetically determined LDL-C with ASCVD risk are even stronger
than the associations of measured LDL-C. This is because the genetic information
includes both time and dosage of exposure to the harmful LDL-C whereas the
measured LDL-C only records the dosage of the harm (Borén et al. 2020). Mende-
lian randomization studies also support causality of hypertriglyceridemia and ele-
vated apoB levels as well as hypertension in the pathogenesis of ASCVD (Benn and
Nordestgaard 2018). Conversely, this genetic strategy rather excluded genetic cau-
sality of HDL-C and apoA-I levels in the manifestation of ASCVD, at least after
maximal adjustment for confounding lipid traits such as apoB and triglyceride levels
(Richardson et al. 2020; Voight et al. 2012). However, it is important to note the
limitations of Mendelian Randomization studies. With respect to HDL-C the most
important limitation is the assumption of a continuous relationship between the risk
factor and the clinical endpoint. This is true for the association of LDL-C or
nonHDL-C with major cardiovascular events but not for HDL-C, where no differ-
ence in risk is observed among individuals with HDL-C levels above the 60th
percentile (Emerging Risk Factors Collaboration 2009; Johannesen et al. 2020;
Madsen et al. 2017; see Sect. 2.2).

HDL-C levels below the widely accepted risk thresholds of 1.0 mmol/L or 40 mg/
dL are frequently confounded by other risk factors of ASCVD, notably
hypertriglyceridemia, manifest diabetes mellitus type 2 (T2DM) or impaired fasting
glucose, smoking, chronic inflammatory diseases (chronic obstructive lung disease,
rheumatic diseases) or biomarkers of inflammation (e.g., elevated C-reactive pro-
tein), overweight or obesity (Fig. 1; Assmann et al. 1996; Damen et al. 2017). Due to
the links of HDL metabolism with the metabolism of triglyceride-rich lipoproteins, it
has been suggested that low HDL-C is an indirect long-term indicator of postpran-
dial hypertriglyceridemia and hence exposure of atherogenic remnants like elevated
glycated hemoglobin A1c is a long-term marker of disturbed glucose metabolism but
a non-causal risk factor of glycation-induced organ damage (Langsted et al. 2020).

2.2 Epidemiology and Human Genetics Disprove “the Higher
the Better” Concept

The association of HDL-C with risk of ASCVD events has been described for
decades to be inverse. The resulting widespread reception of HDL-C as the “good
cholesterol” led to the application of “the higher the better” strategies to both patient
counselling and drug development. However, the meta-analysis of 68 population
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studies with more than 300,000 participants and 2,785 incident myocardial
infarctions by the Emerging Risk Factors Collaboration found the unadjusted risk
of myocardial infarction gradually decreasing from the first decile to the eighth
decile (i.e., until about 1.5 mmol/L or 58 mg/dL) but no significant changes at higher
levels of HDL-C. After adjustment for possible confounders, statistically significant
dose-dependent risk decreases happen within the lower six deciles until about 50 mg/
dL (1.3 mmol/L) but not above this threshold (Emerging Risk Factors Collaboration
2009). Similar observations were made in more than 110,000 and 630,000
participants of the Copenhagen General Population (CGPS) and Copenhagen City
Heart Studies (CCHS) and CANHEART studies (Madsen et al. 2017; Wijeysundera
et al. 2017). In Denmark, the decreases in risk of cardiovascular events reached
plateaus at 1.5 mmol/L in men and 2.0 mmol/L in women (Madsen et al. 2017). In
Canada, below the reference interval ranging from 50 to 60 mg/dL, the incidence of
ASCVD events increased with every decreasing 10 mg/dL interval of HDL-C.
Above the threshold of 60 mg/dL, the ASCVD risks were overall significantly
lower compared to the reference interval, but did not differ between the increasing
10 mg/dL strata, neither in men nor in women (Wijeysundera et al. 2017). Of note,
the associations of HDL-C with total as well as disease-specific mortalities including
cardiovascular mortality are even parabolic (U-shaped): Both in the Danish and
Canadian studies, the inverse associations of HDL-C with total mortality reached
their nadirs at 1.8–1.9 mmol/L (70–75 mg/dL) and 2.3–2.4 mmol/L (90–95 mg/dL)
in men and women, respectively. Beyond these thresholds, the risk of dying became
gradually higher with further increasing HDL-C levels (Ko et al. 2016; Madsen et al.
2017).

The discontinuous and even parabolic associations of HDL-C with cardiovascular
morbidity and mortality, respectively, have been largely ignored both in the execu-
tion of Mendelian randomization studies and in the design of randomized controlled
studies that aimed at the lowering of cardiovascular risk by increasing of HDL-C:
both have been based on the assumption of continuous the-higher-the-better
associations. The majority of the trials on fibrates, niacin, or CETP inhibitors did
not define any upper limit of HDL-C for inclusion into the trial (Table 1). No
Mendelian Randomization study restricted the analysis to the ranges where changes
in HDL-C are associated with changes in risk, e.g. to the lower five or six deciles
(Richardson et al. 2020; Voight et al. 2012). Of note, a large register study of a lipid
clinics in Boston among individuals with HDL-C below 25 mg/dL (0.8 mmol/L)
found an increased prevalence of ASCVD events in carriers of mutations in the
genes of APOA1, ABCA1, LCAT, and LPL (Geller et al. 2018). Also studies in
Dutch and Canadian families affected by loss of function mutations in APOA1,
ABCA1, or LCAT found the prevalence of ASCVD events increased among
mutation carriers, but only if HDL-C was below the fifth percentile (Abdel-Razek
et al. 2018; Tietjen et al. 2012). Conversely, mutations in the genes of CETP,
SCARB1, and LIPG, which cause increases in HDL-C show heterogenous
associations with ASCVD. Loss of function mutations in LIPG encoding endothelial
lipase do not alter the risk of ASCVD (Voight et al. 2012). The associations of loss of
function mutations in CETP and SCARB1 with ASCVD are controversial: Rare

High Density Lipoproteins: Is There a Comeback as a Therapeutic Target? 161



SCARB1 mutations were associated with increased CVD risk in one study but not in
another (Helgadottir et al. 2018; Zanoni et al. 2016). CETP deficiency was originally
associated with reduced risk of ASCVD and increased life expectancy but later
studies found diverse associations of loss of function mutations in CETP with
ASCVD, namely increased risk in the Honolulu Heart Study but decreased risk in
a Japanese population study (Moriyama et al. 1998; Yamashita and Matsuzawa
2016; Zhong et al. 1996). Likewise, the common polymorphisms in CETP which
are associated with lower CETP mass and activity, LDL-C, and triglycerides but
higher HDL-C were showed diverse associations with ASCVD in different studies:
meta-analyses found lower risks of ASCVD associated with loss of function alleles
of CETP (Kathiresan 2012; Niu and Qi 2015), but there are several individual studies
which found the opposite (Agerholm-Larsen et al. 2000; Borggreve et al. 2006).
Loss of function mutations in APOC3 cause higher HDL-C levels and reduce
cardiovascular risk (Crosby et al. 2014; Pollin et al. 2008), but this may reflect
proatherogenic features of apoC-III beyond its influence on HDL-C and triglyceride
levels (Riwanto et al. 2013; Zewinger et al. 2020; Zvintzou et al. 2017) (see also
Sect. 3.2).

