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Abstract

Lipids are natural substances found in all living organisms and involved in many
biological functions. Imbalances in the lipid metabolism are linked to various
diseases such as obesity, diabetes, or cardiovascular disease. Lipids comprise
thousands of chemically distinct species making them a challenge to analyze
because of their great structural diversity.

Thanks to the technological improvements in the fields of chromatography,
high-resolution mass spectrometry, and bioinformatics over the last years, it is
now possible to perform global lipidomics analyses, allowing the concomitant
detection, identification, and relative quantification of hundreds of lipid species.
This review shall provide an insight into a general lipidomics workflow and its
application in metabolic biomarker research.
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1 Introduction

Metabolic diseases can present long before becoming clinically apparent. Early
predictors of metabolic disease are of particular importance since a delay or preven-
tion of morbidity is possible via pharmacological and behavioral interventions.
Thus, biomarkers are essential tools to select patients for appropriate treatment
schemes, optimally providing the right treatment to the right patient at the right time.

Cardiovascular diseases (CVDs) and associated mortality have a high prevalence
in western societies. For coronary artery disease (CAD), the average annual mortal-
ity ranges between 1 and 3% (for fatal and non-fatal myocardial infarctions) and
remains a clinical challenge (Morrow 2010). In patients who survived an acute event
of a coronary syndrome (ACS), the rate of myocardial infarction and death is
markedly increased (Hamm et al. 2012). However, at the individual patient level,
the risk may vary considerably and therefore risk estimation tools are needed to
better manage such patients. A better risk stratification would also help to identify
individuals at risk who require interventions that are more intensive. Conversely, it is
equally important to identify patients with a good prognosis, to avoid unnecessary
procedures or aggressive drug treatments with associated side effects.
Concentrations of cholesterol in total plasma (TC), low density lipoproteins
(LDL-C), and high density lipoproteins (HDL-C) as well as triglycerides
(TG) have been used for risk prediction. LDL-C has become the main therapeutic
target in the management of patients with CAD. However, a number of studies have
failed to show any association between LDL-C and outcomes in large series of CAD
patients (Puri et al. 2013). There is a clinical need for additional risk markers in CVD
as well as a better understanding on how lipids relate with established metabolic risk
factors to evaluate their potential as clinical biomarkers.

2 Biochemistry of Lipids

Biological systems are comprised of thousands of chemically distinct lipids. The
structural diversity of lipids confers a broad spectrum of functionality. For most
lipids, their functions depend on their molecular structure and can be very different
for the different lipid classes as well as for different lipid species within the same
lipid class (Stahlman et al. 2012). Lipids are found in all living organisms. They are
involved in many critical cellular functions such as energy storage, structural plasma
membrane integrity, and cell signaling. Imbalances of lipid metabolism are linked to
the pathology of various diseases such as diabetes, Alzheimer’s, obesity, cancer, and
atherosclerosis (Cavojsky et al. 2016; Jung and Choi 2014; Steinberg 2006; Tan
et al. 2017; Watson 2006; Wenk 2005). While routine plasma lipid analysis precedes
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prescription of lipid-lowering drugs (Quehenberger et al. 2010), the abundance of
particular lipid species may be indicative of a specific disease (Quehenberger and
Dennis 2011). Abnormal concentrations of lipids are observed in various metabolic
disorders.

Moreover, many inborn errors of metabolism are related to alterations in the
metabolism of lipids, and particularly that of sphingolipids. Sphingolipidoses are
monogenic inherited diseases caused by defects in the sphingolipid degradation
pathways (Kolter and Sandhoff 2006; Sandhoff and Harzer 2013), leading to a
massive storage of undegraded sphingolipid species in the lysosomes, causing
neuroinflammation and neurodegeneration. Sphingolipids also emerged over the
last years as significant factors in the pathogenesis of cardiometabolic diseases
(Cowart 2009; Summers 2006; Deevska and Nikolova-Karakashian 2011).

Lipids show a large structural diversity that is comprised in the term “lipidome.”
According to the comprehensive classification system proposed by the LIPIDMAPS
consortium (http://www.lipidmaps.org), lipids can be classified into eight different
classes (Fig. 1): glycerophospholipids (GP), sphingolipids (SL), glycerolipids, sterol
lipids, free fatty acids, prenol lipids, saccharolipids, and polyketides (Fahy et al.
2005; Fahy et al. 2009).

