U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Chou R, Selph S, Blazina I, et al. Screening for Glaucoma in Adults: A Systematic Review for the U.S. Preventive Services Task Force [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2022 May. (Evidence Synthesis, No. 214.)

Cover of Screening for Glaucoma in Adults: A Systematic Review for the U.S. Preventive Services Task Force

Screening for Glaucoma in Adults: A Systematic Review for the U.S. Preventive Services Task Force [Internet].

Show details

Appendix ADetailed Methods

Appendix A1. Search Strategies

Database: Ovid MEDLINE(R)

Screening

  1. Glaucoma, Open-Angle/
  2. glaucoma*.ti,ab,kf.
  3. Ocular Hypertension/
  4. “ocular hypertension”.ti,ab,kf.
  5. or/1-4
  6. Mass Screening/
  7. early diagnosis/
  8. screen*.ti,ab,kf.
  9. or/6-8
  10. 5 and 9
  11. limit 10 to yr=“2011 -Current”
  12. (random* or control* or trial or cohort or case* or prospective or retrospective or systematic or “meta analysis” or “metaanalysis”).ti,ab,kf,tw,pt,sh.
  13. 11 and 12
  14. limit 13 to english language

Referral

  1. Glaucoma, Open-Angle/
  2. glaucoma*.ti,ab,kf.
  3. Ocular Hypertension/
  4. “ocular hypertension”.ti,ab,kf.
  5. or/1-4
  6. exp “Referral and Consultation”/
  7. refer*.ti,ab,kw.
  8. 6 or 7
  9. 5 and 8
  10. (random* or control* or trial or cohort or case* or prospective or retrospective or systematic or “meta analysis” or “metaanalysis”).ti,ab,kf,tw,pt,sh.
  11. 9 and 10
  12. limit 11 to english language

Diagnostic Accuracy

  1. Glaucoma, Open-Angle/
  2. glaucoma*.ti,ab,kf.
  3. Ocular Hypertension/
  4. “ocular hypertension”.ti,ab,kf.
  5. or/1-4
  6. (screen* or test* or diagnos*).ti,ab,kf.
  7. 5 and 6
  8. exp “Sensitivity and Specificity”/
  9. (sensitivity or specificity or accuracy or predict* or reliability).ti,ab,kf.
  10. 8 or 9
  11. 7 and 10
  12. limit 11 to yr=“2011 -Current”
  13. limit 12 to english language

Treatment

  1. Glaucoma, Open-Angle/
  2. glaucoma*.ti,ab,kf.
  3. Ocular Hypertension/
  4. “ocular hypertension”.ti,ab,kf.
  5. or/1-4
  6. (apraclonidine or brimonidine or timolol or betaxolol or levobunolol or metipranolol or brinzolamide or methazolamide or dorzolamide or acetazolamide or travaprost or bimatoprost or latanoprost* or tafluprost or netarsudil).ti,ab,kf,sh.
  7. (“alpha 2 agonist*” or “alpha2 agonist*” or “beta blocker*” or “carbonic anahydrast inhibitor*” or “prostaglandin analogue*”).ti,ab,kf.
  8. (trabeculoplasty or trabeculectomy or phacotrabeculoplasty or phacotrabeculectomy).ti,ab,kf,sh.
  9. or/6-8
  10. 5 and 9
  11. limit 10 to yr=“2011 -Current”
  12. (random* or control* or trial or cohort or case* or prospective or retrospective or systematic or “meta analysis” or “metaanalysis”).ti,ab,kf,tw,pt,sh.
  13. 11 and 12
  14. limit 13 to english language

Database: EBM Reviews - Cochrane Central Register of Controlled Trials

Screening

  1. Glaucoma, Open-Angle/
  2. glaucoma*.ti,ab,hw.
  3. Ocular Hypertension/
  4. “ocular hypertension”.ti,ab,hw.
  5. or/1-4
  6. Mass Screening/
  7. early diagnosis/
  8. screen*.ti,ab,hw.
  9. or/6-8
  10. 5 and 9
  11. limit 10 to yr=“2011 -Current”
  12. limit 11 to english language
  13. conference abstract.pt.
  14. “journal: conference abstract”.pt.
  15. “journal: conference review”.pt.
  16. 13 or 14 or 15 or 16 or 17
  17. 12 not 18

Referral

  1. Glaucoma, Open-Angle/
  2. glaucoma*.ti,ab,hw.
  3. Ocular Hypertension/
  4. “ocular hypertension”.ti,ab,hw.
  5. or/1-4
  6. exp “Referral and Consultation”/
  7. refer*.ti,ab,hw.
  8. 6 or 7
  9. 5 and 8
  10. conference abstract.pt.
  11. “journal: conference abstract”.pt.
  12. “journal: conference review”.pt.
  13. 10 or 11 or 12 or 13 or 14
  14. 9 not 15
  15. limit 16 to medline records
  16. 16 not 17

Diagnostic Accuracy

  1. Glaucoma, Open-Angle/
  2. glaucoma*.ti,ab,hw.
  3. Ocular Hypertension/
  4. “ocular hypertension”.ti,ab,hw.
  5. or/1-4
  6. (screen* or test* or diagnos*).ti,ab,hw.
  7. 5 and 6
  8. exp “Sensitivity and Specificity”/
  9. (sensitivity or specificity or accuracy or predict* or reliability).ti,ab,hw.
  10. 8 or 9
  11. 7 and 10
  12. limit 11 to yr=“2011 -Current”
  13. limit 12 to english language
  14. conference abstract.pt.
  15. “journal: conference abstract”.pt.
  16. “journal: conference review”.pt.
  17. 14 or 15 or 16 or 17 or 18
  18. 13 not 19

Treatment

  1. Glaucoma, Open-Angle/
  2. glaucoma*.ti,ab,hw.
  3. Ocular Hypertension/
  4. “ocular hypertension”.ti,ab,hw.
  5. or/1-4
  6. (apraclonidine or brimonidine or timolol or betaxolol or levobunolol or metipranolol or brinzolamide or methazolamide or dorzolamide or acetazolamide or travaprost or bimatoprost or latanoprost* or tafluprost or netarsudil).ti,ab,hw,sh.
  7. (“alpha 2 agonist*” or “alpha2 agonist*” or “beta blocker*” or “carbonic anahydrast inhibitor*” or “prostaglandin analogue*”).ti,ab,hw.
  8. (trabeculoplasty or trabeculectomy or phacotrabeculoplasty or phacotrabeculectomy).ti,ab,hw,sh.
  9. or/6-8
  10. 5 and 9
  11. limit 10 to yr=“2011 -Current”
  12. limit 11 to english language
  13. conference abstract.pt.
  14. “journal: conference abstract”.pt.
  15. “journal: conference review”.pt.
  16. 13 or 14 or 15 or 16 or 17
  17. 12 not 18

Database: EBM Reviews - Cochrane Database of Systematic Reviews

All KQs

  1. glaucoma*.ti,ab.
  2. “ocular hypertension”.ti,ab.
  3. “eyes and vision”.gw.
  4. 1 or 2
  5. 3 and 4
  6. limit 5 to last 10 years
  7. limit 6 to full systematic reviews

Appendix A2. Inclusion and Exclusion Criteria

CategoryInclusionExclusion
Definition of disease

POAG; glaucoma defined by presence of glaucomatous optic disc changes and RNFL changes, with or without associated visual field changes or elevated IOP

Glaucoma suspect: Patients do not meet criteria for glaucoma but have a consistently elevated IOP, a suspicious appearance of the optic nerve, or visual field abnormalities consistent with glaucoma

-
Populations

KQs 15: Asymptomatic adults 40 years of age or older without visual symptoms

KQs 611: Adults with screen-detected, asymptomatic, or early POAG

KQs 15: Patients with visual symptoms, case-control studies of patients known to have OAG and normal controls

KQs 611: Patients with OAG and severe visual field or visual deficits; patients with narrow-angle glaucoma, secondary glaucoma, juvenile glaucoma, other glaucoma

Interventions

KQs 12, 45: Screening with a comprehensive eye examination (as defined in the studies) by an eye health provider; screening tests performed in primary care or applicable to primary care; and instruments for identifying persons at increased risk of OAG

KQ3: Referral to an eye specialist

KQ4: Diagnostic tests that are currently used:

  1. Comprehensive eye exam
  2. Ophthalmoscopy, direct and indirect
  3. Optic disc photography, including non-digital and digital monoscopic and steroscopic photography, and planimetric
  4. Perimetry, including high-pass, motion, flicker perimetry, yellow and blue perimetry
    1. White-on-white standard automated perimetry, including suprathershold and threshold (classic Humphrey visual field)
  5. Tonometry, contact and non-contact tonometry
    1. GAT
    2. Non-contact tonometer (air puff)
    3. Tonopen
  6. OCT and OCT angiography
  7. Fundus photography or computerized imaging of the posterior pole, optic disc or RNFL
  8. Pachymetry, when used in conjunction with another test to diagnose glaucoma
  9. Afferent pupillary defect
  10. GCC measurements

KQs 611:

  • First line medical treatments (prostaglandin analogues, beta-blockers, alpha2 agonists, and carbonic anahydrast inhibitors)
  • SLT
  • Latanoprostene bunod
  • Netarsudil

KQ4: Screening tests that are no longer used

KQs 611: Second line medical therapies, surgery, argon trabeculoplasty, non-FDA approved therapies, therapies not commonly used as first-line therapy in U.S. practice

Comparisons

KQs 12: No screening

KQ3: No referral

KQs 45: Reference standard for OAG (as defined in the studies)

KQs 611: Placebo, no therapy, or first-line medical therapies (for SLT, latanoprostene bunod, and netarsudil)

Comparisons involving second line medical therapies or surgery

Other eye in same patient as the control for diagnostic accuracy

Outcomes

KQs 13, 611: IOP, visual field loss, VA, optic nerve damage, visual impairment (defined as VA <20/70 or <20/100), quality of life, function, harms (e.g., eye irritation, corneal abrasion, infection, anterior synechiae, cataracts)

KQs 45: Measures of diagnostic accuracy

Other (non-listed) outcomes
TimingKQs 611: ≥4 weeks duration of followup
SettingStudies conducted in high income studies applicable to U.S. practice; include studies performed in primary care (including use of telemedicine) and specialty settings
Study DesignRCTs of screening and treatment; cohort studies for harms of treatment if RCTs not available; population-based cohort or cross-sectional studies of diagnostic accuracy; high-quality systematic reviewsCase series, case reports, case-control studies
Study QualityFair or good-quality studiesPoor quality studies

Abbreviations: FDA = U.S. Food and Drug Administration; GAT = Goldmann Applanation Tonometer; GCC = ganglion cell complex; IOP = intraocular pressure; OAG = open angle glaucoma; OCT = optical coherence tomography; POAG = primary open angle glaucoma; RCTs = randomized controlled trials; RNFL = retinal nerve fiber layer; SLT = selective laser trabeculoplasty; U.S. = United States; VA = visual acuity.

Appendix A3. Literature Flow Diagram

Appendix A3 is the Literature Flow Diagram that shows 6,225 records were identified through database searching and other sources. After these 6,225 abstracts were screened for inclusion, 5,222 records were excluded and 1,003 full-text articles were assessed for eligibility. Of these 1,003 articles, 907 were excluded. 32 were excluded for wrong population; 143 were excluded for wrong intervention; 59 were excluded for wrong outcome; 154 were excluded for wrong comparator; 427 were excluded for wrong study design for Key Question; 22 were excluded due to not being a study; 4 were excluded for not being English language, however these papers may have been possibly relevant; 34 were systematic reviews or meta-analyses used as source documents only to identify individual studies; 3 were excluded for wrong country; 1 was excluded for poor quality; 6 were excluded for wrong publication type; 18 were excluded for results not usable or fully reported; 1 was excluded for wrong setting; 1 was irretrievable; 2 contained duplicate data. The other 96 full-text articles encompassed 83 individual studies that were included in the review. One new study addressed Key Question 1, 1 new trial in 2 publications addressed Key Question 2; 0 studies were included for Key Question 3, 53 studies in 59 publications (6 carried forward and 47 new) addressed Key Question 4, 1 new study addressed Key Question 5, 17 trials in 20 publications (9 carried forward and 8 new) addressed Key Question 6, 8 trials in 9 publications (3 carried forward and 5 new) addressed Key Question 7, 8 new trials in 10 publications addressed Key Question 8, 8 new trials in 10 publications addressed Key Question 9, 4 trials in 5 publications (1 carried forward and 3 new) addressed Key Question 10, and 4 trials in 5 publications (1 carried forward and 3 new) addressed Key Question 11.

Note: Studies are included for more than one Key Question.

Abbreviations: H2H = head to head; KQ = key question; PCTs = placebo controlled trials; SLT = selective laser trabeculoplasty.