Table 1 The majority of “HDL” trials did not define any cut-off level of HDL cholesterol for
inclusion or exclusion of participants

Trial Drug
Type of
prevention

HDL-C inclusion
criterion

HDL-C (mmol/L) at
baseline

HHS Gemfibrozil Primary Not defined 1.22 � 0.28

BIP Bezafibrate Secondary <1.16 mmol/L 0.89 � 0.14

VA-HIT Gemfibrozil Secondary <1.05 mmol/L 0.89 + 0.18

FIELD Fenofibratea Diabetes
mellitus

Not defined 1.10 � 0.26

ACCORDa Fenofibratea Diabetes
mellitus

<1.42 mmol/L 0.98 � 0.21

AIM-HIGHa Niacina Secondary <1.05 mmol/L 0.91 � 0.16

HPS2-THRIVEa Niacina Secondary Not defined 1.14 � 0.30

ILLUMINATEa Torcetrapiba Secondary Not defined 1.26 � 0.31

DALOUTCOMEa Dalcetrapiba Secondary Not defined 1.10 � 0.30

ACCELERATEa Evacetrapib Secondary <2.07 mmol/L 1.18 � 0.30

REVEALa Anacetrapib Secondary Not defined 1.04 � 0.26

HHS ¼ Helsinki Heart Study (Frick et al. 1987), BIP ¼ Bezafibrate Infarction Prevention (BIP)
2000, VA-HIT (Rubins et al. 1999), FIELD ¼ Keech et al. (2005), ACCORD Study Group (2010);
AIM-HIGH Investigators (2011), HPS2-THRIVE Collaborative Group (2014); ILLUMINATE
(Barter et al. 2007b), Dal-OUTCOME (Schwartz et al. 2012), ACCELERATE (Lincoff et al.
2017; HPS3/TIMI55–REVEAL Collaborative Group 2017)
aCombined with statins vs. statins alone. HDL-C HDL cholesterol
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2.3 Limitations of HDL Modifying Drugs

The futility of the most recent randomized controlled trials (RCTs) on fenofibrate
(ACCORD Study Group 2010; Keech et al. 2005), nicotinic acid (AIM-HIGH
Investigators 2011; HPS2-THRIVE Collaborative Group 2014), and cholesteryl
ester transfer protein (CETP)-inhibitors (ILLUMINATE, Dal-OUTCOME, ACCEL-
ERATE, REVEAL) (Barter et al. 2007b; HPS3/TIMI55–REVEAL Collaborative
Group 2017; Lincoff et al. 2017; Schwartz et al. 2012) is frequently used as the
argument to question the causality of HDL in the pathogenesis of atherosclerosis.
However, this conclusion overlooks that – except the CETP inhibitor dalcetrapib
(Schwartz et al. 2012) – none of these drugs is specifically altering HDL-C.
Especially fibrates and nicotinic acid exert stronger effects on other lipoprotein traits
than on HDL-C. Thus, their failure to reduce ASCVD events should primarily
prompt to scrutinize the suitability of these pharmacological strategies rather than
the causality of HDL in ASCVD. Moreover, one should be oblivious to meta-
analyses that demonstrated futility of fibrates or nicotinic acid if combined with
statins but efficacy if used as monotherapies (Keene et al. 2014; Riaz et al. 2019).
Likewise, genetic studies indicate that potential efficacy of CETP inhibitors in
ASCVD prevention may be hampered by the combination with statins (Ference
et al. 2017).

2.3.1 Neither Fibrates nor Nicotinic Acid Specifically Target HDL
Metabolism

Fibrates are agonists of the peroxisome proliferator agonist receptor alpha (PPARα).
As such they regulate the transcription of several genes which are relevant in the
metabolism of HDL metabolism (e.g., APOA1, PLTP, SCARB1) but also
triglyceride-rich lipoproteins (Montaigne et al. 2021; Zandbergen and Plutzky
2007). As the result, fibrates cause increases in HDL-C of maximally 15% and
decreases in triglycerides of 25–50%. The rather moderate effect on HDL-C is
partially explained by the induction of APOA1 and SCARB1 genes, which enhances
production and catabolism of HDL, respectively. As the result, the flux of HDL and
probably reverse cholesterol transport are affected by fibrates more profoundly than
reflected by changes in HDL-C. Triglycerides rather than HDL-C were the most
profoundly altered lipoprotein traits. The two gemfibrozil utilizing trials – the
primary prevention Helsinki Heart Study (Frick et al. 1987) and the secondary
prevention study VA-HIT (Rubins et al. 1999) – were the only ones which found
significant reductions of ASCVD events by the fibrate intervention vs. placebo. Only
three trials (VA-HIT, BIP, and ACCORD) pre-defined plasma levels of HDL-C as
inclusion criterion (ACCORD Study Group 2010; Bezafibrate Infarction Prevention
Study 2000; Rubins et al. 1999). For ACCORD, the threshold was rather high with
55 mg/dL (1.42 mmol/L) (ACCORD study group 2010). Post-hoc analyses of the
fibrate trials demonstrated relative risk reductions for subgroups of patients with
HDL-C and triglycerides levels <35 mg/dL (0.9 mmol/L) and >200 mg/dL
(2.3 mmol/L) ranging from 27% (FIELD, Keech et al. 2005) to �65% (Helsinki
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Heart Study) (Sacks et al. 2010). Currently the Pemafibrate to Reduce Cardiovascu-
lar OutcoMes by Reducing Triglycerides IN patiENts With diabeTes (PROMI-
NENT) trial tests prospectively the efficacy of the novel combined PPARα/PPARδ
agonist pemafibrate (NCT03071692) (Pradhan et al. 2018).

Nicotinic acid (niacin) is an agonist of the G-protein coupled receptor GPR109A
(HM74A or PUMA-G) (Offermanns 2014). As such, it primarily inhibits the lipoly-
sis in adipocytes and secondarily, by reducing the free fatty acid flux, the lipogenesis
and VLDL production in the liver. Reduced free fatty acid exposure may also
promote ABCA1 activity in the liver and hence the production of nascent HDL
(Chapman et al. 2010; KAmanna et al. 2013). In addition CETP activity was found
decreased upon treatment with nicotinic acid due to direct and indirect inhibitory
effects via production as well as activity of the protein and diminished pool of VLDL
and hence acceptor particles, respectively (Chapman et al. 2010). In addition,
nicotinic acid lowers plasma levels of LDL-C and lipoprotein(a) (Lp(a)). Despite
these multiple beneficial effects on lipoproteins, in both the AIM-HIGH and
HPS-THRIVE trials, the combination of statins with nicotinic acid was not superior
to statin monotherapy in preventing ASCVD events (Table 2) (AIM-HIGH
Investigators 2011; HPS2-THRIVE Collaborative Group 2014). Only AIM-HIGH
defined inclusion criteria based on HDL-C (<1.05 mmol/L or <40 mg/dL). How-
ever, post-hoc analyses did not find any evidence that low HDL-C defines a
subgroup of patients who benefit from nicotinic acid (Guyton et al. 2013; HPS2

Table 2 Effects of lipid modifying drug classes on lipoprotein traits and prevention of major
cardiovascular events (MACE)

Drug
class

LDL-C
(max
Δ%)

Triglycerides
(max Δ%)

HDL-C
(max
Δ%) MACE reduction

Statins �50 �40 +10 Yes

Ezetimibe �20 �10 0 Yes

Resins �10 +20 0 Yes

PCSK9-
inhibitors

�60 �20 +10 Yes

Fibrates �10 �40 +15 Controversial: Yes, if without statins or
post hoc, if HDL-C low and triglycerides
elevated

Omega-3
fatty
acids

+10 �35 0 Controversial

Nicotinic
acid

�15 �30 +20 Controversial: Yes, if without statins

CETP
inhibitors

�40 �15 +130 Anacetrapib: Yes
Dalcetrapib & evacetrapib: No
Torcetrapib: Adverse

CETP cholesteryl ester transfer protein, HDL-C High density lipoprotein cholesterol, LDL-C low
density lipoprotein cholesterol, MACE major cardiovascular events, PCSK9 proprotein subtilisin
kexin type 9 convertase
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THRIVE Collaborative Group 2014) However, in a meta-analysis monotherapy of
nicotinic acid was found effective in reducing cardiovascular morbidity and mortal-
ity (Keene et al. 2014). Because of futility and the occurrence of flushes as very
unpleasant and frequent side effects, nicotinic acid is no longer available for
treatment in many countries.