Fig. 1 Structures of the most abundant lipid families
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GP constitute the largest lipid class and are derived from sn-glycero-3-phosphoric
acid. Nearly 200 GP species were identified in human plasma (Fig. 2). Among them
glycerophosphocholines and glycerophosphoethanolamines are most abundant and
glycerophosphoserines least abundant (Quehenberger et al. 2010; Quehenberger and
Dennis 2011). Lyso-GPs only bear one fatty acid that is esterified to a hydroxyl
group either at sn-1 or sn-2 position.

Human plasma contains more than 200 different SL species. The largest SL
fraction in human plasma is sphingomyelin, while ceramides are least abundant.

Among sterols cholesterol is most abundant in plasma followed by lathosterol and
desmosterol. The largest part of cholesterol in plasma is esterified (Fig. 2). Among
the cholesteryl esters (CE) of human plasma, CE(18:2) and CE(20:4) contribute the
major fraction (Quehenberger et al. 2010).

Prenol lipids are built from five carbon isoprene units. The two main prenol lipids
in plasma are dolichol and ubiquinone (Shiota et al. 2008).

3 Lipidomics

Lipidomics is a relatively young field of science, which aims to identify and quantify
all individual lipid species and their functions within a biological system (Han and
Gross 2003). Lipidomics technologies are increasingly applied to biomarker

Fig. 2 Distribution of the individual lipid classes in human plasma (reproduced from
Quehenberger et al. (2010))
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discovery. They offer great promise for new-generation biomarkers in common and
complex phenotypes such as dyslipidemia and cardiovascular diseases (CVDs).

3.1 Mass Spectrometry and Chromatography

A lipidomics analysis provides an overall picture of the lipids in a sample, thanks to
the combined use of analytical chemistry and data mining tools. However, the
comprehensive characterization of a lipidome in biological samples is still challeng-
ing. The huge structural diversity of lipids that primarily arises from the combination
of various fatty acids and functional head groups makes a complete molecular
profiling of the lipidome difficult. In particular, the presence of multiple isobaric
lipid species increases the complexity. Also the detection of quantitatively minor
lipid species remains a challenge.

The development of mass spectrometry (MS) based technologies over the last
decade has rapidly expanded research in the field of lipidomics. In lipidomics, the
mass spectrometer can be used without prior separation (“shot-gun lipidomics”) or
connected to chromatographic systems in order to provide an additional dimension
of separation.

In the shot-gun strategy, the crude lipid extract is directly introduced into the MS
system (Han and Gross 1994), which is a fast and simple method to obtain a
quantitative lipid profile from biological matrices. However, as the trade-off, the
technology suffers from a limited dynamic range and the risk of ion suppression,
making the detection of isobaric and low concentrated lipid species difficult. There-
fore, recent methodologies are often based on the progress in high-resolution
(HR) MS, such as Orbitrap (Ejsing et al. 2009; Schwudke et al. 2011) or Q-TOF
detectors (Guo et al. 2012; Li et al. 2013). Using HR-MS, individual lipid species are
identified and quantified according to their exact chemical mass. Nevertheless, the
major limitation of shot-gun MS is the lack of discrimination between isobaric
species. Because of the building block-like nature of many lipid families, isobaric
species are frequently found in the lipidome. This is in particular the case for certain
glycero- and sphingolipids, which have a very similar accurate mass (Schwudke
et al. 2011).

Thin layer chromatography (TLC) was one of the earliest chromatographic
methods applied in lipid analysis. However, it is time-consuming and lacks resolu-
tion power and reproducibility. Nevertheless, TLC is still widely used, because of its
simplicity and low cost. Also, with gas chromatography (GC), it is possible to obtain
information on individual lipid species. Volatile lipid classes, in particular
triacylglycerols, can be separated directly and without any chemical modification,
whereas the analysis of more polar compounds such as fatty acids, phospholipids,
and sphingolipids requires initial derivatization or hydrolysis. Also capillary elec-
trophoresis has been applied for the separation of phospholipids at high data
acquisition speed (Jang et al. 2011). However, (ultra) high-performance liquid
chromatography ((U)HPLC) is the most versatile method and the majority of lipid
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classes including glycerophospholipids, glycerolipids, sphingolipids, sterols, and
fatty acids can be separated directly by (U)HPLC (Wenk 2005).