Appendix A4. Included Studies

1.
Aksoy FE, Altan C, Yilmaz BS, et al. A comparative evaluation of segmental analysis of macular layers in patients with early glaucoma, ocular hypertension, and healthy eyes. J Fr Ophtalmol. 2020;43(9):869–78. doi: 10.1016/j.jfo.2019.12.020. PMID: 32839014. [PubMed: 32839014] [CrossRef]
2.
Aptel F, Sayous R, Fortoul V, et al. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry. Am J Ophthalmol. 2010;150(6):825–33. doi: 10.1016/j.ajo.2010.06.011. PMID: 20851372. [PubMed: 20851372] [CrossRef]
3.
Arnould L, De Lazzer A, Seydou A, et al. Diagnostic ability of spectral-domain optical coherence tomography peripapillary retinal nerve fiber layer thickness to discriminate glaucoma patients from controls in an elderly population (the MONTRACHET study). Acta Ophthalmol. 2020;98(8):e1009–e16. doi: 10.1111/aos.14448. PMID: 32333503. [PubMed: 32333503] [CrossRef]
4.
Asrani S, Bacharach J, Holland E, et al. Fixed-dose combination of netarsudil and latanoprost in ocular hypertension and open-angle glaucoma: pooled efficacy/safety analysis of phase 3 MERCURY-1 and -2. Adv Ther. 2020;37(4):1620–31. doi: 10.1007/s12325-020-01277-2. PMID: 32166538. [PMC free article: PMC7140751] [PubMed: 32166538] [CrossRef]
5.
Asrani S, Robin AL, Serle JB, et al. Netarsudil/Latanoprost fixed-dose combination for elevated intraocular pressure: three-month data from a randomized phase 3 trial. Am J Ophthalmol. 2019;207:248–57. doi: 10.1016/j.ajo.2019.06.016. PMID: 31229466. [PubMed: 31229466] [CrossRef]
6.
Azuara-Blanco A, Banister K, Boachie C, et al. Automated imaging technologies for the diagnosis of glaucoma: a comparative diagnostic study for the evaluation of the diagnostic accuracy, performance as triage tests and cost-effectiveness (GATE study). Health Technol Assess. 2016;20(8):1–168. doi: 10.3310/hta20080. PMID: 26822760. [PMC free article: PMC4781562] [PubMed: 26822760] [CrossRef]
7.
Bagga H, Feuer WJ, Greenfield DS. Detection of psychophysical and structural injury in eyes with glaucomatous optic neuropathy and normal standard automated perimetry. Arch Ophthalmol. 2006;124(2):169–76. doi: 10.1001/archopht.124.2.169. PMID: 16476885. [PubMed: 16476885] [CrossRef]
8.
Banister K, Boachie C, Bourne R, et al. Can automated imaging for optic disc and retinal nerve fiber layer analysis aid glaucoma detection? Ophthalmology. 2016;123(5):930–8. doi: 10.1016/j.ophtha.2016.01.041. PMID: 27016459. [PMC free article: PMC4846823] [PubMed: 27016459] [CrossRef]
9.
Bensinger RE, Keates EU, Gofman JD, et al. Levobunolol: a three-month efficacy study in the treatment of glaucoma and ocular hypertension. Arch Ophthalmol. 1985;103(3):375–8. PMID: 3883971. [PubMed: 3883971]
10.
Bergstrand IC, Heijl A, Harris A. Dorzolamide and ocular blood flow in previously untreated glaucoma patients: a controlled double-masked study. Acta Ophthalmol Scand. 2002;80(2):176–82. PMID: 11952485. [PubMed: 11952485]
11.
Blumberg DM, De Moraes CG, Liebmann JM, et al. Technology and the glaucoma suspect. Invest Ophthalmol Vis Sci. 2016;57(9):OCT80–5. doi: 10.1167/iovs.15-18931. PMID: 27409509. [PMC free article: PMC5995486] [PubMed: 27409509] [CrossRef]
12.
Bonomi L, Marchini G, Marraffa M, et al. The relationship between intraocular pressure and glaucoma in a defined population. Data from the Egna-Neumarkt Glaucoma Study. Ophthalmologica. 2001;215(1):34–8. doi: 10.1159/000050823. PMID: 11125267. [PubMed: 11125267] [CrossRef]
13.
Brubaker JW, Teymoorian S, Lewis RA, et al. One year of netarsudil and latanoprost fixed-dose combination for elevated intraocular pressure: Phase 3, randomized MERCURY-1 study. Ophthalmol Glaucoma. 2020;3(5):327–38. doi: 10.1016/j.ogla.2020.05.008. PMID: 32768361. [PubMed: 32768361] [CrossRef]
14.
Casado A, Cervero A, Lopez-de-Eguileta A, et al. Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects. PLoS One. 2019;14(9):e0222347. doi: 10.1371/journal.pone.0222347. PMID: 31509597. [PMC free article: PMC6738661] [PubMed: 31509597] [CrossRef]
15.
Chan MPY, Broadway DC, Khawaja AP, et al. Glaucoma and intraocular pressure in EPIC-Norfolk Eye Study: cross sectional study. BMJ. 2017;358:j3889. doi: 10.1136/bmj.j3889. PMID: 28903935. [PMC free article: PMC5596699] [PubMed: 28903935] [CrossRef]
16.
Charalel RA, Lin HS, Singh K. Glaucoma screening using relative afferent pupillary defect. J Glaucoma. 2014;23(3):169–73. doi: 10.1097/IJG.0b013e31826a9742. PMID: 23296370. [PubMed: 23296370] [CrossRef]
17.
Choudhari NS, George R, Baskaran M, et al. Can intraocular pressure asymmetry indicate undiagnosed primary glaucoma? The Chennai Glaucoma Study. J Glaucoma. 2013;22(1):31–5. doi: 10.1097/IJG.0b013e31822af25f. PMID: 21878819. [PubMed: 21878819] [CrossRef]
18.
Cifuentes-Canorea P, Ruiz-Medrano J, Gutierrez-Bonet R, et al. Analysis of inner and outer retinal layers using spectral domain optical coherence tomography automated segmentation software in ocular hypertensive and glaucoma patients. PLoS One. 2018;13(4):e0196112. doi: 10.1371/journal.pone.0196112. PMID: 29672563. [PMC free article: PMC5908140] [PubMed: 29672563] [CrossRef]
19.
Cumming RG, Ivers R, Clemson L, et al. Improving vision to prevent falls in frail older people: a randomized trial. J Am Geriatr Soc. 2007;55(2):175–81. PMID: 17302652. [PubMed: 17302652]
20.
Dabasia PL, Fidalgo BR, Edgar DF, et al. Diagnostic accuracy of technologies for glaucoma case-finding in a community setting. Ophthalmology. 2015;122(12):2407–15. doi: 10.1016/j.ophtha.2015.08.019. PMID: 26411836. [PubMed: 26411836] [CrossRef]
21.
Danesh-Meyer HV, Gaskin BJ, Jayusundera T, et al. Comparison of disc damage likelihood scale, cup to disc ratio, and Heidelberg retina tomograph in the diagnosis of glaucoma. Br J Ophthalmol. 2006;90(4):437–41. doi: 10.1136/bjo.2005.077131. PMID: 16547323. [PMC free article: PMC1857000] [PubMed: 16547323] [CrossRef]
22.
Deshpande G, Gupta R, Bawankule P, et al. Structural evaluation of preperimetric and perimetric glaucoma. Indian J Ophthalmol. 2019;67(11):1843–9. doi: 10.4103/ijo.IJO_1955_18. PMID: 31638046. [PMC free article: PMC6836583] [PubMed: 31638046] [CrossRef]
23.
Deshpande GA, Bawankule PK, Raje DV, et al. Linear discriminant score for differentiating early primary open angle glaucoma from glaucoma suspects. Indian J Ophthalmol. 2019;67(1):75–81. doi: 10.4103/ijo.IJO_678_18. PMID: 30574897. [PMC free article: PMC6324090] [PubMed: 30574897] [CrossRef]
24.
Ehrlich JR, Radcliffe NM, Shimmyo M. Goldmann applanation tonometry compared with corneal-compensated intraocular pressure in the evaluation of primary open-angle glaucoma. BMC Ophthalmol. 2012;12:52. doi: 10.1186/1471-2415-12-52. PMID: 23009074. [PMC free article: PMC3514140] [PubMed: 23009074] [CrossRef]
25.
Epstein DL, Krug JH, Jr., Hertzmark E, et al. A long-term clinical trial of timolol therapy versus no treatment in the management of glaucoma suspects. Ophthalmology. 1989;96(10):1460–7. doi: 10.1016/s0161-6420(89)32688-1. PMID: 2685707. [PubMed: 2685707] [CrossRef]
26.
Field MG, Alasil T, Baniasadi N, et al. Facilitating glaucoma diagnosis with intereye retinal nerve fiber layer asymmetry using spectral-domain optical coherence tomography. J Glaucoma. 2016;25(2):167–76. doi: 10.1097/IJG.0000000000000080. PMID: 24921896. [PubMed: 24921896] [CrossRef]
27.
Francis BA, Varma R, Vigen C, et al. Population and high-risk group screening for glaucoma: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci. 2011;52(9):6257–64. doi: 10.1167/iovs.09-5126. PMID: 21245400. [PMC free article: PMC3175989] [PubMed: 21245400] [CrossRef]
28.
Garas A, Vargha P, Hollo G. Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye. 2011;25(1):57–65. doi: 10.1038/eye.2010.139. PMID: 20930859. [PMC free article: PMC3144640] [PubMed: 20930859] [CrossRef]
29.
Garway-Heath DF, Crabb DP, Bunce C, et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet. 2015;385(9975):1295–304. doi: 10.1016/s0140-6736(14)62111-5. PMID: 25533656. [PubMed: 25533656] [CrossRef]
30.
Gazzard G, Konstantakopoulou E, Garway-Heath D, et al. Selective laser trabeculoplasty versus eye drops for first-line treatment of ocular hypertension and glaucoma (LiGHT): a multicentre randomised controlled trial. Lancet. 2019;393(10180):1505–16. doi: 10.1016/s0140-6736(18)32213-x. PMID: 30862377. [PMC free article: PMC6495367] [PubMed: 30862377] [CrossRef]
31.
Gazzard G, Konstantakopoulou E, Garway-Heath D, et al. Selective laser trabeculoplasty versus drops for newly diagnosed ocular hypertension and glaucoma: the LiGHT RCT. Health Technol Assess. 2019;23(31):1–102. doi: 10.3310/hta23310. PMID: 31264958. [PMC free article: PMC6627009] [PubMed: 31264958] [CrossRef]
32.
Gordon MO, Kass MA. The Ocular Hypertension Treatment Study: design and baseline description of the participants. Arch Ophthalmol. 1999;117(5):573–83. doi: 10.1001/archopht.117.5.573. PMID: 10326953. [PubMed: 10326953] [CrossRef]
33.
Hammond EA, Begley PK. Screening for glaucoma: a comparison of ophthalmoscopy and tonometry. Nurs Res. 1979;28(6):371–2. PMID: 258807. [PubMed: 258807]
34.
Hark LA, Myers JS, Ines A, et al. Philadelphia telemedicine glaucoma detection and follow-up study: confirmation between eye screening and comprehensive eye examination diagnoses. Br J Ophthalmol. 2019;103(12):1820–6. doi: 10.1136/bjophthalmol-2018-313451. PMID: 30770354. [PubMed: 30770354] [CrossRef]
35.
Hark LA, Myers JS, Pasquale LR, et al. Philadelphia telemedicine glaucoma detection and follow-up study: intraocular pressure measurements found in a population at high risk for glaucoma. J Glaucoma. 2019;28(4):294–301. PMID: 30946709. [PubMed: 30946709]
36.
Heijl A, Bengtsson B. Long-term effects of timolol therapy in ocular hypertension: a double-masked, randomised trial. Graefes Arch Clin Exp Ophthalmol. 2000;238(11):877–83. doi: 10.1007/s004170000189. PMID: 11148810. [PubMed: 11148810] [CrossRef]
37.
Hong S, Ahn H, Ha SJ, et al. Early glaucoma detection using the Humphrey Matrix Perimeter, GDx VCC, Stratus OCT, and retinal nerve fiber layer photography. Ophthalmology. 2007;114(2):210–5. doi: 10.1016/j.ophtha.2006.09.021. PMID: 17270671. [PubMed: 17270671] [CrossRef]
38.
Ivers RQ, Optom B, Macaskill P, et al. Sensitivity and specificity of tests to detect eye disease in an older population. Ophthalmology. 2001;108(5):968–75. PMID: 11320029. [PubMed: 11320029]
39.
Jones L, Garway-Heath DF, Azuara-Blanco A, et al. Are patient self-reported outcome measures sensitive enough to be used as end points in clinical trials?: Evidence from the United Kingdom Glaucoma Treatment Study. Ophthalmology. 2019;126(5):682–9. doi: 10.1016/j.ophtha.2018.09.034. PMID: 30273622. [PubMed: 30273622] [CrossRef]
40.
Kahook MY, Serle JB, Mah FS, et al. Long-term safety and ocular hypotensive efficacy evaluation of netarsudil ophthalmic solution: rho kinase elevated IOP treatment trial (ROCKET-2). Am J Ophthalmol. 2019;200:130–7. doi: 10.1016/j.ajo.2019.01.003. PMID: 30653957. [PubMed: 30653957] [CrossRef]
41.
Kamal D, Garway-Heath D, Ruben S, et al. Results of the betaxolol versus placebo treatment trial in ocular hypertension. Graefes Arch Clin Exp Ophthalmol. 2003;241(3):196–203. doi: 10.1007/s00417-002-0614-4. PMID: 12644943. [PubMed: 12644943] [CrossRef]
42.
Karvonen E, Stoor K, Luodonpaa M, et al. Diagnostic performance of modern imaging instruments in glaucoma screening. Br J Ophthalmol. 2020;104(10):1399–405. doi: 10.1136/bjophthalmol-2019-314795. PMID: 31949097. [PubMed: 31949097] [CrossRef]
43.
Kass MA, Gordon MO, Hoff MR, et al. Topical timolol administration reduces the incidence of glaucomatous damage in ocular hypertensive individuals. A randomized, double-masked, long-term clinical trial. Arch Ophthalmol. 1989;107(11):1590–8. doi: 10.1001/archopht.1989.01070020668025. PMID: 2818278. [PubMed: 2818278] [CrossRef]
44.
Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–13. doi: 10.1001/archopht.120.6.701. PMID: 12049574. [PubMed: 12049574] [CrossRef]
45.
Katz J, Tielsch JM, Quigley HA, et al. Automated suprathreshold screening for glaucoma: the Baltimore Eye Survey. Invest Ophthalmol Vis Sci. 1993;34(12):3271–7. PMID: 8225862. [PubMed: 8225862]
46.
Kaushik S, Kataria P, Jain V, et al. Evaluation of macular ganglion cell analysis compared to retinal nerve fiber layer thickness for preperimetric glaucoma diagnosis. Indian J Ophthalmol. 2018;66(4):511–6. doi: 10.4103/ijo.IJO_1039_17. PMID: 29582810. [PMC free article: PMC5892052] [PubMed: 29582810] [CrossRef]
47.
Kaushik S, Singh Pandav S, Ichhpujani P, et al. Retinal nerve fiber layer measurement and diagnostic capability of spectral-domain versus time-domain optical coherence tomography. Eur J Ophthalmol. 2011;21(5):566–72. doi: 10.5301/EJO.2011.6289. PMID: 21279977. [PubMed: 21279977] [CrossRef]
48.