2.3.2 CETP Inhibitors Block Rather than Promote Reverse Cholesterol
Transport

CETP links the metabolism of HDL and apoB containing lipoproteins by exchang-
ing cholesteryl esters of HDL against triglycerides of VLDL and LDL (Chapman
et al. 2010). As the result of inhibiting this exchange, the most effective CETP
inhibitors – torcetrapib, evacetrapib, and anacetrapib – cause increases of HDL-C by
75 (Torcetrapib) to 130% (Evacetrapib) and decreases of LDL-C by 25%
(torcetrapib) to 40% (Anacetrapib) (Barter et al. 2007b; HPS3/TIMI55–REVEAL
Collaborative Group 2017; Lincoff et al. 2017). The weaker CETP inhibitor
dalcetrapib increases HDL-C by 30% without causing any drop in LDL-C (Schwartz
et al. 2012). CETP inhibitors also decrease Lp(a) by up to 35% through an as yet
unknown mechanism (Gencer and Mach 2020). Despite their at first sight beneficial
effects on lipoprotein traits, three trials were prematurely stopped; the ILLUMI-
NATE trial because of excess morbidity and mortality in the torcetrapib arm possibly
due to off target effects of torcetrapib (Barter et al. 2007b). ACCELERATE and
dal-OUTCOME were stopped prematurely because of futility of evacetrapib and
dalcetrapib, respectively (Lincott et al. 2017; Schwartz et al. 2012). Only the
combination of statin with anacetrapib in the REVEAL trial showed some superior-
ity towards statin only therapy (HPS3/TIMI55–REVEAL Collaborative Group
2017). However, with a 9% relative risk reduction or the primary endpoint, the
added value of anacetrapib was small and attributed to the decrease in LDL-C rather
than to the increase in HDL-C. Because of the parallel successful development of
PCSK9 inhibitors, which are much more effective in lowering LDL-C and event
rates, the development of anacetrapib was stopped. Dalcetrapib, however, is further
developed towards a personalized indication: post-hoc analyses of the
Dal-OUTCOME study revealed that the carrier status for a mutation in the adenylate
cyclase subtype 9 encoding ADCY9 gene discriminated individuals who did or did
not benefit from dalcetrapib treatment by lower ASCVD event rates (Tardif et al.
2015). However, the same mutation discriminated responders and non-responders
neither to anacetrapib nor to evacetrapib in the REVEAL and ACCELERATE trials,
respectively (Hopewell et al. 2019; Nissen et al. 2018). Conversely, the interaction
of CETP with ADCY9 was recapitulated in genetic mouse models (Rautureau et al.
2018). The Dal-GenE trial currently investigates prospectively, whether patients
selected for the ADCY9 genotype benefit from treatment with dalcetrapib
(NCT02525939) (Tardif et al. 2020).

At first sight the negative outcomes of the CETP inhibitor trials were surprising,
not only because of the beneficial effects on the lipoprotein profile but also because
several large genetic studies demonstrated lower prevalences or incidences of
cardiovascular events among carriers of low activity CETP alleles (Kathiresan
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2012). However, later population genetic studies showed an interaction between
CETP and HMGCR alleles. In the presence of HMGCR alleles that reduce
HMG-CoA reductase activity and thereby mimic treatment effects of statins,
CETP alleles that cause low CETP activity and mimic the effects of CETP inhibitors
did not confer any additional cardiovascular risk reduction (Ference et al. 2017).
Likewise, torcetrapib treatment reduced atherosclerosis in apoE3 Leiden*CETP
transgenic mice, if provided as monotherapy but not if provided in combination
with statins (de Haan et al. 2008) whereas anacetrapib treatment enhanced the anti-
atherogenic effect of atorvastatin (Kühnast et al. 2015). Nevertheless, the question is
raised if the anti-atherogenicity of CETP inhibition depends on the capacity of the
LDL receptor pathway: if this is fully functional, for example, as the result of statin
treatment, CETP will promote reverse cholesterol transport and should not be
blocked (von Eckardstein 2020). Only in situations, where LDL removal by the
LDL receptor pathway is compromised, it may be useful to withheld cholesterol
from LDL by CETP inhibition for hepatic removal through LDL receptor indepen-
dent pathways involving direct HDL/receptor interactions, for example with SR-BI.
As an alternative explanation, it was proposed that CETP inhibition renders HDL
dysfunctional by prolonging the half-life of HDL particles and thereby making them
susceptible to adverse alterations in the lipid and protein composition or oxidative
and enzymatic modifications of protein or lipid components. However, the classical
function of HDL, mediation of cholesterol efflux from macrophages was rather
increased upon treatment of humans or animals with Evacetrapib, Anacetrapib, or
Dalcetrapib (Brodeur et al. 2017; Metzinger et al. 2020; Nicholls et al. 2015; Simic
et al. 2017; Tardif et al. 2015). Interestingly endothelial functions were not improved
or even impaired in apoE3 Leiden*CETP transgenic mice upon treatment with
evacetrapib and anacetrapib, respectively, despite increasing CEC and paraoxonase
activity (Simic et al. 2017).

2.3.3 Combination with High-Intensity Statins: TheWinner Takes it All
The combination of statins with fenofibrate, nicotinic acid, or CETP inhibitors was
motivated by post-hoc meta-analyses of statin trials, which found the residual risk of
patients treated with statins to be significantly associated with low HDL-C levels
(Boekholdt et al. 2013). A closer look to post-hoc analyses of individual trials,
however, reveals that these associations became weaker the lower LDLC levels were
reached. For example, in the WOSCOP study, where mean levels of LDL-C were
lowered from 5.0 mmol/L in the placebo arm to 3.6 mmol/L in the pravastatin arm,
low baseline levels of HDL-C were associated with increased risk of ASCVD events
in both treatment groups (West of Scotland Coronary Prevention Study Group
1998). However, more than 10 years later in the JUPITER study (LDL-C at baseline
<3.37 mmol/L), both baseline and on-treatment levels of HDL-C were significantly
associated with residual risk only in the placebo group with a mean on treatment
LDL-C of 2.8 mmol/L, but not in the rosuvastatin group with an on treatment mean
LDL-C level of 1.42 mmol/L (Ridker et al. 2010). Similar discrepant observations
were made in the secondary prevention trials CARE and LIPID vs. TNT: HDL-C
levels explained part of the residual risk in both placebo and pravastatin groups of
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CARE and LIPID (mean baseline LDL-C 3.80 mmol/L, on treatment LDL-C
2.85 mmol/L) (Sacks et al. 2000). However, in the TNT trial (baseline LDL-C
2.55 mmol/L), low HDL-C increased ASCVD risk in the low-dose atorvastatin
group (on treatment LDL-C 2.60 mmol/L) but not in the high dose atorvastatin
group (on treatment LDL-C 2.0 mmol/L) (Barter et al. 2007a). It thus appears that
the optimized control of LDL-C by high intensity statin therapy alleviates the
residual risk associated with low HDL-C levels. In this regard it is also noteworthy
that contemporary observational studies in general populations as well as in patients
with clinically manifest ASCVD find weaker associations of HDL-C with first and
recurrent cardiovascular events, respectively, than historical studies which recruited
their participants in the pre-statin era (Bolibar et al. 2000; Colantonio et al. 2016;
Schwartz et al. 2012). These secular trends are usually explained by the generally
improved risk factor control. However, one must also be aware of the change in the
methodology of HDL-C measurements that occurred in parallel with the triumphal
procession of statins. Since about 1990, non-traceable and biased homogenous
assays have replaced the previous cholesterol quantification after manual precipita-
tion of apoB containing lipoproteins. One can hence not exclude that changes in the
analytics affected the prognostic value of HDL-C (Miller et al. 2010).

2.4 Wrong Biomarker “the Good Cholesterol”

By contrast to the disease causing cholesterol in LDL (Borén et al. 2020), the
cholesterol in HDL (that is HDL-C) neither exerts nor reflects any of the potentially
anti-atherogenic activities of HDL. HDL-C is only a non-functional surrogate
marker for estimating the HDL pool size without deciphering the heterogeneous
composition and, hence, functionality of HDL (Rohatgi et al. 2021; Annema and von
Eckardstein 2013, 2016). Differences in the molar content of apoA-I,
phosphatidylcholines, cholesterol, and cholesteryl ester cause differences of HDL
subclasses in shape, size, and charge. HDL particles carry hundreds of different
quantitatively minor proteins and lipid species many of which are not just passive
cargo (like cholesterol) but biologically active and susceptible to quantitative and
qualitative modifications by diseases or interventions (Rohatgi et al. 2021, Annema
and von Eckardstein 2013, 2016). These functionally active components hence have
a much bigger chance than HDL-C to serve as a causal biomarker that can be
exploited towards the development, targeting, and monitoring of therapies.