In lipidomics studies, either normal-phase (NPLC) or reversed-phase (RPLC)
liquid chromatography is used. In NPLC, lipid species are primarily separated by the
polarity of their head groups, while RPLC separates the lipids based on their
lipophilicity which is primarily determined by the acyl chain length, the number of
double bonds, and hydroxylations (Merrill Jr. et al. 2005). In RPLC, lipids with
shorter acyl chains and/or a higher degree of unsaturation elute earlier. Furthermore,
RPLC can separate isomeric species based on the type of double bond (cis or trans)
or whether a fatty acid is in sn-1 or sn-2 position (Bird et al. 2012). Other HPLC
based separation techniques have been developed recently and show a great potential
for lipidomics. In particular, supercritical fluid chromatography-mass spectrometry
(SFC-MS) has been used for the separation of lipids over a wide range of polarities
depending on the choice of the chromatographic columns (Bamba et al. 2012). In
lipidomics, MS instruments are mostly combined with LC systems. This strategy
drastically decreases ion suppression and improved the separation of isobaric and
low-abundance species (Taguchi and Ishikawa 2010). In addition, ion mobility
(IM) separation offers an additional dimension for the separation of isobaric lipid
species which can even be combined with LC based separation methods (Kliman
et al. 2011). Also, HR-MS is often combined with high- or ultra-performance liquid
chromatography (Bird et al. 2011a, b) or ion mobility spectroscopy (Kliman et al.
2011).

In addition to chromatography, technological advancements in MS, particularly
in the field of ionization methods, have played a critical role in advancing the lipid
analysis from complex matrices. Electrospray ionization (ESI) and atmospheric
pressure ion (API) sources, including atmospheric pressure chemical ionization
(APCI) and atmospheric pressure photoionization (APPI) are most widely used.
Other methods such as matrix-assisted laser desorption ionization (MALDI) are also
applied but are not the most established methods for lipid profiling. In contrast to ESI
or atmospheric pressure ion sources, MALDI cannot be easily coupled to chro-
matographic systems. However, MALDI-MS is used in mass spectrometry imaging
(MSI) (Aichler and Walch 2015) to analyze individual lipid species directly in tissue
sections. Also, the combination of MALDI-MS with TLC provides direct informa-
tion about the molecular species and the molecular weight (Guittard et al. 1999) as
by TLC, lipids are normally separated according to their classes.

The first analysis of a complex lipid mixture using an ESI source was reported by
Han and Gross (Han and Gross 1994). Today, ESI is the most widely used method
for lipidomic studies, although some important classes, such as cholesteryl esters and
glycerolipids (mono-, di- and tri-acylglycerols) are not well ionized with ESI and
therefore require the addition of ammonium, lithium, or copper ions to increase
signal strength (Murphy and Axelsen 2011; Murphy and Gaskell 2011).

With the advent of high-resolution MS and the capability to perform simulta-
neous HR-MS and MS/MS analysis, the major challenge for LC-MS based
lipidomics is to deal with the vast amount of information generated during data
acquisitions. Therefore, bioinformatics tools (Table 1) have been developed to
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Table 1 Publically available software tools for the processing and annotation of MS data

Application URL

Databases

LIPID MAPS Lipid database and classification http://www.lipidmaps.org

LipidBank Official database of Japanese Conference on
the Biochemistry of lipids

http://www.lipidbank.jp

LMSD Structure and annotation of lipid species http://www.lipidmaps.org/
data/structure/index.html