Khouri AS, Serle JB, Bacharach J, et al. Once-daily netarsudil versus twice-daily timolol in patients with elevated intraocular pressure: the randomized phase 3 ROCKET-4 study. Am J Ophthalmol. 2019;204:97–104. doi: 10.1016/j.ajo.2019.03.002. PMID: 30862500. [PubMed: 30862500] [CrossRef]
49.
Kiddee W, Tantisarasart T, Wangsupadilok B. Performance of optical coherence tomography for distinguishing between normal eyes, glaucoma suspect and glaucomatous eyes. J Med Assoc Thai. 2013;96(6):689–95. PMID: 23951826. [PubMed: 23951826]
50.
Kim SY, Park HY, Park CK. The effects of peripapillary atrophy on the diagnostic ability of stratus and cirrus OCT in the analysis of optic nerve head parameters and disc size. Invest Ophthalmol Vis Sci. 2012;53(8):4475–84. doi: 10.1167/iovs.12-9682. PMID: 22618588. [PubMed: 22618588] [CrossRef]
51.
Koh V, Tham YC, Cheung CY, et al. Diagnostic accuracy of macular ganglion cell-inner plexiform layer thickness for glaucoma detection in a population-based study: comparison with optic nerve head imaging parameters. PLoS One. 2018;13(6):e0199134. doi: 10.1371/journal.pone.0199134. PMID: 29944673. [PMC free article: PMC6019751] [PubMed: 29944673] [CrossRef]
52.
Kozobolis VP, Detorakis ET, Tsilimbaris M, et al. Crete, Greece glaucoma study. J Glaucoma. 2000;9(2):143–9. doi: 10.1097/00061198-200004000-00003. PMID: 10782623. [PubMed: 10782623] [CrossRef]
53.
Lai JS, Chua JK, Tham CC, et al. Five-year follow up of selective laser trabeculoplasty in Chinese eyes. Clin Exp Ophthalmol. 2004;32(4):368–72. doi: 10.1111/j.1442-9071.2004.00839.x. PMID: 15281969. [PubMed: 15281969] [CrossRef]
54.
Lee KM, Lee EJ, Kim TW, et al. Comparison of the abilities of SD-OCT and SS-OCT in evaluating the thickness of the macular inner retinal layer for glaucoma diagnosis. PLoS One. 2016;11(1):e0147964. doi: 10.1371/journal.pone.0147964. PMID: 26812064. [PMC free article: PMC4727815] [PubMed: 26812064] [CrossRef]
55.
Lee WJ, Na KI, Kim YK, et al. Diagnostic ability of wide-field retinal nerve fiber layer maps using swept-source optical coherence tomography for detection of preperimetric and early perimetric glaucoma. J Glaucoma. 2017;26(6):577–85. doi: 10.1097/IJG.0000000000000662. PMID: 28368998. [PubMed: 28368998] [CrossRef]
56.
Lee WJ, Oh S, Kim YK, et al. Comparison of glaucoma-diagnostic ability between wide-field swept-source OCT retinal nerve fiber layer maps and spectral-domain OCT. Eye. 2018;32(9):1483–92. doi: 10.1038/s41433-018-0104-5. PMID: 29789659. [PMC free article: PMC6137103] [PubMed: 29789659] [CrossRef]
57.
Leibowitz HM, Krueger DE, Maunder LR, et al. The Framingham Eye Study monograph: an ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975. Surv Ophthalmol. 1980;24(Suppl):335–610. PMID: 7444756. [PubMed: 7444756]
58.
Liu S, Lam S, Weinreb RN, et al. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma. Invest Ophthalmol Vis Sci. 2011;52(10):7325–31. doi: 10.1167/iovs.11-7795. PMID: 21810975. [PubMed: 21810975] [CrossRef]
59.
Maa AY, Evans C, DeLaune WR, et al. A novel tele-eye protocol for ocular disease detection and access to eye care services. Telemed J E Health. 2014;20(4):318–23. doi: 10.1089/tmj.2013.0185. PMID: 24527668. [PubMed: 24527668] [CrossRef]
60.
Maa AY, McCord S, Lu X, et al. The impact of OCT on diagnostic accuracy of the technology-based eye care services protocol: Part II of the Technology-Based Eye Care Services Compare Trial. Ophthalmology. 2020;127(4):544–9. doi: 10.1016/j.ophtha.2019.10.025. PMID: 31791664. [PubMed: 31791664] [CrossRef]
61.
Maa AY, Medert CM, Lu X, et al. Diagnostic accuracy of technology-based eye care services: The Technology-Based Eye Care Services Compare Trial Part I. Ophthalmology. 2020;127(1):38–44. doi: 10.1016/j.ophtha.2019.07.026. PMID: 31522900. [PubMed: 31522900] [CrossRef]
62.
Marraffa M, Marchini G, Albertini R, et al. Comparison of different screening methods for the detection of visual field defects in early glaucoma. Int Ophthalmol. 1989;13(1–2):43–5. doi: 10.1007/bf02028636. PMID: 2744954. [PubMed: 2744954] [CrossRef]
63.
Medeiros FA, Martin KR, Peace J, et al. Comparison of latanoprostene bunod 0.024% and timolol maleate 0.5% in open-angle glaucoma or ocular hypertension: the LUNAR Study. Am J Ophthalmol. 2016;168:250–9. doi: 10.1016/j.ajo.2016.05.012. PMID: 27210275. [PubMed: 27210275] [CrossRef]
64.
Miglior S. Results of the European Glaucoma Prevention Study. Ophthalmology. 2005;112(3):366–75. doi: 10.1016/j.ophtha.2004.11.030. PMID: 15745761. [PubMed: 15745761] [CrossRef]
65.
Miglior S, Zeyen T, Pfeiffer N, et al. The European glaucoma prevention study design and baseline description of the participants. Ophthalmology. 2002;109(9):1612–21. doi: 10.1016/s0161-6420(02)01167-3. PMID: 12208707. [PubMed: 12208707] [CrossRef]
66.
Morejon A, Mayo-Iscar A, Martin R, et al. Development of a new algorithm based on FDT Matrix perimetry and SD-OCT to improve early glaucoma detection in primary care. Clin Ophthalmol. 2019;13:33–42. doi: 10.2147/OPTH.S177581. PMID: 30643378. [PMC free article: PMC6311325] [PubMed: 30643378] [CrossRef]
67.
Mundorf TK, Zimmerman TJ, Nardin GF, et al. Automated perimetry, tonometry, and questionnaire in glaucoma screening. Am J Ophthalmol. 1989;108(5):505–8. doi: 10.1016/0002-9394(89)90425-x. PMID: 2683793. [PubMed: 2683793] [CrossRef]
68.
Nagar M, Luhishi E, Shah N. Intraocular pressure control and fluctuation: the effect of treatment with selective laser trabeculoplasty. Br J Ophthalmol. 2009;93(4):497–501. doi: 10.1136/bjo.2008.148510. PMID: 19106150. [PubMed: 19106150] [CrossRef]
69.
Nagar M, Ogunyomade A, O’Brart DP, et al. A randomised, prospective study comparing selective laser trabeculoplasty with latanoprost for the control of intraocular pressure in ocular hypertension and open angle glaucoma. Br J Ophthalmol. 2005;89(11):1413–7. doi: 10.1136/bjo.2004.052795. PMID: 16234442. [PMC free article: PMC1772946] [PubMed: 16234442] [CrossRef]
70.
Park HY, Park CK. Structure-function relationship and diagnostic value of RNFL area Index compared with circumpapillary RNFL thickness by spectral-domain OCT. J Glaucoma. 2013;22(2):88–97. doi: 10.1097/IJG.0b013e318231202f. PMID: 23232911. [PubMed: 23232911] [CrossRef]
71.
Pazos M, Dyrda AA, Biarnes M, et al. Diagnostic accuracy of spectralis SD OCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes. Ophthalmology. 2017;124(8):1218–28. doi: 10.1016/j.ophtha.2017.03.044. PMID: 28461015. [PubMed: 28461015] [CrossRef]
72.
Radius RL. Use of betaxolol in the reduction of elevated intraocular pressure. Arch Ophthalmol. 1983;101(6):898–900. PMID: 6860201. [PubMed: 6860201]
73.
Rao HL, Yadav RK, Addepalli UK, et al. Comparing spectral-domain optical coherence tomography and standard automated perimetry to diagnose glaucomatous optic neuropathy. J Glaucoma. 2015;24(5):e69–74. doi: 10.1097/IJG.0000000000000048. PMID: 25144210. [PubMed: 25144210] [CrossRef]
74.
Ravalico G, Salvetat L, Toffoli G, et al. Ocular hypertension: a follow-up study in treated and untreated patients. New Trends in Ophthalmology. 1994;9(2):97–101.
75.
Sall K. The efficacy and safety of brinzolamide 1% ophthalmic suspension (Azopt) as a primary therapy in patients with open-angle glaucoma or ocular hypertension. Brinzolamide Primary Therapy Study Group. Surv Ophthalmol. 2000;44 Suppl 2:S155–62. doi: 10.1016/s0039-6257(99)00107-1. PMID: 10665518. [PubMed: 10665518] [CrossRef]
76.
Sarigul Sezenoz A, Gur Gungor S, Akman A, et al. The diagnostic ability of ganglion cell complex thickness-to-total retinal thickness ratio in glaucoma in a caucasian population. Turk J Ophthalmol. 2020;50(1):26–30. doi: 10.4274/tjo.galenos.2019.19577. PMID: 32167260. [PMC free article: PMC7086093] [PubMed: 32167260] [CrossRef]
77.
Schulzer M, Drance SM, Douglas GR. A comparison of treated and untreated glaucoma suspects. Ophthalmology. 1991;98(3):301–7. doi: 10.1016/s0161-6420(91)32296-6. PMID: 2023749. [PubMed: 2023749] [CrossRef]
78.
Schwartz B, Lavin P, Takamoto T, et al. Decrease of optic disc cupping and pallor of ocular hypertensives with timolol therapy. Acta Ophthalmol Scand Suppl. 1995 (215):5–21. doi: 10.1111/j.1600-0420.1995.tb00588.x. PMID: 8846250. [PubMed: 8846250] [CrossRef]
79.
Schweitzer C, Korobelnik JF, Le Goff M, et al. Diagnostic performance of peripapillary retinal nerve fiber layer thickness for detection of glaucoma in an elderly population: the ALIENOR Study. Invest Ophthalmol Vis Sci. 2016;57(14):5882–91. doi: 10.1167/iovs.16-20104. PMID: 27802518. [PubMed: 27802518] [CrossRef]
80.
Serle JB, Katz LJ, McLaurin E, et al. Two phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure: rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol. 2018;186:116–27. doi: 10.1016/j.ajo.2017.11.019. PMID: 29199013. [PubMed: 29199013] [CrossRef]
81.
Soh ZD, Chee ML, Thakur S, et al. Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: an evidence-based recommendation from a multi-ethnic Asian population. Clin Exp Ophthalmol. 2020;48(9):1210–8. doi: 10.1111/ceo.13836. PMID: 32734654. [PubMed: 32734654] [CrossRef]
82.
Sung KR, Kim DY, Park SB, et al. Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology. 2009;116(7):1264–70, 70.e1. doi: 10.1016/j.ophtha.2008.12.045. PMID: 19427696. [PubMed: 19427696] [CrossRef]
83.
Swamy B, Cumming RG, Ivers R, et al. Vision screening for frail older people: a randomised trial. Br J Ophthalmol. 2009;93(6):736–41. doi: 10.1136/bjo.2007.134650. PMID: 18614568. [PubMed: 18614568] [CrossRef]
84.
Tielsch JM, Katz J, Singh K, et al. A population-based evaluation of glaucoma screening: the Baltimore Eye Survey. Am J Epidemiol. 1991;134(10):1102–10. doi: 10.1093/oxfordjournals.aje.a116013. PMID: 1746520. [PubMed: 1746520] [CrossRef]
85.
Toris CB, Camras CB, Yablonski ME. Acute versus chronic effects of brimonidine on aqueous humor dynamics in ocular hypertensive patients. Am J Ophthalmol. 1999;128(1):8–14. PMID: 10482088. [PubMed: 10482088]
86.
Varma R, Ying-Lai M, Francis BA, et al. Prevalence of open-angle glaucoma and ocular hypertension in Latinos: the Los Angeles Latino Eye Study. Ophthalmology. 2004;111(8):1439–48. doi: 10.1016/j.ophtha.2004.01.025. PMID: 15288969. [PubMed: 15288969] [CrossRef]
87.
Vernon SA, Henry DJ, Cater L, et al. Screening for glaucoma in the community by non-ophthalmologically trained staff using semi automated equipment. Eye. 1990;4(Pt 1):89–97. PMID: 2182352. [PubMed: 2182352]
88.
Vidas S, Popovic-Suic S, Novak Laus K, et al. Analysis of ganglion cell complex and retinal nerve fiber layer thickness in glaucoma diagnosis. Acta Clinica Croatica. 2017;56(3):382–90. doi: 10.20471/acc.2017.56.03.04. PMID: 29479903. [PubMed: 29479903] [CrossRef]
89.
Virgili G, Michelessi M, Cook J, et al. Diagnostic accuracy of optical coherence tomography for diagnosing glaucoma: secondary analyses of the GATE study. Br J Ophthalmol. 2018;102(5):604–10. doi: 10.1136/bjophthalmol-2017-310642. PMID: 28855198. [PubMed: 28855198] [CrossRef]
90.
Wahl J, Barleon L, Morfeld P, et al. The Evonik-Mainz Eye Care-Study (EMECS): development of an expert system for glaucoma risk detection in a working population. PLoS One. 2016;11(8):e0158824. doi: 10.1371/journal.pone.0158824. PMID: 27479301. [PMC free article: PMC4968826] [PubMed: 27479301] [CrossRef]
91.
Weinreb RN, Liebmann JM, Martin KR, et al. Latanoprostene bunod 0.024% in subjects with open-angle glaucoma or ocular hypertension: pooled phase 3 study findings. J Glaucoma. 2018;27(1):7–15. doi: 10.1097/ijg.0000000000000831. PMID: 29194198. [PMC free article: PMC7654727] [PubMed: 29194198] [CrossRef]
92.
Weinreb RN, Ong T, Scassellati Sforzolini B, et al. A randomised, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: the VOYAGER study. Br J Ophthalmol. 2015;99(6):738–45. doi: 10.1136/bjophthalmol-2014-305908. PMID: 25488946. [PMC free article: PMC4453588] [PubMed: 25488946] [CrossRef]
93.
Weinreb RN, Scassellati Sforzolini B, Vittitow J, et al. Latanoprostene bunod 0.024% versus timolol maleate 0.5% in subjects with open-angle glaucoma or ocular hypertension: the APOLLO Study. Ophthalmology. 2016;123(5):965–73. doi: 10.1016/j.ophtha.2016.01.019. PMID: 26875002. [PubMed: 26875002] [CrossRef]
94.
Wilkerson M, Cyrlin M, Lippa EA, et al. Four-week safety and efficacy study of dorzolamide, a novel, active topical carbonic anhydrase inhibitor. Arch Ophthalmol. 1993;111(10):1343–50. PMID: 8216014. [PubMed: 8216014]
95.
Wishart PK, Batterbury M. Ocular hypertension: correlation of anterior chamber angle width and risk of progression to glaucoma. Eye (Lond). 1992;6 ( Pt 3):248–56. doi: 10.1038/eye.1992.48. PMID: 1446756. [PubMed: 1446756] [CrossRef]
96.
Xu X, Xiao H, Guo X, et al. Diagnostic ability of macular ganglion cell-inner plexiform layer thickness in glaucoma suspects. Medicine. 2017;96(51):e9182. doi: 10.1097/MD.0000000000009182. PMID: 29390457. [PMC free article: PMC5758159] [PubMed: 29390457] [CrossRef]