The most obvious candidate for a functional HDL biomarker is the plasma
concentration of apoA-I which is not only a mandatory structural component of
the bulk of HDL but also exerts several biological activities of HDL, for example
activation of ABCA1 and LCAT to efflux and esterify cholesterol, respectively, or
binding to SR-BI and other HDL receptors. In both epidemiological and clinical
studies, apoA-I levels show inverse associations with ASCVD events, which how-
ever are not stronger than those of HDL-C (Emerging Risk Factors Collaboration
2009). Neither did Mendelian Randomization studies unravel any causal genetic
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relationship between apoA-I levels and ASCVD (Karjalainen et al. 2020;
Richardson et al. 2020).

Other widely investigated HDL biomarker candidates include numbers and sizes
of HDL particles. However, the outcomes of their evaluation in epidemiological and
clinical studies are controversial. Some studies found HDL particle number (HDL-P)
superior to HDL-C (Chandra et al. 2015; Kuller et al. 2007; Mackey et al. 2012;
Otvos et al. 2006; Singh et al. 2020), others vice versa (El Harchaoui et al. 2009;
Mora et al. 2009; Parish et al. 2012; Qi et al. 2015). Interestingly, within the
JUPITER trial HDL-P was superior to HDL-C in the prediction of events among
statin treated probands but inferior among placebo treated probands (Mora et al.
2013). Some studies found small HDL particles more strongly related with outcomes
than large HDL particles (Ditah et al. 2016; Kim et al. 2016; McGarrah et al. 2016;
Silbernagel et al. 2017), other studies found the opposite (Li et al. 2016; Arsenault
et al. 2009). A recent meta-analysis of four studies concluded similar strong
associations of small, medium, and large HDL particles with the incidence of
ASCVD events (hazard ratio and 95% confidence interval 0.91 and 0.87 to 0.96)
(Wu et al. 2018). With a hazard ratio and 95% confidence interval of 0.82 and 0.78 to
0.87, the total number of HDL particles showed stronger associations. Interestingly a
recent Mendelian Randomization study found protective associations between the
concentration of medium and – less so but also significantly – small HDL particles
with coronary artery disease (Zhao et al. 2021). Drug interventions in lipoprotein
metabolism result in diverse changes of HDL particle size and numbers. For
example, treatment with nicotinic acid and CETP inhibitors increases HDL-C levels
more profoundly than HDL-P, reflecting the shift to larger particles. Vice versa,
upon treatment with fibrates, HDL-P increases more strongly than HDL-C
(Rosenson et al. 2015).

3 Consequences and Perspectives

3.1 The Search for Novel HDL-Biomarkers

The further development of HDL as a therapeutic target is mainly limited by the
availability of biomarkers that reflect the functional and causal role of HDL in the
pathogenesis of atherosclerosis. To this end, bioassays of HDL function were
recently developed and validated in population and clinical studies. Among them,
cholesterol efflux capacity (CEC) has been investigated most extensively. In these
studies, different macrophage cell lines treated with different drugs to enhance the
cellular cholesterol efflux machinery were utilized as donors of radioactively or
fluorescently labeled cholesterol. ApoB depleted plasma or serum was used as
acceptors and as surrogate of HDL to avoid laborious ultracentrifugation. The
heterogeneity of assays together with the heterogeneity of populations investigated
has contributed to some discrepant findings (Anastasius et al. 2018). Nevertheless, a
recent meta-analysis of eight prospective studies and more than 10,000 participants
with more than 3,000 events found a significant inverse association of CEC with
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ASCVD events (HR 0.86, 95% CI: 0.76–0.98). In a subgroup of five studies also
mortality was related to CEC (HR 0.77, 95% CI: 0.80–1.0). Although CEC
correlates with HDL-C, the associations of CEC with cardiovascular outcomes
were independent of HDL-C (Soria-Florido et al. 2020). However, the concept of
CEC as a proxy of HDL functionality has several limitations. First, as a laborious
and difficult if not impossible to standardize bioassay it is a research rather than
diagnostic tool, primarily for proof of concept studies and secondarily for the
identification of functional molecular markers (Anastasius et al. 2018). Second,
CEC should not be considered as an overall proxy of HDL functionality because
other functions of HDL neither correlate nor share molecular determinants with CEC
(Cardner et al. 2020). Third, although most intensively investigated, it is not clear
that mediation of cholesterol efflux is the most relevant atheroprotective function of
HDL. In fact, changes in CEC upon treatment with CETP inhibitors did not predict
correctly the clinical outcomes of these drug interventions. They led to increases in
CEC of apoB-free sera or plasmas but not to any reduction in cardiovascular event
rates and coronary atherosclerosis, respectively (Brodeur et al. 2017; Metzinger et al.
2020; Nicholls et al. 2015; Simic et al. 2017; Tardif et al. 2015).

Despite these limitations, CEC has been used as the reference to develop molec-
ular biomarkers that can be measured in clinical laboratories. One example is the
derivation of an algorithm which integrates the information of differently sized HDL
particles as measured by NMR. The estimated NMR-based CEC correlated very well
with the in vitro measured CEC (R2> 0.8) and predicted incident CHD events with a
hazards ratio of 0.86; 95% CI, 0.79–0.93, adjusted for traditional risk factors and
HDL-C) (Kuusisto et al. 2019). Another example is a proteomic score integrating the
information of apolipoproteins A-I, C-I, C-II, C-III, and C-IV showed good correla-
tion with CEC as well as significant association with the presence of coronary artery
disease and cardiovascular mortality independently of clinical risk factors including
conventionally measured concentrations of apoA-I and apoB (Jin et al. 2019;
Natarajan et al. 2019). Replication studies are needed to validate these surrogate
scores of CEC.

Several laboratories have used tandem mass spectrometry to search for protein or
lipid components of HDL as functional biomarkers. The most recent update of the
HDL Proteome Watch data bank (http://homepages.uc.edu/~davidswm/
HDLproteome.html; accessed July 15, 2021) documents more than 200 proteins
which were identified in HDL by at least three of 40 independent studies and are
therefore considered as highly confident components of HDL. Even higher numbers
of lipid species were identified by mass spectrometry of HDL (Cardner et al. 2020;
Kontush et al. 2013). The concentrations of these molecules vary from less than
1 μmol/L to more than 1 mmol/L (Annema and von Eckardstein 2013; Rohatgi et al.
2021). Already in view of the average HDL particle concentration of about 20 μmol/
L it is clear that only some lipids (e.g., unesterified cholesterol, cholesteryl esters,
phosphatidylcholines) or proteins (e.g., apoA-I) are present on each particle with
several copies. Other low abundant lipids (e.g., sphingosine-1-phosphate,
oxysterols) and proteins (apoM or LCAT) are dispersed throughout different
particles. Interestingly, these molecules are non-randomly distributed among HDL
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particles. For example, the presence of sphingosine-1-phosphate is linked to the
presence of its chaperone apoM (Christoffersen et al. 2011). By combining two
immunoaffinity chromatography procedures, one with anti-apoA-I antibodies and
one with an antibody against one of 16 other HDL-associated proteins, 16 HDL
subclasses with distinct proteomes and little intraindividual variation over 3–-
24 months were identified (Furtado et al. 2018). Many proteins of each HDL
subspecies exert related functions, for example in lipid transport, hemostasis, oxida-
tion, or inflammation suggesting that specific functions beyond cholesterol efflux are
exerted by distinct subspecies of HDL rather than the bulk of HDL. In agreement
with this concept, a recent systems biology approach found distinct functions of
HDL determined by clusters of distinct proteins and lipids carried by HDL with little
overlap between the functions (Cardner et al. 2020). Moreover, in four prospective
nested case–control studies, the presence or absence of distinct proteins was found to
determine the association of apoA-I levels with incident cardiovascular events
(Sacks et al. 2020). For example, apoA-I levels in particles that contain apoE or
apoC-I but not their apoE or apoC-I- free counterparts showed the expected inverse
association with incident ASCVD events. Vice versa, apoA-I levels in apoC-III-free
particles but not particles containing apoC-III showed the expected inverse associa-
tion with incident ASCVD events (Sacks et al. 2020). Cholesterol levels in apoC-III
containing HDL even showed a positive association with incident ASCVD (Jensen
et al. 2018). Moreover, apoC-III containing HDL was found to interfere with the
capacity of HDL to inhibit the apoptosis of endothelial cells and to promote efflux
from macrophages (Riwanto et al. 2013; Zvintzou et al. 2017). This makes apoC-III
an interesting target for therapy beyond lowering of triglycerides (Zewinger et al.
2020). Other studies found the enrichment of HDL with either pulmonary surfactant
protein B or serum amyloid protein A associated with increased risk of mortality in
patients with diabetic end-stage nephropathy, heart failure, or CHD (Emmens et al.
2018; Kopecky et al. 2015; Zewinger et al. 2015).