Massbank High resolution mass spectral database http://www.massbank.jp

IUPAC IUPAC lipid nomenclature http://www.chem.qmul.ac.
uk/iupac/lipid

LIPIDAT Thermodynamic data of lipids http://www.lipidat.tcd.ie

Cyberlipids Dedicated site for lipid analysis http://www.cyberlipid.org

Lipid Library Dedicated site for lipid analysis http://lipidlibrary.aocs.org

SphingoMAP Sphingolipid metabolism http://www.sphingomap.org

KEGG Fatty acid, sterol, and phospholipid
metabolism

http://www.genome.jp/kegg/
pathway.html

METACYC Lipid metabolism http://metacyc.org

HMDB Metabolome database (MS and MS/MS
spectra)

http://www.hmdb.ca

METLIN Metabolome database (MS and MS/MS
spectra)

http://metlin.scripps.edu/
index.php

mzCloud High resolution mass spectral database http://www.mzcloud.org

Free software

Mzmine 2 Open source software for LC-MS data
processing

http://mzmine.github.io/

XCMS Framework for processing and visualization of
LC-MS data

https://bioconductor.org/
packages/release/bioc/html/
xcms.html

metAlign Pre-processing and comparison of full scan
LC-MS and GC-MS data

https://www.wur.nl/en/show/
MetAlign-1.htm

LipidBlast Tandem mass spectrometry database for lipid
identification

https://fiehnlab.ucdavis.edu/
projects/LipidBlast

LipidXplorer Molecular fragmentation query language
(MFQL) in shot-gun lipidomics

https://wiki.mpi-cbg.de/
lipidx/Main_Page

Lipid Data
Analyzer
(LDA)

Identifying novel lipid molecular species from
mass spectrometry data

http://genome.tugraz.at/lda/
lda_description.shtml

LipidIMMS
Analyzer

Integrates multidimensional LC-MS/MS
spectra and ion mobility data for lipid
identification

http://imms.zhulab.cn/
LipidIMMS/

Skyline Powerful open source application for the
analysis of proteomics and lipidomics data

https://skyline.ms/project/
home/software/Skyline/
begin.view

Lipidcreator Skyline plugin for targeted LC-MS/MS-based
lipidomics

https://lifs.isas.de/
lipidcreator.html

LIQUID Open source software for identifying lipids in
LC-MS/MS-based data

https://github.com/PNNL-
Comp-Mass-Spec/LIQUID

(continued)
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handle, process, and interpret large amounts of data generated during lipidomics
analysis. Typically, a lipidomics workflow includes four steps.

I. Sample preparation, II. LC-MS/MS analysis, III. Automatic data processing for
peak detection and alignment based on commercial or freely available software
algorithms, and IV. Feature identification using public or proprietary databases
(Fig. 3).

3.2 Pre-analytical Considerations

A key factor for the quality of a lipid profiling study is the integrity of the samples
(Ellervik and Vaught 2015). Errors during the pre-analytical phase including sample
collection, processing, and storage may severely affect subsequent downstream
analyses and resulting data (Ellervik and Vaught 2015). Anticoagulants are com-
monly used in plasma preparation and the most common anticoagulants such as
EDTA and heparin plasma as well as serum are compatible with lipidomics studies.
Nonetheless, the peak responses of a number of lipid species can be influenced by
the material (Hammad et al. 2010). Therefore, the same anticoagulant should be used
throughout a study. In addition, the correct storage of the samples is of importance.
Particularly in large clinical cohorts, batches of samples may be stored for a long
period of time. Samples are commonly stored at �80 �C or lower before they
undergo a lipidomics profiling. However, certain lipids such as sphingomyelins
were lost from plasma samples over 5 years of storage (Haid et al. 2018). Plasma

Table 1 (continued)

Application URL

LIMSA Integrates and matches MS peaks with a user
list of expected lipids, corrects for isotopic
patterns, and quantifies the identified lipid
species

https://omictools.com/limsa-
tool

LipiDex Unifies LC-MS/MS-based lipid identification
using intelligent data filtering

https://github.com/
coongroup/LipiDex

LipidHunter de novo identification of native phospholipids https://home.uni-leipzig.de/
fedorova/software/
lipidhunter/

LipidMatch Rule-based lipid identification using
untargeted high-resolution MS/MS data

https://omictools.com/
lipidmatch-tool

LipidMS Lipid annotation in untargeted lipidomics
based on fragmentation and intensity rules

https://rdrr.io/cran/LipidMS/

Commercial software Manufacturer

LipidView LC-MS data processing AB/Sciex

Marketlynx LC-MS, LC-MS/MS, GC/MS, and GC-MS/
MS data processing

Waters

Metabolic
Profiler

NMR and MS data processing Bruker

Lipid Search LC-MS/MS data processing ThermoScientific
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concentrations of cholesterol and triglycerides were shown to decrease in serum
samples stored over 7 and 5 years, respectively (Shih et al. 2000) even at �80 �C.
This should be considered as the time-dependent degradation of certain lipids may
lead to biased results. Consequently, the time between sampling and analysis should
be kept as short as possible.