Appendix A5. Excluded Studies

1.
Abdel-Hamid L. Glaucoma detection from retinal images using statistical and textural wavelet features. J Digit Imaging. 2020;33(1):151–8. doi: 10.1007/s10278-019-00189-0. PMID: 30756264. Excluded for wrong study design for key question. [PMC free article: PMC7064658] [PubMed: 30756264] [CrossRef]
2.
Abrams LS, Scott IU, Spaeth GL, et al. Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma. Ophthalmology. 1994;101(10):1662–7. doi: 10.1016/s0161-6420(94)31118-3. PMID: 7936564. Excluded for wrong intervention. [PubMed: 7936564] [CrossRef]
3.
Acharya UR, Bhat S, Koh JEW, et al. A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images. Comput Biol Med. 2017;88:72–83. doi: 10.1016/j.compbiomed.2017.06.022. PMID: 28700902. Excluded for wrong study design for key question. [PubMed: 28700902] [CrossRef]
4.
Acharya UR, Dua S, Du X, et al. Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Trans Inf Technol Biomed. 2011;15(3):449–55. doi: 10.1109/TITB.2011.2119322. PMID: 21349793. Excluded for results not usable or not fully reported. [PubMed: 21349793] [CrossRef]
5.
Acharya UR, Mookiah MR, Koh JE, et al. Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index. Comput Biol Med. 2016;75:54–62. doi: 10.1016/j.compbiomed.2016.04.015. PMID: 27253617. Excluded for wrong study design for key question. [PubMed: 27253617] [CrossRef]
6.
AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 11. Risk factors for failure of trabeculectomy and argon laser trabeculoplasty. Am J Ophthalmol. 2002;134(4):481–98. doi: 10.1016/s0002-9394(02)01658-6. PMID: 12383805. Excluded for wrong comparator. [PubMed: 12383805] [CrossRef]
7.
Ahmed R, Petrany S, Fry R, et al. Screening diabetic and hypertensive patients for ocular pathology using telemedicine technology in rural West Virginia: a retrospective chart review. W V Med J. 2013;109(1):6–10. PMID: 23413540. Excluded for results not usable or not fully reported. [PubMed: 23413540]
8.
Ahmed S, Khan Z, Si F, et al. Correction: summary of glaucoma diagnostic testing accuracy: an evidence-based meta-analysis. J Clin Med Res. 2017;9(3):231. doi: 10.14740/jocmr2643wc1. PMID: 28179974. Excluded for not a study. [PMC free article: PMC5289146] [PubMed: 28179974] [CrossRef]
9.
Ahmed S, Khan Z, Si F, et al. Summary of glaucoma diagnostic testing accuracy: an evidence-based meta-analysis. J Clin Med Res. 2016;8(9):641–9. doi: 10.14740/jocmr2643w. PMID: 27540437. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC4974833] [PubMed: 27540437] [CrossRef]
10.
Ahn JM, Kim S, Ahn KS, et al. A deep learning model for the detection of both advanced and early glaucoma using fundus photography. PLoS One. 2018;13(11):e0207982. doi: 10.1371/journal.pone.0207982. PMID: 30481205. Excluded for wrong study design for key question. [PMC free article: PMC6258525] [PubMed: 30481205] [CrossRef]
11.
Aihara M, Lu F, Kawata H, et al. Omidenepag isopropyl versus latanoprost in primary open-angle glaucoma and ocular hypertension: the Phase 3 AYAME Study. Am J Ophthalmol. 2020;220:53–63. doi: 10.1016/j.ajo.2020.06.003. PMID: 32533949. Excluded for wrong intervention. [PubMed: 32533949] [CrossRef]
12.
Aihara M, Shirato S, Sakata R. Incidence of deepening of the upper eyelid sulcus after switching from latanoprost to bimatoprost. Jpn J Ophthalmol. 2011;55(6):600–4. doi: 10.1007/s10384-011-0075-6. PMID: 21953485. Excluded for wrong study design for key question. [PubMed: 21953485] [CrossRef]
13.
Airaksinen PJ, Drance SM, Douglas GR, et al. Diffuse and localized nerve fiber loss in glaucoma. Am J Ophthalmol. 1984;98(5):566–71. doi: 10.1016/0002-9394(84)90242-3. PMID: 6496612. Excluded for wrong study design for key question. [PubMed: 6496612] [CrossRef]
14.
Akashi A, Kanamori A, Nakamura M, et al. Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma. Invest Ophthalmol Vis Sci. 2013;54(7):4478–84. doi: 10.1167/iovs.12-11268. PMID: 23737470. Excluded for wrong study design for key question. [PubMed: 23737470] [CrossRef]
15.
Al-Akhras M, Barakat A, Alawairdhi M, et al. Using soft computing techniques to diagnose glaucoma disease. J Infect Public Health. 2021;14(1):109–16. doi: 10.1016/j.jiph.2019.09.005. PMID: 31668615. Excluded for wrong study design for key question. [PubMed: 31668615] [CrossRef]
16.
Al-Aswad LA, Kapoor R, Chu CK, et al. Evaluation of a deep learning system for identifying glaucomatous optic neuropathy based on color fundus photographs. J Glaucoma. 2019;28(12):1029–34. doi: 10.1097/IJG.0000000000001319. PMID: 31233461. Excluded for wrong study design for key question. [PubMed: 31233461] [CrossRef]
17.
Alencar LM, Zangwill LM, Weinreb RN, et al. Agreement for detecting glaucoma progression with the GDx guided progression analysis, automated perimetry, and optic disc photography. Ophthalmology. 2010;117(3):462–70. doi: 10.1016/j.ophtha.2009.08.012. PMID: 20036010. Excluded for wrong outcome. [PMC free article: PMC2830299] [PubMed: 20036010] [CrossRef]
18.
Alexander DW, Berson FG, Epstein DL. A clinical trial of timolol and epinephrine in the treatment of primary open-angle glaucoma. Ophthalmology. 1988;95(2):247–51. doi: 10.1016/s0161-6420(88)33205-7. PMID: 3050678. Excluded for wrong comparator. [PubMed: 3050678] [CrossRef]
19.
Allaire C, Dietrich A, Allmeier H, et al. Latanoprost 0.005% test formulation is as effective as Xalatan in patients with ocular hypertension and primary open-angle glaucoma. Eur J Ophthalmol. 2012;22(1):19–27. doi: 10.5301/ejo.5000041. PMID: 22167539. Excluded for wrong comparator. [PubMed: 22167539] [CrossRef]
20.
Alm A, Schoenfelder J, McDermott J. A 5-year, multicenter, open-label, safety study of adjunctive latanoprost therapy for glaucoma. Arch Ophthalmol. 2004;122(7):957–65. doi: 10.1001/archopht.122.7.957. PMID: 15249358. Excluded for wrong intervention. [PubMed: 15249358] [CrossRef]
21.
Alnawaiseh M, Lahme L, Muller V, et al. Correlation of flow density, as measured using optical coherence tomography angiography, with structural and functional parameters in glaucoma patients. Graefes Arch Clin Exp Ophthalmol. 2018;256(3):589–97. doi: 10.1007/s00417-017-3865-9. PMID: 29332249. Excluded for wrong study design for key question. [PubMed: 29332249] [CrossRef]
22.
Aloudat M, Faezipour M, El-Sayed A. Automated vision-based high intraocular pressure detection using frontal eye images. IEEE J Transl Eng Health Med. 2019;7:3800113. doi: 10.1109/JTEHM.2019.2915534. PMID: 31281740. Excluded for wrong study design for key question. [PMC free article: PMC6537927] [PubMed: 31281740] [CrossRef]
23.
Altangerel U, Spaeth GL, Steinmann WC. Assessment of function related to vision (AFREV). Ophthalmic Epidemiol. 2006;13(1):67–80. doi: 10.1080/09286580500428500. PMID: 16510349. Excluded for wrong outcome. [PubMed: 16510349] [CrossRef]
24.
An G, Omodaka K, Hashimoto K, et al. Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images. J Healthc Eng. 2019;2019:4061313. doi: 10.1155/2019/4061313. PMID: 30911364. Excluded for wrong population. [PMC free article: PMC6397963] [PubMed: 30911364] [CrossRef]
25.
An G, Omodaka K, Tsuda S, et al. Comparison of machine-learning classification models for glaucoma management. J Healthc Eng. 2018;2018:6874765. doi: 10.1155/2018/6874765. PMID: 30018755. Excluded for wrong study design for key question. [PMC free article: PMC6029465] [PubMed: 30018755] [CrossRef]
26.
Ang GS, Fenwick EK, Constantinou M, et al. Selective laser trabeculoplasty versus topical medication as initial glaucoma treatment: the glaucoma initial treatment study randomised clinical trial. Br J Ophthalmol. 2020;104(6):813–21. doi: 10.1136/bjophthalmol-2018-313396. PMID: 31488427. Excluded for wrong population. [PubMed: 31488427] [CrossRef]
27.
Angmo D, Bhartiya S, Mishra SK, et al. Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements. Nepal J Ophthalmol. 2014;6(2):185–91. doi: 10.3126/nepjoph.v6i2.11692. PMID: 25680249. Excluded for wrong study design for key question. [PubMed: 25680249] [CrossRef]
28.
Annoh R, Loo CY, Hogan B, et al. Accuracy of detection of patients with narrow angles by community optometrists in Scotland. Ophthalmic Physiol Opt. 2019;39(2):104–12. doi: 10.1111/opo.12601. PMID: 30600544. Excluded for wrong comparator. [PubMed: 30600544] [CrossRef]
29.
Anton A, Andrada MT, Mujica V, et al. Prevalence of primary open-angle glaucoma in a Spanish population: the Segovia study. J Glaucoma. 2004;13(5):371–6. doi: 10.1097/01.ijg.0000133385.74502.29. PMID: 15354074. Excluded for wrong outcome. [PubMed: 15354074] [CrossRef]
30.
Anton A, Fallon M, Cots F, et al. Cost and detection rate of glaucoma screening with imaging devices in a primary care center. Clin Ophthalmol. 2017;11:337–46. doi: 10.2147/OPTH.S120398. PMID: 28243057. Excluded for wrong comparator. [PMC free article: PMC5317344] [PubMed: 28243057] [CrossRef]
31.
Antón A, Maquet JA, Mayo A, et al. Value of logistic discriminant analysis for interpreting initial visual field defects. Ophthalmology. 1997;104(3):525–31. doi: 10.1016/s0161-6420(97)30280-2. PMID: 9082284. Excluded for wrong study design for key question. [PubMed: 9082284] [CrossRef]
32.
Aptel F, Cucherat M, Denis P. Efficacy and tolerability of prostaglandin analogs: a meta-analysis of randomized controlled clinical trials. J Glaucoma. 2008;17(8):667–73. doi: 10.1097/IJG.0b013e3181666557. Excluded for wrong comparator. [PubMed: 19092464] [CrossRef]
33.
Ara M, Ferreras A, Pajarin AB, et al. Repeatability and reproducibility of retinal nerve fiber layer parameters measured by scanning laser polarimetry with enhanced corneal compensation in normal and glaucomatous eyes. Biomed Res Int. 2015;2015:729392. doi: 10.1155/2015/729392. PMID: 26185762. Excluded for wrong study design for key question. [PMC free article: PMC4491554] [PubMed: 26185762] [CrossRef]
34.
Aref AA, Sayyad FE, Mwanza JC, et al. Diagnostic specificities of retinal nerve fiber layer, optic nerve head, and macular ganglion cell-inner plexiform layer measurements in myopic eyes. J Glaucoma. 2014;23(8):487–93. doi: 10.1097/IJG.0b013e31827b155b. PMID: 23221911. Excluded for wrong study design for key question. [PMC free article: PMC3986352] [PubMed: 23221911] [CrossRef]
35.
Arifoglu HB, Simavli H, Midillioglu I, et al. Comparison of ganglion cell and retinal nerve fiber layer thickness in pigment dispersion syndrome, pigmentary glaucoma, and healthy subjects with spectral-domain OCT. Semin Ophthalmol. 2017;32(2):204–9. PMID: 26291741. Excluded for wrong study design for key question. [PubMed: 26291741]
36.
Arora S, Rudnisky CJ, Damji KF. Improved access and cycle time with an “in-house” patient-centered teleglaucoma program versus traditional in-person assessment. Telemed J E Health. 2014;20(5):439–45. doi: 10.1089/tmj.2013.0241. PMID: 24568152. Excluded for wrong outcome. [PubMed: 24568152] [CrossRef]
37.
Asano S, Asaoka R, Murata H, et al. Predicting the central 10 degrees visual field in glaucoma by applying a deep learning algorithm to optical coherence tomography images. Sci Rep. 2021;11(1):2214. doi: 10.1038/s41598-020-79494-6. PMID: 33500462. Excluded for wrong outcome. [PMC free article: PMC7838164] [PubMed: 33500462] [CrossRef]
38.
Asaoka R, Hirasawa K, Iwase A, et al. Validating the usefulness of the “random forests” classifier to diagnose early glaucoma with optical coherence tomography. Am J Ophthalmol. 2017;174:95–103. doi: 10.1016/j.ajo.2016.11.001. PMID: 27836484. Excluded for wrong study design for key question. [PubMed: 27836484] [CrossRef]
39.
Asaoka R, Iwase A, Hirasawa K, et al. Identifying “preperimetric” glaucoma in standard automated perimetry visual fields. Invest Ophthalmol Vis Sci. 2014;55(12):7814–20. doi: 10.1167/iovs.14-15120. PMID: 25342615. Excluded for wrong study design for key question. [PubMed: 25342615] [CrossRef]
40.
Asaoka R, Murata H, Hirasawa K, et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images. Am J Ophthalmol. 2019;198:136–45. doi: 10.1016/j.ajo.2018.10.007. PMID: 30316669. Excluded for wrong study design for key question. [PubMed: 30316669] [CrossRef]
41.
Asaoka R, Murata H, Iwase A, et al. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology. 2016;123(9):1974–80. doi: 10.1016/j.ophtha.2016.05.029. PMID: 27395766. Excluded for wrong study design for key question. [PubMed: 27395766] [CrossRef]
42.
Aspberg J, Heijl A, Johannesson G, et al. Intraocular pressure lowering effect of latanoprost as first-line treatment for glaucoma. J Glaucoma. 2018;27(11):976–80. doi: 10.1097/IJG.0000000000001055. PMID: 30113517. Excluded for results not usable or not fully reported. [PubMed: 30113517] [CrossRef]
43.
Ayaki M, Tsuneyoshi Y, Yuki K, et al. Latanoprost could exacerbate the progression of presbyopia. PLoS One. 2019;14(1):e0211631. doi: 10.1371/journal.pone.0211631. PMID: 30703139. Excluded for wrong study design for key question. [PMC free article: PMC6355011] [PubMed: 30703139] [CrossRef]
44.
Ayala M, Chen E. Long-term outcomes of selective laser trabeculoplasty (SLT) treatment. Open Ophthalmol J. 2011;5:32–4. doi: 10.2174/1874364101105010032. PMID: 21643427. Excluded for wrong outcome. [PMC free article: PMC3104562] [PubMed: 21643427] [CrossRef]
45.