Several mass spectrometric studies demonstrated gross alterations in the lipidome
of HDL in patients with acute or chronic CHD as well as changes in response to
statin therapy or body weight reduction (Cardner et al. 2020; Khan et al. 2018;
Meikle et al. 2019; Orsoni et al. 2016; Sutter et al. 2015). However, to date, only
signatures of lipid species in total plasma but not in HDL have been explored for
their prognostic performance in prospective studies (Hilvo et al. 2019; Mundra et al.
2016). NMR-based studies identified some more general lipid traits of HDL to be
associated with incident disease. However, they represent classes or subclasses
rather than species of lipids and they are strongly intercorrelated with each other
as well as measures of particle size or numbers so that they are not pursued as
biomarkers beyond the latter indices (Cardner et al. 2020; Hafiane and Genest 2015;
Rosenson et al. 2011).
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3.2 Ongoing and Novel Drug Developments

After the failure of CETP inhibitors, only few drug developments targeting HDL
have been continued or newly started. Some of the latter targets are pleiotropic and
HDL is a bystander rather than the focus of these drug developments.

3.2.1 Reconstituted HDL, apoA-I Mimetic Peptides,
and Recombinant LCAT

After infusions of artificially reconstituted HDL (rHDL) were found to reduce
atherosclerosis in hypercholesterolemic rabbits, several formulations of rHDL
were developed for investigation of their atheroprotective effects (He et al. 2021.
Because rather large amounts of protein are needed, only short-term applications in
acute clinical settings are feasible, for example in patients with acute coronary
syndrome (ACS). rHDL containing phosphatidylcholines together with the recom-
binant apoA-I Milano variant (ETC-216, MDCO-216) or recombinant wild type
apoA-I plus sphingomyelin (Cer001) or apoA-I isolated from plasma (CSL111,
CSL112) were initially tested in phase II trials for their short-term effects on
coronary atherosclerosis which was assessed by intravascular ultrasound of ACS
patients. Whereas initial studies showed some regression of coronary atherosclerosis
upon treatment with ETC.-216 or CSL111 (Tardif et al. 2007; Nissen et al. 2003),
later larger studies with MDCO-216 or Cer001 did not (Nicholls et al. 2018a, b).
Neither did Cer001 cause regression or prevent progression of carotid atherosclero-
sis in patients with genetic HDL deficiency (Zheng et al. 2020). Currently only one
formulation – CSL112 – is further pursued by a large randomized and controlled
phase III trial (ApoA-I Event Reducing in Ischemic Syndrome II ¼ AEGIS II).
Seventeen thousand four hundred patients with myocardial infarction are
randomized to 4 weekly infusions of either 6 g CSL112 or placebo within 5 days
of the event (Gibson et al. 2021). The primary outcome is the time to first occurrence
of the composite of CV death, MI, or stroke through 90 days. Secondary outcomes
include the total number of hospitalizations for coronary, cerebral, or peripheral
ischemia through 90 days and time to first occurrence of the composite primary
outcome through 180 and 365 days. Results are expected to become available
in 2023.

In addition to rHDL containing full length apoA-I, also apoA-I mimetic peptides
are developed for treatment of atherosclerosis. They showed promising results
in vitro and in preclinical animal models. Three of them have been tested for safety
and effects on HDL-C and HDL function. For two of them – L4F and D4F – results
have been reported. They did not cause any changes in HDL-C or anti-inflammatory
HDL functions. No results have been reported for ETC642. The clinical develop-
ment of FX-5A is planned (Wolska et al. 2021).

Application of recombinant LCAT is an alternative strategy to increase HDL-C or
promote HDL metabolism by substitution of components (Freeman et al. 2020). In a
randomized controlled study 32 patients were treated with three weekly injections of
different dosages of recombinant LCAT (MEDI6012) or placebo (Bonaca et al.
2021). Compared to placebo, MEDI6012 caused dose-dependent increases of
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HDL-C by 66% to 144% at day 19. Interestingly the initial bolus injection led to a
more than 40% increase of HDL-C within 30 min. MEDI6012 caused neither any
severe side effects nor the generation of neutralizing antibodies. In an ongoing phase
IIb trial (REAL-TIMI 63B), the application of 2 dosages of MEDI6012 to ACS
patients is currently investigated for its effect on infarct size in more than 400 ACS
patients (https://clinicaltrials.gov/ct2/show/NCT03578809). Half of the patients
receive additional 4-weekly injections of MEDI6012 or placebo for 12 weeks for
investigation of LCAT’s effects on coronary calcification. Of note, recombinant
LCAT is also attractive for the use as enzyme replacement in familial LCAT
deficiency, however with the goal to prevent the development and progression of
nephropathy in these patients (Freeman et al. 2020; Vaisman et al. 2019).

3.2.2 Apabetalone
Apabetalone (RVX208) is an inhibitor of bromodomain and extraterminal (BET)
proteins that regulate the expression of multiple genes by interference with histone
acetylation. RVX208 was initially developed because it strongly induced APOA1
gene expression in cultivated hepatocytes and caused a profound increase of HDL-C
and apoA-I levels in non-human primates by 90 and 60%, respectively (Ghosh et al.
2017). Also mice responded with substantial increases of HDL cholesterol. Athero-
sclerosis was suppressed in apoE deficient mice. However, in humans treatment with
apabetalone caused very moderate increases in HDL-C and apoA-I levels but also
reduced CRP levels. The development of the drug was stopped after a recent phase
III trial (BETonMACE) in patients with acute coronary syndrome and type 2 diabetes
did not reveal any reduction of clinical events compared with placebo. (Ray et al.
2020).

3.2.3 PPAR Modulators
The PPARa modulator Pemafibrate is developed primarily for the treatment of
hypertriglyceridemia and the related cardiovascular risk. In a phase II dose finding
study, pemafibrate dose-dependently decreased triglycerides and increased HDL-C
by up to 42% and 21%, respectively, compared to 30% and 14% by fenofibrate (Arai
et al. 2017). In hypertriglyceridemic patients, treatment with pemafibrate caused
increases of HDL-C by about 16% as well as CEC (Yamashita et al. 2018). In apoE2
knock-in mice, pemafibrate increased HDL-C, CEC as well as macrophage-to-feces
reverse cholesterol transport, and reduced the extent of atherosclerotic lesions
(Hennuyer et al. 2016). The PROMINENT trial investigates the effect of
pemafibrate vs. placebo on cardiovascular outcomes of 10,000 participants with
diabetes mellitus type 2, triglycerides 200–499 mg/dL (2.26–5.64 mmol/L), HDL-C
level �40 mg/dL(1.03 mmol/L) during a maximal follow-up of 5 years (Pradhan
et al. 2018).

3.2.4 ANGPTL3 and Endothelial Lipase
Angiopoietin-like protein 3 (ANGPTL3) is mainly produced by the liver and an
endogenous inhibitor of both lipoprotein lipase and endothelial lipase (EL). After the
discovery of loss of function mutations in the ANGPTL3 gene as a cause of
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panhypolipoproteinemia and reduced cardiovascular risk (Arca et al. 2020), anti-
sense oligonucleotides as well as monoclonal antibodies were developed for the
treatment of hypertriglyceridemia and hypercholesterolemia. In fact, treatment of
hypertriglyceridemia with the antisense oligonucleotide Vupanorsen and refractory
hypercholesterolemia with the monoclonal antibody Evinacumab caused pro-
nounced decreases of triglyceride levels and LDL-C but also HDL-C (Gaudet
et al. 2020; Rosenson et al. 2020) The clinical implication of the 20–30% decrease
in HDL-C is not known but very likely reflects the increased activity of EL upon
ANGPTL3 inhibition (Wu et al. 2020).