3.3 Lipid Extraction

Usually, lipids are extracted from biological sources using liquid–liquid extractions.
Lipid extraction is a crucial step in obtaining global coverage of the lipidome. The
two most commonly applied methods are using either a 2/1 mixture of chloroform
and methanol according to Folch (Folch et al. 1957) or a 1/1 mixture of chloroform
and methanol according to Bligh and Dyer (Bligh and Dyer 1959). Based on these
traditional protocols, new methods have been developed, although most of them are
adaptations of either the one or the other. Chloroform and methanol can be replaced
by either dichloromethane (Hu et al. 2008), methyl tert-butyl ether (MTBE) or by
heptane and ethyl acetate (Lofgren et al. 2012). Comparing the yeast lipidome
prepared by three extraction methods (chloroform/methanol 17/1 (v/v), chloro-
form/methanol 2/1 (v/v), or chloroform/methanol/H2O 1/1/0.9 (v/v/v) showed a
large heterogeneity in the extraction yield which was also dependent on the

Fig. 3 Typical workflow for lipid biomarker identification
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respective lipid classes (Ejsing et al. 2009). Therefore, the appropriate extraction
protocol depends on the underlying analytical question and the lipid class of interest
(Danne-Rasche et al. 2018).

3.4 Targeted vs. Untargeted Lipidomics

LC-MS is typically applied in two distinct operational modes – targeted or
untargeted. A targeted approach is normally chosen for a limited, predefined number
of lipid species. It is typically more sensitive and specific than untargeted
approaches. In a targeted approach, often low-resolution MS systems are used,
such as triple quadrupole or quadrupole linear ion trap instruments, because of
their speed, sensitivity, and quantification capabilities (Bielawski et al. 2009).
However, the development of HR-MS instruments such as Orbitrap and quadrupole
time-of-flight MS also allows untargeted lipidomic approaches, which is indepen-
dent of a predefined compound list (Junot et al. 2014). HR-MS enables the concom-
itant analysis of multiple lipid families without the need for extensive fragmentation.
Improvements in the duty cycle allow the combination of high-resolution MS and
higher energy collisional dissociation (HCD) scans, which provides further informa-
tion about the accurate mass of precursor and fragment ions of the detected lipids
(Bird et al. 2013, 2015). Depending on the model and MS manufacturer, also
combined approaches of HR-MS together with ion fragmentation are possible.
Many instrument manufacturers offer the possibility to generate HR-MS fragment
data using either a data dependent (DDA) or data independent (DIA)
acquisition mode.

3.5 Annotation

Lipid species detected by MS-based approaches are typically annotated with the help
of dedicated databases. Numerous lipid databases have been developed in the field of
lipidomics (see Table 1). The LIPID MAPS consortium has developed the structure
database LIPID MAPS (Schmelzer et al. 2007), wherein lipid species are classified
by families, class, and subclasses according to their accurate mass and structure. This
database is openly available and can be downloaded allowing an automatic annota-
tion. This database consists of compiled databases such as LipidBank, LIPIDAT, or
LipidBlast (Cajka and Fiehn 2017). Also databases commonly used in the field of
metabolomics, such as HMDB, METLIN, and KEGG, contain data on lipid species
as well as other sources such as Cyberlipids and Lipid Library.

However, before the individual lipid species can be annotated, the raw data
obtained from an MS analyzer must be pre-processed. Typically, raw MS data are
first converted into either a proprietary data format of the respective MS manufac-
turer or an open data container such as NetCDF, mzXML, or mzData (i.e., XCMS or
MZmine). In parallel with advances in instrumentation technology (particularly for
high-resolution mass spectrometers), manufacturers have developed commercial
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software packages for direct interpretation of the raw data obtained. In contrast to
manufacturer specific data formats, which normally can only be read in combination
with branded software packages, open data formats are commonly used in freely
available software programs such as MZmine (Katajamaa et al. 2006) or XCMS
(Smith et al. 2006) (Table 1). Data processing in MZmine is based on algorithms for
spectral filtering, alignments according to the retention time, peak picking detection,
normalization, and visualization. XCMS in contrast uses non-linear retention time
peak alignment, matching by a filter process and peak matching.