Aydogan T, Akcay BIS, Kardes E, et al. Evaluation of spectral domain optical coherence tomography parameters in ocular hypertension, preperimetric, and early glaucoma. Indian J Ophthalmol. 2017;65(11):1143–50. doi: 10.4103/ijo.IJO_157_17. PMID: 29133640. Excluded for wrong study design for key question. [PMC free article: PMC5700582] [PubMed: 29133640] [CrossRef]
46.
Azuma I, Masuda K, Kitazawa Y, et al. Double-masked comparative study of UF-021 and timolol ophthalmic solutions in patients with primary open-angle glaucoma or ocular hypertension. Jpn J Ophthalmol. 1993;37(4):514–25. PMID: 8145398. Excluded for wrong comparator. [PubMed: 8145398]
47.
Bacharach J, Dubiner HB, Levy B, et al. Double-masked, randomized, dose-response study of AR-13324 versus latanoprost in patients with elevated intraocular pressure. Ophthalmology. 2015;122(2):302–7. doi: 10.1016/j.ophtha.2014.08.022. PMID: 25270273. Excluded for wrong comparator. [PubMed: 25270273] [CrossRef]
48.
Badala F, Nouri-Mahdavi K, Raoof DA, et al. Optic disk and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol. 2007;144(5):724–32. doi: 10.1016/j.ajo.2007.07.010. PMID: 17868631. Excluded for wrong study design for key question. [PMC free article: PMC2098694] [PubMed: 17868631] [CrossRef]
49.
Bajwa MN, Malik MI, Siddiqui SA, et al. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Med Inform Decis Mak. 2019;19(1):136. doi: 10.1186/s12911-019-0842-8. PMID: 31315618. Excluded for wrong study design for key question. [PMC free article: PMC6637616] [PubMed: 31315618] [CrossRef]
50.
Balasubramanian K, Ananthamoorthy NP. Analysis of hybrid statistical textural and intensity features to discriminate retinal abnormalities through classifiers. Proc Inst Mech Eng H. 2019;233(5):506–14. doi: 10.1177/0954411919835856. PMID: 30894077. Excluded for wrong study design for key question. [PubMed: 30894077] [CrossRef]
51.
Bambo MP, Cameo B, Hernandez R, et al. Diagnostic ability of inner macular layers to discriminate early glaucomatous eyes using vertical and horizontal B-scan posterior pole protocols. PLoS One. 2018;13(6):e0198397. doi: 10.1371/journal.pone.0198397. PMID: 29879152. Excluded for wrong study design for key question. [PMC free article: PMC5991695] [PubMed: 29879152] [CrossRef]
52.
Bambo MP, Fuentemilla E, Cameo B, et al. Diagnostic capability of a linear discriminant function applied to a novel Spectralis OCT glaucoma-detection protocol. BMC Ophthalmol. 2020;20(1):35. doi: 10.1186/s12886-020-1322-8. PMID: 31996159. Excluded for wrong study design for key question. [PMC free article: PMC6988215] [PubMed: 31996159] [CrossRef]
53.
Bamdad S, Beigi V, Sedaghat MR. Sensitivity and specificity of Swedish interactive threshold algorithm and standard full threshold perimetry in primary open-angle glaucoma. Med Hypothesis Discov Innov Ophthalmol. 2017;6(4):125–9. PMID: 29560366. Excluded for wrong study design for key question. [PMC free article: PMC5847307] [PubMed: 29560366]
54.
Baniasadi N, Wang M, Wang H, et al. Ametropia, retinal anatomy, and OCT abnormality patterns in glaucoma. 2. Impacts of optic nerve head parameters. J Biomed Opt. 2017;22(12):1–9. doi: 10.1117/1.JBO.22.12.121714. PMID: 29256238. Excluded for wrong study design for key question. [PMC free article: PMC5745646] [PubMed: 29256238] [CrossRef]
55.
Barella KA, Costa VP, Goncalves Vidotti V, et al. Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT. J Ophthalmol. 2013;2013:789129. doi: 10.1155/2013/789129. PMID: 24369495. Excluded for wrong study design for key question. [PMC free article: PMC3863536] [PubMed: 24369495] [CrossRef]
56.
Baril C, Vianna JR, Shuba LM, et al. Rates of glaucomatous visual field change after trabeculectomy. Br J Ophthalmol. 2017;101(7):874–8. doi: 10.1136/bjophthalmol-2016-308948. PMID: 27811280. Excluded for wrong intervention. [PubMed: 27811280] [CrossRef]
57.
Barnett EM, Fantin A, Wilson BS, et al. The incidence of retinal vein occlusion in the ocular hypertension treatment study. Ophthalmology. 2010;117(3):484–8. doi: 10.1016/j.ophtha.2009.08.022. PMID: 20031222. Excluded for wrong study design for key question. [PMC free article: PMC3077045] [PubMed: 20031222] [CrossRef]
58.
Bartnik SE, Copeland SP, Aicken AJ, et al. Optometry-facilitated teleophthalmology: an audit of the first year in western Australia. Clin Exp Optom. 2018;101(5):700–3. doi: 10.1111/cxo.12658. PMID: 29444552. Excluded for wrong outcome. [PubMed: 29444552] [CrossRef]
59.
Barua N, Sitaraman C, Goel S, et al. Comparison of diagnostic capability of macular ganglion cell complex and retinal nerve fiber layer among primary open angle glaucoma, ocular hypertension, and normal population using fourier-domain optical coherence tomography and determining their functional correlation in Indian population. Indian J Ophthalmol. 2016;64(4):296–302. doi: 10.4103/0301-4738.182941. PMID: 27221682. Excluded for wrong study design for key question. [PMC free article: PMC4901848] [PubMed: 27221682] [CrossRef]
60.
Beato J, Pedrosa AC, Pinheiro-Costa J, et al. Long-term effect of anti-VEGF agents on intraocular pressure in age-related macular degeneration. Ophthalmic Res. 2016;56(1):30–4. doi: 10.1159/000444395. PMID: 27046391. Excluded for wrong comparator. [PubMed: 27046391] [CrossRef]
61.
Begum VU, Addepalli UK, Senthil S, et al. Optic nerve head parameters of high-definition optical coherence tomography and Heidelberg retina tomogram in perimetric and preperimetric glaucoma. Indian J Ophthalmol. 2016;64(4):277–84. doi: 10.4103/0301-4738.182938. PMID: 27221679. Excluded for wrong study design for key question. [PMC free article: PMC4901845] [PubMed: 27221679] [CrossRef]
62.
Begum VU, Addepalli UK, Yadav RK, et al. Ganglion cell-inner plexiform layer thickness of high definition optical coherence tomography in perimetric and preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2014;55(8):4768–75. doi: 10.1167/iovs.14-14598. PMID: 25015361. Excluded for wrong study design for key question. [PubMed: 25015361] [CrossRef]
63.
Belfort R, Jr., Paula JS, Lopes Silva MJ, et al. Fixed-combination bimatoprost/brimonidine/timolol in glaucoma: a randomized, masked, controlled, phase III study conducted in Brazil. Clin Ther. 2020;42(2):263–75. doi: 10.1016/j.clinthera.2019.12.008. PMID: 32089329. Excluded for wrong intervention. [PubMed: 32089329] [CrossRef]
64.
Bell RW, O’Brien C. Accuracy of referral to a glaucoma clinic. Ophthalmic Physiol Opt. 1997;17(1):7–11. PMID: 9135806. Excluded for results not usable or not fully reported. [PubMed: 9135806]
65.
Bell RW, O’Brien C. The diagnostic outcome of new glaucoma referrals. Ophthalmic Physiol Opt. 1997;17(1):3–6. PMID: 9135805. Excluded for results not usable or not fully reported. [PubMed: 9135805]
66.
Bengtsson B. Findings associated with glaucomatous visual field defects. Acta Ophthalmol (Copenh). 1980;58(1):20–32. doi: 10.1111/j.1755-3768.1980.tb04561.x. PMID: 7405563. Excluded for results not usable or not fully reported. [PubMed: 7405563] [CrossRef]
67.
Bengtsson B, Andersson S, Heijl A. Performance of time-domain and spectral-domain optical coherence tomography for glaucoma screening. Acta Ophthalmol. 2012;90(4):310–5. doi: 10.1111/j.1755-3768.2010.01977.x. PMID: 20946342. Excluded for wrong outcome. [PMC free article: PMC3440591] [PubMed: 20946342] [CrossRef]
68.
Bengtsson B, Heijl A. Lack of visual field improvement after initiation of intraocular pressure reducing treatment in the early manifest glaucoma trial. Invest Ophthalmol Vis Sci. 2016;57(13):5611–5. doi: 10.1167/iovs.16-19389. PMID: 27768797. Excluded for wrong intervention. [PMC free article: PMC5080937] [PubMed: 27768797] [CrossRef]
69.
Benitez-del-Castillo J, Martinez A, Regi T. Diagnostic capability of scanning laser polarimetry with and without enhanced corneal compensation and optical coherence tomography. Eur J Ophthalmol. 2011;21(3):228–36. doi: 10.5301/EJO.2010.5586. PMID: 20872357. Excluded for wrong study design for key question. [PubMed: 20872357] [CrossRef]
70.
Bergeå B, Bodin L, Svedbergh B. Primary argon laser trabeculoplasty vs pilocarpine. II: Long-term effects on intraocular pressure and facility of outflow. Study design and additional therapy. Acta Ophthalmol (Copenh). 1994;72(2):145–54. doi: 10.1111/j.1755-3768.1994.tb05008.x. PMID: 8079617. Excluded for wrong intervention. [PubMed: 8079617] [CrossRef]
71.
Bergea B, Svedbergh B. Primary argon laser trabeculoplasty vs. pilocarpine. Short-term effects. Acta Ophthalmol (Copenh). 1992;70(4):454–60. doi: 10.1111/j.1755-3768.1992.tb02114.x. PMID: 1414289. Excluded for wrong intervention. [PubMed: 1414289] [CrossRef]
72.
Berry DP, Jr., Van Buskirk EM, Shields MB. Betaxolol and timolol. A comparison of efficacy and side effects. Arch Ophthalmol. 1984;102(1):42–5. doi: 10.1001/archopht.1984.01040030026028. PMID: 6367723. Excluded for wrong comparator. [PubMed: 6367723] [CrossRef]
73.
Berson FG, Cohen HB, Foerster RJ, et al. Levobunolol compared with timolol for the long-term control of elevated intraocular pressure. Arch Ophthalmol. 1985;103(3):379–82. doi: 10.1001/archopht.1985.01050030075025. PMID: 3883972. Excluded for wrong comparator. [PubMed: 3883972] [CrossRef]
74.
Bertuzzi F, Benatti E, Esempio G, et al. Evaluation of retinal nerve fiber layer thickness measurements for glaucoma detection: GDx ECC versus spectral-domain OCT. J Glaucoma. 2014;23(4):232–9. doi: 10.1097/IJG.0b013e3182741afc. PMID: 23970337. Excluded for wrong study design for key question. [PubMed: 23970337] [CrossRef]
75.
Bhagat P, Sodimalla K, Paul C, et al. Efficacy and safety of benzalkonium chloride-free fixed-dose combination of latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Clin Ophthalmol. 2014;8:1241–52. doi: 10.2147/OPTH.S64584. PMID: 25061271. Excluded for wrong comparator. [PMC free article: PMC4085316] [PubMed: 25061271] [CrossRef]
76.
Billy A, David PE, Mahabir AK, et al. Utility of the tono-pen in measuring intraocular pressure in Trinidad: a cross-sectional study. West Indian Med J. 2015;64(4):367–71. doi: 10.7727/wimj.2014.125. PMID: 26624589. Excluded for wrong intervention. [PMC free article: PMC4909069] [PubMed: 26624589] [CrossRef]
77.
Binibrahim IH, Bergstrom AK. The role of trabeculectomy in enhancing glaucoma patient’s quality of life. Oman J Ophthalmol. 2017;10(3):150–4. doi: 10.4103/ojo.OJO_61_2016. PMID: 29118488. Excluded for wrong intervention. [PMC free article: PMC5657155] [PubMed: 29118488] [CrossRef]
78.
Bizios D, Heijl A, Bengtsson B. Integration and fusion of standard automated perimetry and optical coherence tomography data for improved automated glaucoma diagnostics. BMC Ophthalmol. 2011;11:20. doi: 10.1186/1471-2415-11-20. PMID: 21816080. Excluded for wrong study design for key question. [PMC free article: PMC3167760] [PubMed: 21816080] [CrossRef]
79.
Blumberg DM, Vaswani R, Nong E, et al. A comparative effectiveness analysis of visual field outcomes after projected glaucoma screening using SD-OCT in African American communities. Invest Ophthalmol Vis Sci. 2014;55(6):3491–500. doi: 10.1167/iovs.14-14014. PMID: 24787570. Excluded for wrong study design for key question. [PMC free article: PMC4073998] [PubMed: 24787570] [CrossRef]
80.
Blyth CP, Moriarty AP, McHugh JD. Diode laser trabeculoplasty versus argon laser trabeculoplasty in the control of primary open angle glaucoma. Lasers Med Sci. 1999;14(2):105–8. doi: 10.1007/s101030050030. PMID: 24519164. Excluded for wrong comparator. [PubMed: 24519164] [CrossRef]
81.
Boland MV, Gupta P, Ko F, et al. Evaluation of frequency-doubling technology perimetry as a means of screening for glaucoma and other eye diseases using The National Health and Nutrition Examination Survey. JAMA Ophthalmol. 2016;134(1):57–62. doi: 10.1001/jamaophthalmol.2015.4459. PMID: 26562502. Excluded for wrong intervention. [PubMed: 26562502] [CrossRef]
82.
Bonomi L, Marchini G, Marraffa M, et al. Prevalence of glaucoma and intraocular pressure distribution in a defined population. The Egna-Neumarkt Study. Ophthalmology. 1998;105(2):209–15. doi: 10.1016/s0161-6420(98)92665-3. PMID: 9479277. Excluded for wrong population. [PubMed: 9479277] [CrossRef]
83.
Boodhna T, Crabb DP. More frequent, more costly? Health economic modelling aspects of monitoring glaucoma patients in England. BMC Health Serv Res. 2016;16(1):611. PMID: 27770792. Excluded for wrong outcome. [PMC free article: PMC5075403] [PubMed: 27770792]
84.
Bouacheria M, Cherfa Y, Cherfa A, et al. Automatic glaucoma screening using optic nerve head measurements and random forest classifier on fundus images. Phys Eng Sci Med. 2020;43(4):1265–77. doi: 10.1007/s13246-020-00930-y. PMID: 32986219. Excluded for wrong intervention. [PubMed: 32986219] [CrossRef]
85.
Bowd C, Belghith A, Proudfoot JA, et al. Gradient-boosting classifiers combining vessel density and tissue thickness measurements for classifying early to moderate glaucoma. Am J Ophthalmol. 2020;217:131–9. doi: 10.1016/j.ajo.2020.03.024. PMID: 32222368. Excluded for wrong study design for key question. [PMC free article: PMC7492367] [PubMed: 32222368] [CrossRef]
86.
Bowling B, Chen SD, Salmon JF. Outcomes of referrals by community optometrists to a hospital glaucoma service. Br J Ophthalmol. 2005;89(9):1102–4. PMID: 16113358. Excluded for wrong comparator. [PMC free article: PMC1772809] [PubMed: 16113358]
87.