Conversely, also EL inhibitors are developed with the aim to increase HDL-C.
Treatment of non-human primates with the monoclonal anti-EL antibody
MEDI5884 dose-dependently increased HDL-C and apoA-I levels by up to 100%
and 30%, respectively (Le Lay et al. 2021). In a phase I study, human volunteers also
experienced increases in HDL-C and apoA-I as well as particle number and size.
CEC and anti-inflammatory activities of HDL were also improved. However, endo-
thelial lipase inhibition also caused increases in LDL-C, albeit more profoundly in
non-human primates than in humans. In non-human primates this unwanted effect
could be blocked by PCSK9 inhibition. Nevertheless, one must wonder whether the
risk of increasing LDL-C is well taken, especially since loss-of-function alleles of
LIPG encoding EL do not confer any cardiovascular risk reduction despite increas-
ing HDL-C thus questioning the clinical utility of EL inhibition (Voight et al. 2012).

3.2.5 ApoC-III Inhibition
Antisense oligonucleotides against apoC-III (Volanesorsen) exert pronounced tri-
glyceride lowering effects by reducing the production of VLDL as well as by
promoting lipolysis and remnant removal by disinhibiting lipoprotein lipase and
remnant receptors, respectively. Probably secondarily to the lowering of
triglycerides, interference with apoC-III in patients with chylomicronemia also
leads to increases of HDL-C levels by 40% (Witztum et al. 2019). Although not
tested, one must assume that Volanesorsen also decreases the content of apoC-III in
HDL. In view of the positive rather than inverse association of apoC-III containing
HDL with cardiovascular outcomes (Jensen et al. 2018; Sacks et al. 2020); as well as
the noxious effects of apoC-III on HDL functionality towards cholesterol efflux and
endothelial survival and inflammation (Riwanto et al. 2013; Zewinger et al. 2020;
Zvintzou et al. 2017), one may hypothesize that apoC-III inhibition also exerts anti-
atherogenic effects by improving HDL function. However, this hypothesis needs to
be tested.

3.2.6 HDL-C Lowering Therapies: Probucol and Androgens
For a long time, lowering of HDL-C has been considered as a safety issue in drug
development. This has changed as the causal role of HDL in ASCVD has been
questioned. Even more so, the association of high HDL-C with increased mortality
and morbidity for certain diseases (Bowe et al. 2016a; Ko et al. 2016; Madsen et al.
2017) raises the question whether under certain conditions HDL-C lowering may be
useful. In view of the genetic association of loss of function mutations in SR-BI with
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increased cardiovascular risk (Zanoni et al. 2016) and the finding of increased
atherosclerosis in Scarb1 knock-out mice (Hoekstra and van Eck 2015), especially
therapies that lower HDL-C by upregulation of SR-BI in the liver may be interesting.

Probucol is an old drug which was originally developed to exploit its anti-
oxidative effects on LDL. Although it was shown to induce regression of athero-
sclerosis and xanthomas and has been rather widely used in Japan, the development
and clinical application of probucol has not been consequently pursued (Yamashita
et al. 2015). The main reason was the about 30% lowering of HDL-C. Activation of
CETP and SR-BI has been elucidated as the underlying mechanism. In the most
recent PROSPECTIVE trial, 876 Japanese patients with CHD and LDL-C�140 mg/
dL without medication or those treated with lipid-lowering drugs received optimal
lipid-lowering treatment together with placebo or probucol 500 mg/day. After
3 years, LDL-C and HDL-C were 8.5 mg/dL and 16.3 mg/dL, respectively, lower
in the probucol than in the placebo group. The event rates did not differ significantly
between the groups, although by trend, CHD events happened less frequently in the
probucol group (Arai et al. 2021). Interestingly, the combined analysis of the
PROMINENT and IMPACT trials showed reductions of cerebrovascular events,
however in the absence of any effect on carotid atherosclerosis (Yamashita et al.
2021). Although futile, the data raise the question of whether probucol is a treatment
option for patients with high HDL-C.

The stimulatory effects of testosterone on hepatic SR-BI expression are probably
the main reasons for the substantial differences in HDL-C levels between males and
females (Chiba-Falek et al. 2010; Langer et al. 2002). Even more so, the
HDL-lowering effects of testosterone have contributed to the caution on the use of
testosterone for the treatment of the aging male syndrome, transgender patients, or
female sexual dysfunction as well as for male contraception (Thirumalai et al. 2015;
Wu and von Eckardstein 2003). The effects of testosterone replacement on hard
cardiovascular endpoints have not been investigated. However, a recent randomized
controlled trial in 1007 men with overweight or obesity as well as disturbed or
manifest diabetes at baseline showed benefits of 1,000 mg intramuscular
testosterone vs. placebo injection on glycemic control and incidence of diabetes
during 2 years of follow-up (Wittert et al. 2021).

3.3 Other Disease Targets

As late onset diseases, ASCVDs have not been rate limiting in the evolution of
species. Therefore, one must envisage that the broad spectrum of HDL’s protective
functions has rather evolved to prevent other diseases or secure survival and healing
of their victims. Such diseases or their clinical complications may serve as more
appropriate targets than ASCVD for the therapeutic exploitation of HDL (Von
Eckardstein and Rohrer 2016). Indeed, recent epidemiological and genetic studies
unraveled several associations of HDL-C and genetic loci intimately related to HDL
metabolism with non-cardiovascular diseases as well as mortality (Table 3)
(Kjeldsen et al. 2021a; Madsen et al. 2021). Please note the diverse directions of
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these associations which reach from inverse (diabetes, autoimmune diseases) over
parabolic (infections, chronic kidney disease, mortality) to positive (Alzheimer’s
disease, age related macular degeneration), re-emphasizing that the kinetics of HDL
metabolism and HDL function rather than the concentration of HDL particles are
relevant.

3.3.1 Diabetes
Low levels of HDL-C are frequent in patients with diabetes mellitus type 2. This
finding even precedes the manifestation of hyperglycemia and is hence an indicator
of increased risk for incident diabetes (Haase et al. 2015; Schmidt et al. 2005; von
Eckardstein et al. 2000; White et al. 2016; Wilson et al. 2007). Because of multiple
effects of insulin on HDL metabolism, most of which are indirect via free fatty acids

Table 3 Role of HDL in different diseases according to epidemiology, therapeutic interventions,
human genetics, and animal experiments

Diseases

Association in
observational
studies

Clinical benefit in
intervention studies

Genetic
association

Animal
experiments

Atherosclerotic
cardiovascular
diseases

Discontinuously
inverse (until 60th
percentile)

No (CETP
inhibitors) or
subgroups
(fibrates)

No Gene-
dependent

Diabetes Inverse (yes) (post-hoc:
CETP inhibitors,
rHDL)

Yes
(Mendelian
gene scores)
No
(candidate
genes)

Yes
(ABCA1,
APOA1)

Chronic kidney
disease

Parabolic Not investigated Yes Yes (LCAT)

Infections Parabolic Not investigated Yes Yes
(APOA1,
CETP,
rHDL)

Autoimmune
disease

Inverse Not investigated Not
investigated

Yes
(APOA1,
SCARB1,
S1P)

Age-related
macular
degeneration

Positive Not investigated Yes (Yes)
(ABCA1)

Alzheimer’s
disease

Discontinuously
positive (>95th
percentile)

Not investigated No
(Mendelian
gene scores)
Yes
(GWAS,
e.g.,
ABCA1)

(Yes)
(ABCA1)
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or triglyceride-rich lipoproteins, these associations have been explained for a long
time by reverse causality: diabetes and pre-diabetes cause low HDL-C rather than
vice versa (Parhofer 2015; Vollenweider et al. 2015; von Eckardstein and Widmann
2014). However, increasing evidence from in vitro as well as in vivo studies
indicates that HDL exerts protective functions on the function and survival of
pancreatic beta cells as well as on the sensitivity of target cells to insulin (Cochran
et al. 2021; Manandhar et al. 2020; Vollenweider et al. 2015; von Eckardstein and
Widmann 2014; Yalcinkaya et al. 2020). Also mitochondrial function and thereby
cellular energy metabolism is modulated by HDL (Lehti et al. 2013). In humans, the
potentially anti-diabetic effects of HDL are best illustrated by the acute glucose
lowering effect of rHDL infusion (Drew et al. 2009) as well as by the findings of
post-hoc analyses of the CETP inhibitor trials: Participants who received the CETP
inhibitors showed better glycemic control and experienced less often new-onset
diabetes as compared to the placebo treated controls (Barter et al. 2011; Masson
et al. 2018; Menon et al. 2020; Schwartz et al. 2020). Mendelian randomization
studies yielded controversial results on the genetic causality of HDL-C in diabetes
(Fall et al. 2015; Haase et al. 2015; White et al. 2016).