Many of these data processing tools allow to perform univariate or multi-variate
statistical analysis to identify discriminant variables (potential biomarker lipid spe-
cies, for example). However, in case of unclear structural definitions, often further
MS/MS experiments are needed to identify the lipid metabolite of interest
unambiguously.

3.6 Biostatistics

Finally, advanced biostatistical tools are needed to process, analyze, and interpret
high-dimensional lipidomics data in the context of clinical information. Based on the
typically large and comprehensive dataset, supervised and unsupervised statistical
methods are applied. This includes but is not limited to partial least squares discrim-
inant analysis (PLS-DA), orthogonal projection-potential structure analysis (OPLS-
DA), principal component analysis (PCA), clustering analysis, linear discriminant
analysis, or other stoichiometric methods (Liland et al. 2010). Tools such as
MetaboAnalyst can help to identify relevant markers and lipid signatures (Xia and
Wishart 2016).

4 Application of Lipidomics in Clinical and Epidemiological
Studies

In plasma, lipids are mostly transported and distributed by lipoproteins (e.g., HDL,
LDL, VLDL). Several studies have examined the lipid components of lipoproteins
among healthy participants (Quehenberger et al. 2010; Christinat and Masoodi 2017;
Kontush et al. 2013). However, the lipid composition of lipoproteins varies (Cardner
et al. 2020). Triacylglycerols (TAGs) are the predominant core lipid in VLDL, while
CEs predominate in the core of LDL and HDL. Compared to LDL, HDL contains a
higher amount of phospholipids, particularly PC and LPC. The fatty acid composi-
tion of phospholipids, TAGs, and CE is similar in HDL, LDL, and VLDL.

CVD is mostly associated with increased blood levels for one or more lipid
classes. These hyperlipidemias (HL) can be linked to familial or non-familial
reasons. Familial HL are caused by genetic alterations in lipoprotein metabolism
but the penetrance can vary considerably depending on the condition (De Castro-
Oros et al. 2010). Non-familial HL occur due to adverse lifestyle behavior such as
physical inactivity, intake of lipid-rich diet, smoking, and alcohol consumption or
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due to underlying diseases such as obesity, liver diseases, and diabetes. Urban diets,
stress, and unhealthy eating pattern have made non-familial HL highly prevalent and
a focal topic in health prevention. HL affects a large proportion of the human
lipidome, resulting in changes in plasma levels of saturated diacylglycerols
(DAGs), TAGs, SM, and phospholipids in obese individuals (Graessler et al.
2009; Hanamatsu et al. 2014; Kim et al. 2010). Plasma levels of PC, phosphatidyl-
ethanolamine, ether-linked lipids, phosphatidylinositol (PI), LPC, and CE (Barber
et al. 2012; Donovan et al. 2013; Eisinger et al. 2014; Graessler et al. 2009;
Hanamatsu et al. 2014; Kim et al. 2010; Samad et al. 2006) were also altered
while LPCs showed a mixed behavior. At present, hyperlipidemic conditions are
monitored routinely by the measurement of cholesterol and TAG in total plasma,
LDL, and HDL. However, lipidomics demonstrated that besides cholesterol also
other lipid classes and lipid species of the plasma lipidome are associated with the
risk for CVD (Razquin et al. 2018). In particular plasma levels of ceramides show a
positive association with the risk of CVD (Laaksonen et al. 2016). Ceramides are
primarily present in LDL and may influence the function and atherogenicity of LDL.
In fact, LDL extracted from human atherosclerosis lesions are highly enriched in
ceramides (Schissel et al. 1996), and animal studies showed a decrease in athero-
sclerotic lesion size when ceramide synthesis was inhibited (Hojjati et al. 2005).