Bozkurt B, Irkec M, Arslan U. Diagnostic accuracy of Heidelberg retina tomograph III classifications in a Turkish primary open-angle glaucoma population. Acta Ophthalmol. 2010;88(1):125–30. doi: 10.1111/j.1755-3768.2009.01591.x. PMID: 19681791. Excluded for wrong study design for key question. [PubMed: 19681791] [CrossRef]
88.
Brancato R, Carassa R, Trabucchi G. Diode laser compared with argon laser for trabeculoplasty. Am J Ophthalmol. 1991;112(1):50–5. doi: 10.1016/s0002-9394(14)76212-9. PMID: 1882922. Excluded for wrong comparator. [PubMed: 1882922] [CrossRef]
89.
Brandao LM, Ledolter AA, Schotzau A, et al. Comparison of two different OCT systems: retina layer segmentation and impact on structure-function analysis in glaucoma. J Ophthalmol. 2016;2016:8307639. doi: 10.1155/2016/8307639. PMID: 26966557. Excluded for wrong study design for key question. [PMC free article: PMC4757732] [PubMed: 26966557] [CrossRef]
90.
Bruen R, Lesk MR, Harasymowycz P. Baseline factors predictive of SLT response: a prospective study. J Ophthalmol. 2012;2012:642869. doi: 10.1155/2012/642869. PMID: 22900148. Excluded for wrong comparator. [PMC free article: PMC3415103] [PubMed: 22900148] [CrossRef]
91.
Brusini P, Salvetat ML, Zeppieri M, et al. Comparison between GDx VCC scanning laser polarimetry and Stratus OCT optical coherence tomography in the diagnosis of chronic glaucoma. Acta Ophthalmol Scand. 2006;84(5):650–5. doi: 10.1111/j.1600-0420.2006.00747.x. PMID: 16965496. Excluded for wrong study design for key question. [PubMed: 16965496] [CrossRef]
92.
Budenz DL, Barton K, Gedde SJ, et al. Five-year treatment outcomes in the Ahmed Baerveldt comparison study. Ophthalmology. 2015;122(2):308–16. doi: 10.1016/j.ophtha.2014.08.043. PMID: 25439606. Excluded for wrong intervention. [PMC free article: PMC4306613] [PubMed: 25439606] [CrossRef]
93.
Buller AJ. Results of a glaucoma shared care model using the enhanced glaucoma staging system and disc damage likelihood scale with a novel scoring scheme in New Zealand. Clin Ophthalmol. 2021;15:57–63. doi: 10.2147/OPTH.S285966. PMID: 33442229. Excluded for wrong population. [PMC free article: PMC7800710] [PubMed: 33442229] [CrossRef]
94.
Burgansky-Eliash Z, Wollstein G, Bilonick RA, et al. Glaucoma detection with the Heidelberg retina tomograph 3. Ophthalmology. 2007;114(3):466–71. doi: 10.1016/j.ophtha.2006.08.022. PMID: 17141321. Excluded for wrong study design for key question. [PMC free article: PMC1945822] [PubMed: 17141321] [CrossRef]
95.
Burgansky-Eliash Z, Wollstein G, Patel A, et al. Glaucoma detection with matrix and standard achromatic perimetry. Br J Ophthalmol. 2007;91(7):933–8. doi: 10.1136/bjo.2006.110437. PMID: 17215267. Excluded for wrong study design for key question. [PMC free article: PMC1955642] [PubMed: 17215267] [CrossRef]
96.
Burr J, Azuara-Blanco A, Avenell A. Medical versus surgical interventions for open angle glaucoma. Cochrane Database Syst Rev. 2005 (2). Excluded for wrong intervention. [PubMed: 15846712]
97.
Burr J, AzuaraBlanco A, Avenell A, et al. Medical versus surgical interventions for open angle glaucoma. Cochrane Database Syst Rev. 2012 (9). Excluded for wrong intervention. [PubMed: 22972069]
98.
Burr JM, Mowatt G, Hernandez R, et al. The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation. Health Technol Assess. 2007;11(41):iii–iv, ix–x, 1–190. doi: 10.3310/hta11410. PMID: 17927922. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 17927922] [CrossRef]
99.
Bussel, II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98 Suppl 2:ii15–9. doi: 10.1136/bjophthalmol-2013-304326. PMID: 24357497. Excluded for not a study. [PMC free article: PMC4208340] [PubMed: 24357497] [CrossRef]
100.
Byles DB, Sherafat H, Diamond JP. Frequency doubling technology screening test in glaucoma detection. Iovs. 2000;41(452). Excluded for wrong publication type.
101.
Caffery LJ, Taylor M, Gole G, et al. Models of care in tele-ophthalmology: a scoping review. J Telemed Telecare. 2019;25(2):106–22. doi: 10.1177/1357633X17742182. PMID: 29165005. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 29165005] [CrossRef]
102.
Calvo P, Ferreras A, Abadia B, et al. Assessment of the optic disc morphology using spectral-domain optical coherence tomography and scanning laser ophthalmoscopy. Biomed Res Int. 2014;2014:275654. doi: 10.1155/2014/275654. PMID: 25110668. Excluded for wrong study design for key question. [PMC free article: PMC4109590] [PubMed: 25110668] [CrossRef]
103.
Cantor LB, Hoop J, Katz LJ, et al. Comparison of the clinical success and quality-of-life impact of brimonidine 0.2% and betaxolol 0.25 % suspension in patients with elevated intraocular pressure. Clin Ther. 2001;23(7):1032–9. doi: 10.1016/s0149-2918(01)80089-8. PMID: 11519768. Excluded for wrong comparator. [PubMed: 11519768] [CrossRef]
104.
Carle CF, James AC, Kolic M, et al. Luminance and colour variant pupil perimetry in glaucoma. Clin Exp Ophthalmol. 2014;42(9):815–24. doi: 10.1111/ceo.12346. PMID: 24725214. Excluded for wrong study design for key question. [PubMed: 24725214] [CrossRef]
105.
Carle CF, James AC, Kolic M, et al. High-resolution multifocal pupillographic objective perimetry in glaucoma. Invest Ophthalmol Vis Sci. 2011;52(1):604–10. doi: 10.1167/iovs.10-5737. PMID: 20881285. Excluded for wrong study design for key question. [PubMed: 20881285] [CrossRef]
106.
Cazana IM, Bohringer D, Reinhard T, et al. A comparison of optic disc area measured by confocal scanning laser tomography versus Bruch’s membrane opening area measured using optical coherence tomography. BMC Ophthalmol. 2021;21(1):31. doi: 10.1186/s12886-020-01799-x. PMID: 33430821. Excluded for wrong intervention. [PMC free article: PMC7802149] [PubMed: 33430821] [CrossRef]
107.
Cellini M, Toschi PG, Strobbe E, et al. Frequency doubling technology, optical coherence technology and pattern electroretinogram in ocular hypertension. BMC Ophthalmol. 2012;12:33. PMID: 22853436. Excluded for wrong study design for key question. [PMC free article: PMC3444883] [PubMed: 22853436]
108.
Cennamo G, Montorio D, Romano MR, et al. Structure-functional parameters in differentiating between patients with different degrees of glaucoma. J Glaucoma. 2016;25(10):e884–e8. PMID: 27483418. Excluded for wrong population. [PubMed: 27483418]
109.
Cennamo G, Montorio D, Velotti N, et al. Optical coherence tomography angiography in pre-perimetric open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2017;255(9):1787–93. doi: 10.1007/s00417-017-3709-7. PMID: 28631244. Excluded for wrong study design for key question. [PubMed: 28631244] [CrossRef]
110.
Chabi A, Varma R, Tsai JC, et al. Randomized clinical trial of the efficacy and safety of preservative-free tafluprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2012;153(6):1187–96. doi: 10.1016/j.ajo.2011.11.008. PMID: 22310086. Excluded for wrong comparator. [PubMed: 22310086] [CrossRef]
111.
Chaganti S, Nabar KP, Nelson KM, et al. Phenotype analysis of early risk factors from electronic medical records improves image-derived diagnostic classifiers for optic nerve pathology. Proc SPIE Int Soc Opt Eng. 2017;10138:11. doi: 10.1117/12.2254618. PMID: 28736474. Excluded for wrong study design for key question. [PMC free article: PMC5521270] [PubMed: 28736474] [CrossRef]
112.
Chai C, Loon SC. Meta-analysis of viscocanalostomy versus trabeculectomy in uncontrolled glaucoma. J Glaucoma. 2010;19(8):519–27. doi: 10.1097/IJG.0b013e3181ca7694. Excluded for wrong intervention. [PubMed: 20179632] [CrossRef]
113.
Chakrabarty L, Joshi GD, Chakravarty A, et al. Automated detection of glaucoma from topographic features of the optic nerve head in color fundus photographs. J Glaucoma. 2016;25(7):590–7. doi: 10.1097/IJG.0000000000000354. PMID: 26580479. Excluded for wrong intervention. [PubMed: 26580479] [CrossRef]
114.
Chakravarti T, Moghimi S, De Moraes CG, et al. Central-most visual field defects in early glaucoma. J Glaucoma. 2020;02:02. doi: 10.1097/IJG.0000000000001747. PMID: 33273288. Excluded for wrong population. [PubMed: 33273288] [CrossRef]
115.
Chandrasekaran S, Cumming RG, Rochtchina E, et al. Associations between elevated intraocular pressure and glaucoma, use of glaucoma medications, and 5-year incident cataract: the Blue Mountains Eye Study. Ophthalmology. 2006;113(3):417–24. PMID: 16458969. Excluded for wrong study design for key question. [PubMed: 16458969]
116.
Chandrasekaran S, Kass W, Thangamathesvaran L, et al. Tele-glaucoma vs clinical evaluation: the New Jersey Health Foundation Prospective Clinical Study. J Telemed Telecare. 2020;26(9):536–44. doi: 10.1177/1357633X19845273. PMID: 31138016. Excluded for wrong outcome. [PubMed: 31138016] [CrossRef]
117.
Chang DS, Xu L, Boland MV, et al. Accuracy of pupil assessment for the detection of glaucoma: a systematic review and meta-analysis. Ophthalmology. 2013;120(11):2217–25. doi: 10.1016/j.ophtha.2013.04.012. PMID: 23809274. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC3818414] [PubMed: 23809274] [CrossRef]
118.
Chang RT, Knight OJ, Feuer WJ, et al. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology. 2009;116(12):2294–9. doi: 10.1016/j.ophtha.2009.06.012. PMID: 19800694. Excluded for wrong study design for key question. [PubMed: 19800694] [CrossRef]
119.
Chaurasia S, Garg R, Beri S, et al. Sonographic assessment of optic disc cupping and its diagnostic performance in glaucoma. J Glaucoma. 2019;28(2):131–8. doi: 10.1097/IJG.0000000000001123. PMID: 30461554. Excluded for wrong study design for key question. [PubMed: 30461554] [CrossRef]
120.
Chen A, Liu L, Wang J, et al. Measuring glaucomatous focal perfusion loss in the peripapillary retina using OCT angiography. Ophthalmology. 2020;127(4):484–91. doi: 10.1016/j.ophtha.2019.10.041. PMID: 31899032. Excluded for wrong study design for key question. [PMC free article: PMC7093216] [PubMed: 31899032] [CrossRef]
121.
Chen HY, Chang YC. Meta-analysis of stratus OCT glaucoma diagnostic accuracy. Optom Vis Sci. 2014;91(9):1129–39. doi: 10.1097/OPX.0000000000000331. PMID: 25036543. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 25036543] [CrossRef]
122.
Chen HY, Chang YC, Wang IJ, et al. Comparison of glaucoma diagnoses using stratus and cirrus optical coherence tomography in different glaucoma types in a Chinese population. J Glaucoma. 2013;22(8):638–46. doi: 10.1097/IJG.0b013e3182594f42. PMID: 22595933. Excluded for wrong study design for key question. [PubMed: 22595933] [CrossRef]
123.
Chen HY, Huang ML, Tsai YY, et al. Comparing glaucomatous optic neuropathy in primary open angle and primary angle closure glaucoma eyes by scanning laser polarimetry-variable corneal compensation. J Glaucoma. 2008;17(2):105–10. doi: 10.1097/IJG.0b013e31814b9971. PMID: 18344755. Excluded for wrong study design for key question. [PubMed: 18344755] [CrossRef]
124.
Chen HY, Wang TH, Lee YM, et al. Retinal nerve fiber layer thickness measured by optical coherence tomography and its correlation with visual field defects in early glaucoma. J Formos Med Assoc. 2005;104(12):927–34. PMID: 16607450. Excluded for wrong study design for key question. [PubMed: 16607450]
125.
Chen R, Yang K, Zheng Z, et al. Meta-analysis of the efficacy and safety of latanoprost monotherapy in patients with angle-closure glaucoma. J Glaucoma. 2016;25(3):e134–44. doi: 10.1097/IJG.0000000000000158. PMID: 25383466. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 25383466] [CrossRef]
126.
Chen TC, Hoguet A, Junk AK, et al. Spectral-domain OCT: helping the clinician diagnose glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology. 2018;125(11):1817–27. doi: 10.1016/j.ophtha.2018.05.008. PMID: 30322450. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 30322450] [CrossRef]
127.
Chen X, Zhao Y. Diagnostic performance of isolated-check visual evoked potential versus retinal ganglion cell-inner plexiform layer analysis in early primary open-angle glaucoma. BMC Ophthalmol. 2017;17(1):77. doi: 10.1186/s12886-017-0472-9. PMID: 28532392. Excluded for wrong study design for key question. [PMC free article: PMC5440894] [PubMed: 28532392] [CrossRef]
128.
Chen XW, Zhao YX. Comparison of isolated-check visual evoked potential and standard automated perimetry in early glaucoma and high-risk ocular hypertension. Int J Ophthalmol. 2017;10(4):599–604. doi: 10.18240/ijo.2017.04.16. PMID: 28503434. Excluded for wrong study design for key question. [PMC free article: PMC5406639] [PubMed: 28503434] [CrossRef]
129.
Chen YY, Wang TH, Liu C, et al. Tolerability and efficacy of bimatoprost 0.01 % in patients with open-angle glaucoma or ocular hypertension evaluated in the Taiwanese clinical setting: the Asia Pacific patterns from early access of lumigan 0.01 % (APPEAL Taiwan) study. BMC Ophthalmol. 2016;16(1):162. doi: 10.1186/s12886-016-0338-6. PMID: 27633513. Excluded for wrong study design for key question. [PMC free article: PMC5025541] [PubMed: 27633513] [CrossRef]
130.
Chen Z, Peng P, Shen H, et al. Region-segmentation strategy for bruch’s membrane opening detection in spectral domain optical coherence tomography images. Biomed Opt Express. 2019;10(2):526–38. doi: 10.1364/BOE.10.000526. PMID: 30800497. Excluded for wrong outcome. [PMC free article: PMC6377878] [PubMed: 30800497] [CrossRef]
131.