3.3.2 Chronic Kidney Disease
The Veterans Administration study showed a parabolic association of HDL-C with
>30% declining estimated glomerular filtration rate (eGFR) or the incidence of
eGFR <60 ml/min and also provided evidence for genetic causality (Bowe et al.
2016b). Mutations in APOA1, APOE; APOL1, and LCAT are causes of genetic
nephropathies (Strazzella et al. 2021). However, it is not clear whether their patho-
genesis involves HDL: Certain missense mutations in APOA1 cause familial amy-
loidosis, which also affect other organs (Zanoni and von Eckardstein 2020). Specific
mutations in APOE cause lipid glomerulopathy which however has been suggested
to develop in response to disturbed interactions of apoB containing lipoproteins with
the LDL receptor or due to accumulation of the structural defective apoE (Saito et al.
2020). ApoL1 is the trypanolytic factor which is transported by a minor subfraction
of HDL (Friedman and Pollak 2020). Certain apoL1 variants that protect the host
from infections with Trypanosoma brucei rhodesiense and gambiense dramatically
increase the risk of chronic kidney disease, notably focal segmental
glomerulosclerosis, in their African and Afroamerican carriers (Friedman and Pollak
2020). LCAT deficiency is a classical HDL deficiency syndrome causing a nephrop-
athy that eventually progresses to end-stage renal disease (Pavanello and Calabresi
2020). However, the pathogenic mechanism depends on the accumulation of lipo-
protein X rather than the absence of HDL (Vaisman et al. 2019). This is best
illustrated by the absence of nephropathy in patients with fish-eye disease where
partial loss of LCAT causes the same decrease in HDL as classical LCAT deficiency,
however no nephropathy (Pavanello and Calabresi 2020).

Treatment with fibrates improves albuminuria but worsens glomerular filtration
rate (Speer et al. 2021). Niacin has no effect on renal function. Small studies also
indicate protective effects of probucol towards acute kidney injury, for example of
patients exposed to contrast agents (Xin et al. 2019). The pleiotropic effects of these
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drugs on lipoprotein metabolism and the lack of association between changes in
renal function and HDL-C under their treatment do not allow any conclusion on the
role of HDL modifying therapies for prevention or treatment of CKD. Furthermore
the exploitation of HDL towards kidney disease is also hampered by the currently
unknown mechanisms how HDL exerts renal protection by HDL. Since small HDL
particles are undergoing glomerular filtration and tubular re-uptake by the megalin/
cubilin co-receptors, it may be that HDL delivers protective molecules to the kidney,
for example sphingosine-1-phosphate (Bisgaard and Christoffersen 2019; Strazzella
et al. 2021).

3.3.3 Infections
The Copenhagen General Population study found U-shaped associations between
HDL-C and the incidence of infections (Madsen et al. 2018). The associations with
bacterial infections were stronger than with viral infections. Upon limited adjust-
ment, gastroenteritis, bacterial pneumonia, skin and urinary tract infections, as well
as sepsis were more prevalent among individuals with HDL-C <1.0 mmol/L as
compared to individuals with higher HDL-C. Upon full adjustment the associations
with gastroenteritis and pneumonia remained significant (Madsen et al. 2018). A
preliminary Mendelian randomization analysis with two loci (CETP and LIPC)
provided initial evidence of genetic causality (Madsen et al. 2018). Genetic causality
also exists for the association of low HDL-C with the incidence of sepsis as well as
with the chance of survival in patients with sepsis (Trinder et al. 2020). Evidence
from population studies as well as experiments in genetic animal models points to
the importance of CETP in this process (Blauw et al. 2020; Trinder et al. 2019,
2021). However also HDL particles per se as well as specific structural components
of HDL exert several antibacterial activities such as binding and removal of
lipopolysaccharides, protection of epithelial and endothelial barriers, or modulatory
effects on leukocyte functions (Catapano et al. 2014; Meilhac et al. 2020; Pirillo
et al. 2015; Robert et al. 2021; Rohatgi et al. 2021; Trakaki and Marsche 2021). The
special association of HDL-C with gastroenteritis may also mirror an important role
of HDL that is locally produced in the intestine (Ko et al. 2020). Similarly, the
protection from pneumonia may mirror the high exposure of the lung to newly
synthesized HDL due to first pass effects (Gordon et al. 2016). In sepsis models,
genetically modified mice overexpressing human apoA-I showed improved survival
(Meilhac et al. 2020; Morin et al. 2015). Interestingly, the clinical development of
CSL111 was originally aiming at the treatment of sepsis since their infusion into
volunteers exerted several beneficial effects on inflammation, coagulation, and
fibrinolysis (Pajkrt et al. 1996, 1997). Most recent experiments in preclinical sepsis
models demonstrated better survival of mice treated with CSL111 (Tanaka et al.
2020). The better chances of survival from sepsis by patients carrying low CETP
activity alleles suggest CETP inhibitors as interesting drugs for the treatment of
patients with sepsis (Trinder et al. 2019, 2021). However, an important caveat comes
from the ILLUMINATE study where torcetrapib treatment was associated with
excess mortality due to infections (Barter et al. 2007b).
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Although the association of HDL-C with the incidence of viral infections was not
statistically significant in the Copenhagen General Population Study (Madsen et al.
2018), it is noteworthy that at least in vitro HDL or apoA-I interferes with the entry
or fusion of viruses with target cells (Meilhac et al. 2020; Pirillo et al. 2015). HDLs
also induce viral inactivation by immune cells and protect cells from virus-induced
damage (Pirillo et al. 2015). The COVID19 pandemia also raised the question of
whether HDL interferes with SARS-CoV2 infections. In the UK Biobank study, a
linear inverse and independent association was found between pre-infection HDL-C
levels and the risk of hospitalization for severe COVID19 (Hilser et al. 2021; Lassale
et al. 2021). Mendelian Randomization rather excluded any causal role of HDL in
preventing SARS-CoV2 infection. (Hilser et al. 2021). Nevertheless, since SR-BI is
an entry route of several viruses including SARS-CoV2 into cells (Pirillo et al. 2015;
Wei et al. 2020), competition of this interaction by HDL is an intriguing hypothesis.
In addition, the protective effects of HDL on the survival and function of cells may
also help infected cells, for example of the lung epithelium or the endothelium
(Robert et al. 2021), to combat and survive the entered viruses. Interestingly,
dalcetrapib is currently tested towards its effect on the course of COVID19
infections. (Talasaz et al. 2021; https://clinicaltrials.gov/ct2/show/NCT04676867).

Finally, HDL also exerts protective activities towards infections with protozoa.
The best example is the protection of humans from Trypanosoma brucei by apoL1
transported by a subfraction of HDL containing also haptoglobin related protein.
This complex kills Trypanosome brucei by causing lysosomal swelling (Friedman
and Pollak 2020). A similar HDL-related mechanism appears operative towards
Leishmania (Samanovic et al. 2009).

3.3.4 Autoimmune Diseases
In an analysis of more than 110,000 participants of The Copenhagen General
Population and the Copenhagen City Heart Study, low HDL-C concentrations
were associated with elevated risk of developing the composite end point of 42 dif-
ferent autoimmune diseases (Madsen et al. 2019). Among them, the associations of
celiac disease, idiopathic thrombocytopenic purpura, Sjögren’s disease, diabetes
type 1, inflammatory bowel diseases, and Graves’ disease showed the strongest
and individually significant associations with HDL-C. Currently, no data are avail-
able to prove or disprove causality of these associations (Madsen et al. 2021).
Neither are the mechanisms understood. They may involve immunomodulatory
effects of HDL which are relevant in the development of auto-immunity (Catapano
et al. 2014; Pirillo et al. 2015; Rohatgi et al. 2021; Trakaki and Marsche 2021) or
protective effects of HDL towards organs attacked by the immune system so that the
onset of organ damage or failure and thereby the clinical diagnosis of manifest
disease is delayed. For example, the anti-apoptotic effects of HDL on pancreatic beta
cells may delay the loss of insulin production in the course of progressing type
1 diabetes (von Eckardstein and Widmann 2014; Yalcinkaya et al. 2020). For
inflammatory bowel diseases, preclinical models generated evidence for the thera-
peutic potential of HDL: Intestinal inflammation was increased in Apoa1 knock-out
mice but decreased in mice which overexpressed human APOA1 or were fed with
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apoA-I mimetic peptides (Gerster et al. 2014; Meriwether et al. 2019; Nowacki et al.
2016).