Relatively few studies have compared the lipidomics profile of lipoproteins in
relation to CVD outcomes. Higher TAGs, lower PUFAs, lower phospholipids, and
lower sphingomyelin (SM) in HDL may be associated with higher risks of CVD and
type 2 diabetes (T2D), although it is currently unknown whether these associations
are confounded by HDL-C. In two studies, a low HDL-C has been associated with
higher TAGs, lower PUFAs, lower LPC, and lower SM levels (Kontush et al. 2013).
Another study found that, compared to participants without CVD or at early stages of
CVD, participants with severe CVD had higher levels of short chain FAs in both
HDL and non-HDL particles. PC and SM levels were lower in HDL, and PUFAs
reduced in non-HDL particles. Additionally, two studies showed that lower levels of
PC-plasmalogens were associated with a higher risk of CVD, particularly pf acute
CVD (Meikle et al. 2019; Sutter et al. 2015).

Obesity also leads to increased lipolysis in adipose tissues and thus increases
plasma level of FFAs (Haus et al. 2009). There is a direct relationship between
increased intake of saturated fatty acids (e.g., lauric, myristic, or palmitic acid) and
an increase in TAGs (Fernandez and West 2005; Steinberg 2005). Increased FFAs
and MAGs in plasma can be attributed to an increased lipolysis of TAGs obtained
from high fat diet (Ho and Storch 2001). Dietary saturated fatty acids have a
tendency to increase TAG while polyunsaturated fatty acids have the ability to
lower TAG and LDL-C (Siri-Tarino et al. 2010; Williams and Salter 2016). On
the other hand, diets rich in SM were shown to specifically increase HDL-C without
affecting other lipids (Ramprasath et al. 2013).

Mouse models of diet-induced obesity showed elevation in plasma ceramide level
and alterations in PCs, LPCs, and SMs (Barber et al. 2012; Samad et al. 2006).
Perturbation in lipid levels is also associated with both type 1 (T1D) (Fox et al. 2011;
Sorensen et al. 2010) and type 2 diabetes (T2D) (Graessler et al. 2009; Barber et al.
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2012; Samad et al. 2006). In diabetes, plasma levels of most LPC decrease, while
PCs showed a mixed behavior. An important hallmark of T2D is an increase in
plasma concentration of FFA (Barber et al. 2012; Samad et al. 2006), ceramides
(Samad et al. 2006; Haus et al. 2009; Kang et al. 2013), and TAGs enriched with
short chain saturated fatty acids (Rhee et al. 2011). Moreover, atypical 1-deoxy-
Spingolipids (1-deoxySL) were found to be elevated in T2DM and showed a similar
or even closer association with T2DM or metabolic syndrome than established
markers such as waist circumference, glucose, triglycerides, HDL cholesterol, and
blood pressure (Bertea et al. 2010; Othman et al. 2012; Othman et al. 2015a). Further
studies showed that elevated plasma 1-deoxySL levels are strong and independent
risk predictors of future T2DM, especially for non-obese individuals in the general
population (Mwinyi et al. 2017). Plasma C20-Sphingolipids were also shown to
indicate cardiovascular events independently from conventional cardiovascular risk
factors in patients undergoing coronary angiography (Othman et al. 2015b).

High-throughput lipidomics analyses were recently applied to plasma samples of
10,339 participants from the Australian Diabetes, Obesity and Lifestyle Study
(AusDiab) (Huynh et al. 2019; Beyene and Olshansky 2020). The data were
validated in a second cohort with 4,207 participants (the Busselton Health Study)
(Beyene and Olshansky 2020). The studies showed differences in the plasma
lipidome related to metabolic disease and gender. A class of specific ether-
phospholipids and lysophospholipids were inversely associated with age in men.
The comparison of post- and premenopausal women showed higher TAG and lower
lysoPC species in the postmenopausal group. Lysophospholipids were negatively
associated with BMI in both sexes (with a larger effect size in men). Based on
specific lipid ratios the authors identified the lipid metabolizing enzymes stearoyl
CoA desaturase (SCD-1), fatty acid desaturase 3 (FADS3), and
plasmanylethanolamine Δ1-desaturase, as well as the sphingolipid metabolic path-
way as relevant factors associated with cardiometabolic phenotypes.

In conclusion, MS-based lipid analysis combined with bioinformatics tools have
revolutionized the field of lipidomics. Thanks to commercial and freely available
software packages that allow automatic peak detection, alignment, and feature
annotation using public or proprietary databases to study large cohorts of patients
and identify novel biomarkers which are getting increasingly important particularly
in the growing field of precision and personalized medicine.
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