Chen Z, Zheng X, Shen H, et al. Combination of enhanced depth imaging optical coherence tomography and fundus images for glaucoma screening. J Med Syst. 2019;43(6):163. doi: 10.1007/s10916-019-1303-8. PMID: 31044289. Excluded for wrong study design for key question. [PubMed: 31044289] [CrossRef]
132.
Cheng JW, Cheng SW, Gao LD, et al. Intraocular pressure-lowering effects of commonly used fixed-combination drugs with timolol: a systematic review and meta-analysis. PLoS One. 2012;7(9):e45079. doi: 10.1371/journal.pone.0045079. PMID: 23028770. Excluded for wrong comparator. [PMC free article: PMC3441590] [PubMed: 23028770] [CrossRef]
133.
Cheng JW, Wei RL. Meta-analysis of 13 randomized controlled trials comparing bimatoprost with latanoprost in patients with elevated intraocular pressure. Clin Ther. 2008;30(4):622–32. doi: 10.1016/j.clinthera.2008.04.006. Excluded for wrong comparator. [PubMed: 18498911] [CrossRef]
134.
Cheng JW, Xi GL, Wei RL, et al. Efficacy and tolerability of nonpenetrating glaucoma surgery augmented with mitomycin C in treatment of open-angle glaucoma: a meta-analysis. Can J Ophthalmol. 2009;44(1):76–82. doi: 10.3129/i08-165. PMID: 19169318. Excluded for wrong intervention. [PubMed: 19169318] [CrossRef]
135.
Cheng JW, Xi GL, Wei RL, et al. Efficacy and tolerability of nonpenetrating filtering surgery in the treatment of open-angle glaucoma: a meta-analysis. Ophthalmologica. 2010;224(3):138–46. doi: 10.1159/000236039. Excluded for wrong intervention. [PubMed: 19738394] [CrossRef]
136.
Cheng L, Ding Y, Duan X, et al. Ocular pulse amplitude in different types of glaucoma using dynamic contour tonometry: diagnosis and follow-up of glaucoma. Exp Ther Med. 2017;14(5):4148–52. doi: 10.3892/etm.2017.5074. PMID: 29104631. Excluded for wrong study design for key question. [PMC free article: PMC5658696] [PubMed: 29104631] [CrossRef]
137.
Chew SS, Kerr NM, Wong AB, et al. Anxiety in visual field testing. Br J Ophthalmol. 2016;100(8):1128–33. doi: 10.1136/bjophthalmol-2015-307110. PMID: 26608027. Excluded for wrong study design for key question. [PubMed: 26608027] [CrossRef]
138.
Chi SC, Kang YN, Hwang DK, et al. Selective laser trabeculoplasty versus medication for open-angle glaucoma: systematic review and meta-analysis of randomised clinical trials. Br J Ophthalmol. 2020;104(11):1500–7. doi: 10.1136/bjophthalmol-2019-315613. PMID: 32051136. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 32051136] [CrossRef]
139.
Chien JL, Ghassibi MP, Patthanathamrongkasem T, et al. Glaucoma diagnostic capability of global and regional measurements of isolated ganglion cell layer and inner plexiform layer. J Glaucoma. 2017;26(3):208–15. doi: 10.1097/IJG.0000000000000572. PMID: 27811573. Excluded for wrong study design for key question. [PubMed: 27811573] [CrossRef]
140.
Chiselita D. Evaluation of the role of travoprost 0.004% ophthalmic solution in the management of open angle glaucoma and ocular hypertensive patients. Oftalmologia. 2007;51(2):81–6. PMID: 17937041. Excluded for wrong comparator. [PubMed: 17937041]
141.
Chiselita D, Antohi I, Medvichi R, et al. Comparative analysis of the efficacy and safety of latanoprost, travoprost and the fixed combination timolol-dorzolamide; a prospective, randomized, masked, cross-over design study. Oftalmologia. 2005;49(3):39–45. PMID: 16408674. Excluded for wrong comparator. [PubMed: 16408674]
142.
Chiselita D, Cantemir A, Pantalon AD. Selective laser trabeculoplasty-short term efficacy and safety profile in open angle glaucoma or ocular hypertension treatment. Rom J Ophthalmol. 2015;59(3):148–53. PMID: 26978882. Excluded for poor quality. [PMC free article: PMC5712959] [PubMed: 26978882]
143.
Chiselita D, Pantalon AD, Cantemir A, et al. Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects. Rom J Ophthalmol. 2016;60(3):158–64. PMID: 29450341. Excluded for wrong study design for key question. [PMC free article: PMC5720128] [PubMed: 29450341]
144.
Cho JW, Sung KR, Hong JT, et al. Detection of glaucoma by spectral domain-scanning laser ophthalmoscopy/optical coherence tomography (SD-SLO/OCT) and time domain optical coherence tomography. J Glaucoma. 2011;20(1):15–20. doi: 10.1097/IJG.0b013e3181d1d332. PMID: 20436370. Excluded for wrong study design for key question. [PubMed: 20436370] [CrossRef]
145.
Choi EY, Li D, Fan Y, et al. Predicting global test-retest variability of visual fields in glaucoma. Ophthalmol Glaucoma. 2020;10:10. doi: 10.1016/j.ogla.2020.12.001. PMID: 33310194. Excluded for wrong population. [PMC free article: PMC8192590] [PubMed: 33310194] [CrossRef]
146.
Choi YJ, Jeoung JW, Park KH, et al. Clinical use of an optical coherence tomography linear discriminant function for differentiating glaucoma from normal eyes. J Glaucoma. 2016;25(3):e162–9. doi: 10.1097/IJG.0000000000000210. PMID: 25580887. Excluded for wrong study design for key question. [PubMed: 25580887] [CrossRef]
147.
Choudhari NS, Chandran P, Rao HL, et al. LVPEI Glaucoma Epidemiology and Molecular Genetic Study: teleophthalmology screening for angle-closure disease in an underserved region. Eye. 2020;34(8):1399–405. doi: 10.1038/s41433-019-0666-x. PMID: 31695161. Excluded for wrong intervention. [PMC free article: PMC7376055] [PubMed: 31695161] [CrossRef]
148.
Choudhari NS, George R, Asokan R, et al. Combination of simple diagnostic tests to detect primary angle closure disease in a resource-constrained region. Ophthalmic Epidemiol. 2019:1–9. doi: 10.1080/09286586.2019.1650380. PMID: 31389761. Excluded for wrong intervention. [PubMed: 31389761] [CrossRef]
149.
Christoffersen T, Fors T, Waage S, et al. Glaucoma screening with oculokinetic perimetry in general practice: is its specificity acceptable? Eye (Lond). 1995;9 (Pt 6 Su):36–9. PMID: 8729017. Excluded for wrong intervention. [PubMed: 8729017]
150.
Christopher M, Abramoff MD, Tang L, et al. Stereo photo measured ONH shape predicts development of POAG in subjects with ocular hypertension. Invest Ophthalmol Vis Sci. 2015;56(8):4470–9. doi: 10.1167/iovs.14-16142. PMID: 26193923. Excluded for wrong outcome. [PMC free article: PMC4509059] [PubMed: 26193923] [CrossRef]
151.
Christopher M, Belghith A, Bowd C, et al. Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs. Sci Rep. 2018;8(1):16685. doi: 10.1038/s41598-018-35044-9. PMID: 30420630. Excluded for wrong study design for key question. [PMC free article: PMC6232132] [PubMed: 30420630] [CrossRef]
152.
Christopher M, Bowd C, Belghith A, et al. Deep learning approaches predict glaucomatous visual field damage from OCT optic nerve head en face images and retinal nerve fiber layer thickness maps. Ophthalmology. 2020;127(3):246–356. doi: 10.1016/j.ophtha.2019.09.036. PMID: 31718841. Excluded for wrong study design for key question. [PMC free article: PMC8063221] [PubMed: 31718841] [CrossRef]
153.
Chung JK, Hwang YH, Wi JM, et al. Glaucoma diagnostic ability of the optical coherence tomography angiography vessel density parameters. Curr Eye Res. 2017;42(11):1458–67. doi: 10.1080/02713683.2017.1337157. PMID: 28910159. Excluded for wrong study design for key question. [PubMed: 28910159] [CrossRef]
154.
Chung PY, Schuman JS, Netland PA, et al. Five-year results of a randomized, prospective, clinical trial of diode vs argon laser trabeculoplasty for open-angle glaucoma. Am J Ophthalmol. 1998;126(2):185–90. doi: 10.1016/s0002-9394(98)00151-2. PMID: 9727511. Excluded for wrong comparator. [PubMed: 9727511] [CrossRef]
155.
Cillino S, Zeppa L, Di Pace F, et al. E-PTFE (Gore-Tex) implant with or without low-dosage mitomycin-C as an adjuvant in penetrating glaucoma surgery: 2 year randomized clinical trial. Acta Ophthalmol. 2008;86(3):314–21. doi: 10.1111/j.1600-0420.2007.01036.x. PMID: 17995980. Excluded for wrong intervention. [PubMed: 17995980] [CrossRef]
156.
Coleman AL, Lum FC, Gliklich RE, et al. Quality of life and visual acuity outcomes in the Registry in Glaucoma Outcomes Research study. J Comp Eff Res. 2016;5(1):99–111. doi: 10.2217/cer.15.59. PMID: 26691427. Excluded for wrong intervention. [PubMed: 26691427] [CrossRef]
157.
Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126(4):498–505. doi: 10.1016/s0002-9394(98)00272-4. PMID: 9780094. Excluded for wrong intervention. [PubMed: 9780094] [CrossRef]
158.
Collignon-Brach J. Long-term effect of ophthalmic beta-adrenoceptor antagonists on intraocular pressure and retinal sensitivity in primary open-angle glaucoma. Curr Eye Res. 1992;11(1):1–3. doi: 10.3109/02713689209069161. PMID: 1559386. Excluded for wrong comparator. [PubMed: 1559386] [CrossRef]
159.
Collignon-Brach J. Longterm effect of topical beta-blockers on intraocular pressure and visual field sensitivity in ocular hypertension and chronic open-angle glaucoma. Surv Ophthalmol. 1994;38 Suppl:S149–55. doi: 10.1016/0039-6257(94)90059-0. PMID: 7940136. Excluded for wrong comparator. [PubMed: 7940136] [CrossRef]
160.
Conlin PR, Asefzadeh B, Pasquale LR, et al. Accuracy of a technology-assisted eye exam in evaluation of referable diabetic retinopathy and concomitant ocular diseases. Br J Ophthalmol. 2015;99(12):1622–7. doi: 10.1136/bjophthalmol-2014-306536. PMID: 25995299. Excluded for wrong study design for key question. [PubMed: 25995299] [CrossRef]
161.
Cook R, Thomas V, Martin R, et al. Laser eye procedure is safe and effective as an early treatment for glaucoma. BMJ. 2019;366:l4235. doi: 10.1136/bmj.l4235. PMID: 31292128. Excluded for not a study. [PubMed: 31292128] [CrossRef]
162.
Cooper RL, Grose GC, Constable IJ. Mass screening of the optic disc for glaucoma: a follow-up study. Aust N Z J Ophthalmol. 1986;14(1):35–9. PMID: 3964478. Excluded for wrong study design for key question. [PubMed: 3964478]
163.
Correa-Perez ME, Lopez-Miguel A, Miranda-Anta S, et al. Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness. Invest Ophthalmol Vis Sci. 2012;53(4):1752–7. doi: 10.1167/iovs.11-9033. PMID: 22395881. Excluded for wrong outcome. [PubMed: 22395881] [CrossRef]
164.
Courtright P, Poon CI, Richards JS, et al. Visual function among corneal disease patients waiting for penetrating keratoplasty in British Columbia. Ophthalmic Epidemiol. 1998;5(1):13–20. doi: 10.1076/opep.5.1.13.1498. PMID: 9575534. Excluded for wrong population. [PubMed: 9575534] [CrossRef]
165.
Cox JA, Mollan SP, Bankart J, et al. Efficacy of antiglaucoma fixed combination therapy versus unfixed components in reducing intraocular pressure: a systematic review. Br J Ophthalmol. 2008;92(6):729–34. doi: 10.1136/bjo.2008.139329. Excluded for wrong comparator. [PubMed: 18460539] [CrossRef]
166.
Crichton AC, Vold S, Williams JM, et al. Ocular surface tolerability of prostaglandin analogs and prostamides in patients with glaucoma or ocular hypertension. Adv Ther. 2013;30(3):260–70. doi: 10.1007/s12325-013-0014-7. PMID: 23475405. Excluded for wrong comparator. [PubMed: 23475405] [CrossRef]
167.
Cucherat M, Stalmans I, Rouland JF. Relative efficacy and safety of preservative-free latanoprost (T2345) for the treatment of open-angle glaucoma and ocular hypertension: an adjusted Indirect comparison meta-analysis of randomized clinical trials. J Glaucoma. 2014;23(1):e69–75. doi: 10.1097/IJG.0b013e3182a075e6. PMID: 23881267. Excluded for wrong comparator. [PubMed: 23881267] [CrossRef]
168.
Cui QN, Fudemberg SJ, Resende AF, et al. Validation of the structure-function correlation report from the Heidelberg edge perimeter and spectral-domain optical coherence tomography. Int Ophthalmol. 2019;39(3):533–40. doi: 10.1007/s10792-018-0836-z. PMID: 29396688. Excluded for wrong outcome. [PubMed: 29396688] [CrossRef]
169.
Curatolo A, Birkenfeld JS, Martinez-Enriquez E, et al. Multi-meridian corneal imaging of air-puff induced deformation for improved detection of biomechanical abnormalities. Biomed Opt Express. 2020;11(11):6337–55. doi: 10.1364/BOE.402402. PMID: 33282494. Excluded for wrong population. [PMC free article: PMC7687933] [PubMed: 33282494] [CrossRef]
170.
D’Eliseo D, Pastena B, Longanesi L, et al. Comparison of deep sclerectomy with implant and combined glaucoma surgery. Ophthalmologica. 2003;217(3):208–11. doi: 10.1159/000068974. PMID: 12660485. Excluded for wrong intervention. [PubMed: 12660485] [CrossRef]
171.
Da Pozzo S, Iacono P, Marchesan R, et al. Scanning laser polarimetry with variable corneal compensation and detection of glaucomatous optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2005;243(8):774–9. doi: 10.1007/s00417-004-1118-1. PMID: 15756574. Excluded for wrong study design for key question. [PubMed: 15756574] [CrossRef]
172.
Dagdelen K, Dirican E. The assessment of structural changes on optic nerve head and macula in primary open angle glaucoma and ocular hypertension. Int J Ophthalmol. 2018;11(10):1631–7. doi: 10.18240/ijo.2018.10.09. PMID: 30364206. Excluded for wrong study design for key question. [PMC free article: PMC6192948] [PubMed: 30364206] [CrossRef]
173.
Daka Q, Trkulja V. Efficacy and tolerability of mono-compound topical treatments for reduction of intraocular pressure in patients with primary open angle glaucoma or ocular hypertension: an overview of reviews. Croat Med J. 2014;55(5):468–80. PMID: 25358880. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC4228301] [PubMed: 25358880]
174.