3.3.5 Cancer
Several epidemiological studies found inverse associations between HDL-C and
cancer in general as well as specific cancers such as breast cancer or colorectal cancer
(Ganjali et al. 2021; Madsen et al. 2021; Pirro et al. 2018). Currently, there is no
evidence of causality. However, several confounders of low HDL-C are associated
with increased risk of several cancers, for example smoking, overweight and obesity,
type 2 diabetes, or chronic inflammatory diseases. There is hence some likelihood
that low HDL-C is a confounder of other causal risk factors rather than reflecting loss
of anti-cancer functions. Even if HDL is not causally related to cancer, it will offer
opportunities for therapeutic or diagnostic exploitation: probably to satisfy their high
need of cholesterol for growth, many cancers show a high expression of lipoprotein
receptors including SR-BI (Hoekstra and Sorci-Thomas 2017; Kinslechner et al.
2018; Velagapudi et al. 2018). This can be exploited by using rHDL for the delivery
of anti-cancer drugs or tracers for imaging. In fact, according experiments in
preclinical models showed promising results (Morin et al. 2018; Rajora and Zheng
2016).

3.3.6 Behind the Blood Brain Barrier: Alzheimer’s Disease and Age
Related Macular Degeneration

Until recently, only cross-sectional studies and smaller prospective cohort studies
described associations of HDL-C with neurodegenerative diseases including
Alzheimer’s disease (AD) and age related macular degeneration (AMD). They
reported discrepant associations ranging from inverse over none to positive
(Kjeldsen et al. 2021a). The situation became clearer but also surprising by recent
reports of analyses in the Copenhagen General Population and Copenhagen City
Heart Studies. High HDL-C levels >95th percentiles increase the risk of dementia
and AD (Kjeldsen et al. 2021b). This association became even more prominent after
adjustment for APOE genotypes. Also the risk of AMD was found to increase with
HDL-C and even more so with apoA-I levels (Nordestgaard et al. 2021) confirming
data on more than 30,000 individuals from the EYE-RISK and European Eye
Epidemiology Consortia (Colijn et al. 2019). Of note, in that study higher HDL-C
was most strongly associated with increased risk of early AMD. Mendelian Ran-
domization studies found evidence for genetic causality of higher HDL-C for the
higher risk of AMD but not AD (Burgess and Smith 2017; Chen et al. 2010; Fan
et al. 2017; Neale et al. 2010; Ostergaard et al. 2015; Proitsi et al. 2014), the latter
perhaps because of the non-linear relationship. CETP, APOE, and LIPC were
important drivers of the genetic association between HDL-C and AMD (Colijn
et al. 2019; Chen et al. 2010; Neale et al. 2010). However, candidate gene
approaches as well as genome-wide association studies found ABCA1 as a genetic
determinant of both AD and AMD risks (Bellenguez et al. 2020; Nordestgaard et al.
2015; Fritsche et al. 2016). Likewise, tissue specific knock-out experiments in mice
indicate that loss of ABCA1 function in neurons and retinal pigment epithelial cells

High Density Lipoproteins: Is There a Comeback as a Therapeutic Target? 179



compromise neurocognitive and retinal functions, respectively (Behl et al. 2021;
Storti et al. 2019). These discrepant associations of AD and AMD with high HDL-C
levels in peripheral blood but locally reduced cholesterol efflux in the brain and
retina probably reflect the tight separation of these compartments by the blood brain
barrier. Some HDL functions in the brain are executed by HDL-like particles that
contain apoE instead of apoA-I and that are produced by astrocytes within the central
nervous system (Button et al. 2019). Especially the association of APOE genotypes
with risk of AD, although mechanistically not resolved, has been traditionally
ascribed to apoE endogenously produced by the CNS rather than supplied by the
systemic circulation. Of note however, also the concentration of apoE in plasma of
peripheral blood has been associated with risk of AD (Rasmussen et al. 2018).
Moreover, anti-apoA-I immunoreactivity is found in the brain. These findings
indicate a limiting role of the blood brain barrier for any protective role of HDL in
CNS diseases such as AD and AMD. Any therapeutic exploitation of HDL for CNS
diseases will have to address the interaction of HDL with the blood brain barrier,
either as a target of HDL’s protective actions, for example in amyloid beta clearance,
or as a barrier that must be surmounted by HDL to exert protective functions within
the CNS (Button et al. 2019; Robert et al. 2021). The latter is also important for the
use of HDL-like nanoparticles that are currently investigated as vehicles for drug
delivery into the brain (D'Arrigo 2020; Kadiyala et al. 2019; Kim et al. 2020).

3.4 Implications for Nowaday’s Clinical Practice

As the result of the futile intervention trials, HDL-C unlike LDL-C has not become
any treatment goal (Grundy et al. 2019; Mach et al. 2020). However, HDL-C
continues to be part of ASCVD risk assessment, both directly and indirectly by
using HDL-C for the calculation of nonHDL cholesterol or even LDL cholesterol
(Grundy et al. 2019; Mach et al. 2020; Martin et al. 2013; Sampson et al. 2020).
Especially in asymptomatic patients without any lipid modifying treatment, a low
HDL-C level is considered as a risk factor of developing ASCVD. As such, HDL-C
is a component of most clinical risk prediction rules that are promoted by guidelines
for the prevention of ASCVD (Grundy et al. 2019; Mach et al. 2020). Unfortunately,
these algorithms do not realize the discontinuous relationship of HDL-C with risk,
but still de-escalate risk estimates in individuals with very high HDL-C levels. This
may be a reason why, for example, in the Copenhagen City Heart study the inclusion
of HDL-C impaired rather than improved the prognostic performance of SCORE
promoted by ESC and EAS (Mortensen et al. 2015). With the same reasoning,
clinical laboratories as well as clinicians and practitioners should stop the still widely
spread clinical practice to calculate total cholesterol/HDL-C- or LDL-C/HDL-C
ratios because they may underestimate the risk of individuals with high HDL-C
(de Wolf et al. 2020; Nordestgaard et al. 2020). The same concern may relate to the
atherogenic index – the logarithmically transformed ratio of the molar
concentrations of plasma triglycerides to HDL-C – especially because some studies
found the joint presence of high HDL-C and hypertriglyceridemia associated with
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increased ASCVD risk (Jeppesen et al. 1998; von Eckardstein et al. 1999). Finally,
low HDL-C continues to be a component of definitions for the metabolic syndrome,
which indicates increased risks not only for ASCVD but also for diabetes and other
obesity related diseases (Alberti et al. 2009).

Whether reflecting compromised anti-atherogenic functions or indicating indi-
rectly a proatherogenic situation, the finding of low HDL-C levels should prompt
physicians and patients to optimize the control of other risk factors (März et al.
2017). The lost association of low HDL-C with increased risk upon intensive statin
therapy indicates the importance of consequent LDL-C lowering in these patients.
Additional important measures include cessation of smoking, correction of obesity
and overweight, and treatment of hypertension. In view of the inconsistent outcomes
of according randomized controlled trials it is a matter of uncertainty and contro-
versy whether or not hypertriglyceridemia which frequently confounds low HDL-C
should be targeted by drug treatment (Ginsberg et al. 2021).

The discussion on therapeutic consequences of high HDL-C levels is in its
infancy. It is not clear whether the associations of high HDL-C with increased
mortality and risks of CKD, infectious diseases, AD, or AMD are causal. An
important potential confounder is excess alcohol consumption (Madsen et al.
2021). Potential candidates for HDL-C lowering drugs are probucol, ANGPTL3
inhibitors, or androgens. In the absence of HDL-C lowering treatments with proven
efficacy, it is advisable to focus on risk factor control also in patients with high
HDL-C as described for patients with low HDL-C.
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