Damato BE, Ahmed J, Allan D, et al. The detection of glaucomatous visual field defects by oculo-kinetic perimetry: which points are best for screening? Eye (Lond). 1989;3 (Pt 6):727–31. doi: 10.1038/eye.1989.112. PMID: 2630353. Excluded for wrong study design for key question. [PubMed: 2630353] [CrossRef]
175.
Damji KF, Shah KC, Rock WJ, et al. Selective laser trabeculoplasty v argon laser trabeculoplasty: a prospective randomised clinical trial. Br J Ophthalmol. 1999;83(6):718–22. doi: 10.1136/bjo.83.6.718. PMID: 10340983. Excluded for wrong comparator. [PMC free article: PMC1723059] [PubMed: 10340983] [CrossRef]
176.
Danthurebandara VM, Vianna JR, Sharpe GP, et al. Diagnostic accuracy of glaucoma with sector-based and a new total profile-based analysis of neuroretinal rim and retinal nerve fiber layer thickness. Invest Ophthalmol Vis Sci. 2016;57(1):181–7. doi: 10.1167/iovs.15-17820. PMID: 26795824. Excluded for wrong study design for key question. [PubMed: 26795824] [CrossRef]
177.
Das JC, Sharma P, Chaudhuri Z, et al. A comparative study of small incision trabeculectomy avoiding tenon’s capsule with conventional trabeculectomy. Ophthalmic Surg Lasers. 2002;33(1):30–6. PMID: 11820660. Excluded for wrong intervention. [PubMed: 11820660]
178.
Dave P, Shah J. Diagnostic accuracy of posterior pole asymmetry analysis parameters of spectralis optical coherence tomography in detecting early unilateral glaucoma. Indian J Ophthalmol. 2015;63(11):837–42. doi: 10.4103/0301-4738.171965. PMID: 26669335. Excluded for wrong country. [PMC free article: PMC4730695] [PubMed: 26669335] [CrossRef]
179.
Day DG, Walters TR, Schwartz GF, et al. Bimatoprost 0.03% preservative-free ophthalmic solution versus bimatoprost 0.03% ophthalmic solution (Lumigan) for glaucoma or ocular hypertension: a 12-week, randomised, double-masked trial. Br J Ophthalmol. 2013;97(8):989–93. doi: 10.1136/bjophthalmol-2012-303040. PMID: 23743437. Excluded for wrong comparator. [PMC free article: PMC3717762] [PubMed: 23743437] [CrossRef]
180.
Day L, Fildes B, Gordon I, et al. Randomised factorial trial of falls prevention among older people living in their own homes. BMJ. 2002;325(7356):128. doi: 10.1136/bmj.325.7356.128. PMID: 12130606. Excluded for wrong intervention. [PMC free article: PMC117228] [PubMed: 12130606] [CrossRef]
181.
de Jong LA. The Ex-PRESS glaucoma shunt versus trabeculectomy in open-angle glaucoma: a prospective randomized study. Adv Ther. 2009;26(3):336–45. doi: 10.1007/s12325-009-0017-6. PMID: 19337705. Excluded for wrong intervention. [PubMed: 19337705] [CrossRef]
182.
De Keyser M, De Belder M, De Belder J, et al. Selective laser trabeculoplasty as replacement therapy in medically controlled glaucoma patients. Acta Ophthalmol. 2018;96(5):e577–e81. doi: 10.1111/aos.13509. PMID: 28636188. Excluded for wrong intervention. [PubMed: 28636188] [CrossRef]
183.
De Keyser M, De Belder M, De Groot V. Quality of life in glaucoma patients after selective laser trabeculoplasty. Int J Ophthalmol. 2017;10(5):742–8. doi: 10.18240/ijo.2017.05.14. PMID: 28546931. Excluded for wrong intervention. [PMC free article: PMC5437462] [PubMed: 28546931] [CrossRef]
184.
De Leon-Ortega JE, Sakata LM, Monheit BE, et al. Comparison of diagnostic accuracy of Heidelberg Retina Tomograph II and Heidelberg Retina Tomograph 3 to discriminate glaucomatous and nonglaucomatous eyes. Am J Ophthalmol. 2007;144(4):525–32. doi: 10.1016/j.ajo.2007.06.021. PMID: 17693382. Excluded for wrong study design for key question. [PMC free article: PMC3928044] [PubMed: 17693382] [CrossRef]
185.
De Moraes CG, Demirel S, Gardiner SK, et al. Effect of treatment on the rate of visual field change in the ocular hypertension treatment study observation group. Invest Ophthalmol Vis Sci. 2012;53(4):1704–9. doi: 10.1167/iovs.11-8186. PMID: 22395889. Excluded for wrong study design for key question. [PMC free article: PMC3342789] [PubMed: 22395889] [CrossRef]
186.
de Tarso Ponte Pierre-Filho P, Schimiti RB, de Vasconcellos JP, et al. Sensitivity and specificity of frequency-doubling technology, tendency-oriented perimetry, SITA Standard and SITA fast perimetry in perimetrically inexperienced individuals. Acta Ophthalmol Scand. 2006;84(3):345–50. doi: 10.1111/j.1600-0420.2006.00639.x. PMID: 16704696. Excluded for wrong study design for key question. [PubMed: 16704696] [CrossRef]
187.
de Vries MM, Stoutenbeek R, Muskens RP, et al. Glaucoma screening during regular optician visits: the feasibility and specificity of screening in real life. Acta Ophthalmol. 2012;90(2):115–21. doi: 10.1111/j.1755-3768.2011.02355.x. PMID: 22268769. Excluded for wrong intervention. [PubMed: 22268769] [CrossRef]
188.
Denis P, Baudouin C, Bron A, et al. First-line latanoprost therapy in ocular hypertension or open-angle glaucoma patients: a 3-month efficacy analysis stratified by initial intraocular pressure. BMC Ophthalmol. 2010;10:4. doi: 10.1186/1471-2415-10-4. PMID: 20181282. Excluded for wrong study design for key question. [PMC free article: PMC2841111] [PubMed: 20181282] [CrossRef]
189.
Detry-Morel M, Zeyen T, Kestelyn P, et al. Screening for glaucoma in a general population with the non-mydriatic fundus camera and the frequency doubling perimeter. Eur J Ophthalmol. 2004;14(5):387–93. doi: 10.1177/112067210401400505. PMID: 15506600. Excluded for wrong intervention. [PubMed: 15506600] [CrossRef]
190.
Dhar SK, Raji K, Sandeep S, et al. Study of correlation between stereopsis and retinal nerve fiber layer thickness in cases of glaucoma. Med J Armed Forces India. 2021;77(1):63–9. doi: 10.1016/j.mjafi.2020.01.004. PMID: 33487868. Excluded for wrong study design for key question. [PMC free article: PMC7809574] [PubMed: 33487868] [CrossRef]
191.
Diaz-Aleman VT, Fumero Batista FJ, Alayon Miranda S, et al. Ganglion cell layer analysis with deep learning in glaucoma diagnosis. Arch Soc Esp Oftalmol. 2020;02:02. doi: 10.1016/j.oftal.2020.09.010. PMID: 33279356. Excluded for not English language. [PubMed: 33279356] [CrossRef]
192.
Diggory P, Cassels-Brown A, Vail A, et al. Randomised, controlled trial of spirometric changes in elderly people receiving timolol or betaxolol as initial treatment for glaucoma. Br J Ophthalmol. 1998;82(2):146–9. doi: 10.1136/bjo.82.2.146. PMID: 9613379. Excluded for wrong comparator. [PMC free article: PMC1722479] [PubMed: 9613379] [CrossRef]
193.
Digiuni M, Manni G, Vetrugno M, et al. An evaluation of therapeutic noninferiority of 0.005% latanoprost ophthalmic solution and xalatan in patients with glaucoma or ocular hypertension. J Glaucoma. 2013;22(9):707–12. doi: 10.1097/IJG.0b013e318259b47c. PMID: 22595934. Excluded for wrong comparator. [PubMed: 22595934] [CrossRef]
194.
Dirks MS, Noecker RJ, Earl M, et al. A 3-month clinical trial comparing the IOP-lowering efficacy of bimatoprost and latanoprost in patients with normal-tension glaucoma. Adv Ther. 2006;23(3):385–94. doi: 10.1007/bf02850159. PMID: 16912020. Excluded for wrong comparator. [PubMed: 16912020] [CrossRef]
195.
Dobbelsteyn D, McKee K, Bearnes RD, et al. What percentage of patients presenting for routine eye examinations require referral for secondary care? A study of referrals from optometrists to ophthalmologists. Clin Exp Optom. 2015;98(3):214–7. doi: 10.1111/cxo.12255. PMID: 25756613. Excluded for wrong comparator. [PubMed: 25756613] [CrossRef]
196.
Dominguez-Duenas F, Plaza-Espinosa L, Mundo-Fernandez EE, et al. Early glaucoma screening using the ibopamine provocative test. J Glaucoma. 2016;25(5):e441–5. doi: 10.1097/IJG.0000000000000343. PMID: 26709501. Excluded for wrong study design for key question. [PubMed: 26709501] [CrossRef]
197.
Drance SM. A comparison of the effects of betaxolol, timolol, and pilocarpine on visual function in patients with open-angle glaucoma. J Glaucoma. 1998;7(4):247–52. doi: 10.1097/00061198-199808000-00006. PMID: 9713782. Excluded for wrong comparator. [PubMed: 9713782] [CrossRef]
198.
Dueker DK, Singh K, Lin SC, et al. Corneal thickness measurement in the management of primary open-angle glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology. 2007;114(9):1779–87. PMID: 17822980. Excluded for wrong outcome. [PubMed: 17822980]
199.
Duman F, Waisbourd M, Faria B, et al. Trabeculectomy in patients with glaucoma over 80 years of age: relatively short-term outcomes. J Glaucoma. 2016;25(3):e123–7. doi: 10.1097/IJG.0000000000000230. PMID: 25715005. Excluded for wrong intervention. [PubMed: 25715005] [CrossRef]
200.
Eadie BD, Etminan M, Carleton BC, et al. Association of repeated intravitreous bevacizumab injections with risk for glaucoma surgery. JAMA Ophthalmol. 2017;135(4):363–8. doi: 10.1001/jamaophthalmol.2017.0059. PMID: 28301639. Excluded for wrong study design for key question. [PMC free article: PMC5470402] [PubMed: 28301639] [CrossRef]
201.
Ederer F, Gaasterland DA, Dally LG, et al. The Advanced Glaucoma Intervention Study (AGIS): 13. Comparison of treatment outcomes within race: 10-year results. Ophthalmology. 2004;111(4):651–64. doi: 10.1016/j.ophtha.2003.09.025. PMID: 15051195. Excluded for wrong intervention. [PubMed: 15051195] [CrossRef]
202.
Edlinger FSM, Schrems-Hoesl LM, Mardin CY, et al. Structural changes of macular inner retinal layers in early normal-tension and high-tension glaucoma by spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2018;256(7):1245–56. doi: 10.1007/s00417-018-3944-6. PMID: 29523993. Excluded for wrong study design for key question. [PubMed: 29523993] [CrossRef]
203.
Eguia MD, Tsamis E, Zemborain ZZ, et al. Reasons why OCT global circumpapillary retinal nerve fiber layer thickness is a poor measure of glaucomatous progression. Transl Vis Sci Technol. 2020;9(11):22. doi: 10.1167/tvst.9.11.22. PMID: 33150048. Excluded for wrong outcome. [PMC free article: PMC7585398] [PubMed: 33150048] [CrossRef]
204.
Ekstrom C. Elevated intraocular pressure and pseudoexfoliation of the lens capsule as risk factors for chronic open-angle glaucoma. A population-based five-year follow-up study. Acta Ophthalmol (Copenh). 1993;71(2):189–95. doi: 10.1111/j.1755-3768.1993.tb04989.x. PMID: 8333264. Excluded for wrong outcome. [PubMed: 8333264] [CrossRef]
205.
el Sayyad F, el-Rashood A, Helal M, et al. Fornix-based versus limbal-based conjunctival flaps in initial trabeculectomy with postoperative 5-fluorouracil: four-year follow-up findings. J Glaucoma. 1999;8(2):124–8. PMID: 10209729. Excluded for wrong intervention. [PubMed: 10209729]
206.
El-Assal K, Foulds J, Dobson S, et al. A comparative study of glaucoma referrals in southeast Scotland: effect of the new general ophthalmic service contract, eyecare integration pilot programme and NICE guidelines. BMC Ophthalmol. 2015;15:172. doi: 10.1186/s12886-015-0161-5. PMID: 26643710. Excluded for wrong outcome. [PMC free article: PMC4672504] [PubMed: 26643710] [CrossRef]
207.
El-Rafei A, Engelhorn T, Warntges S, et al. Glaucoma classification based on visual pathway analysis using diffusion tensor imaging. Magn Reson Imaging. 2013;31(7):1081–91. doi: 10.1016/j.mri.2013.01.001. PMID: 23751976. Excluded for wrong study design for key question. [PubMed: 23751976] [CrossRef]
208.
Elahi S, Rao HL, Dumitru A, et al. Predictors of success in selective laser trabeculoplasty: data from the lausanne laser trabeculoplasty registry. J Glaucoma. 2020;29(7):550–5. doi: 10.1097/IJG.0000000000001534. PMID: 32398589. Excluded for wrong study design for key question. [PubMed: 32398589] [CrossRef]
209.
Eliezer RN, Kasahara N, Caixeta-Umbelino C, et al. Use of amniotic membrane in trabeculectomy for the treatment of glaucoma: a pilot study. Arq Bras Oftalmol. 2006;69(3):309–12. doi: 10.1590/s0004-27492006000300005. PMID: 16936950. Excluded for wrong intervention. [PubMed: 16936950] [CrossRef]
210.
Elsas T, Johnsen H, Brevik TA. The immediate pressure response to primary laser trabeculoplasty-a comparison of one- and two-stage treatment. Acta Ophthalmol (Copenh). 1989;67(6):664–8. doi: 10.1111/j.1755-3768.1989.tb04399.x. PMID: 2618634. Excluded for wrong comparator. [PubMed: 2618634] [CrossRef]
211.
Enders P, Adler W, Kiessling D, et al. Evaluation of two-dimensional bruch’s membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort. Acta Ophthalmol. 2019;97(1):60–7. doi: 10.1111/aos.13698. PMID: 29575745. Excluded for wrong study design for key question. [PubMed: 29575745] [CrossRef]
212.
Enders P, Adler W, Schaub F, et al. Novel bruch’s membrane opening minimum rim area equalizes disc size dependency and offers high diagnostic power for glaucoma. Invest Ophthalmol Vis Sci. 2016;57(15):6596–603. doi: 10.1167/iovs.16-20561. PMID: 27951592. Excluded for wrong study design for key question. [PubMed: 27951592] [CrossRef]
213.
Enders P, Schaub F, Adler W, et al. Bruch’s membrane opening-based optical coherence tomography of the optic nerve head: a useful diagnostic tool to detect glaucoma in macrodiscs. Eye. 2018;32(2):314–23. doi: 10.1038/eye.2017.306. PMID: 29386616. Excluded for wrong study design for key question. [PMC free article: PMC5811742] [PubMed: 29386616] [CrossRef]
214.
Enger C, Sommer A. Recognizing glaucomatous field loss with the Humphrey STATPAC. Arch Ophthalmol. 1987;105(10):1355–7. doi: 10.1001/archopht.1987.01060100057024. PMID: 3662906. Excluded for wrong study design for key question. [PubMed: 3662906] [CrossRef]
215.
Esporcatte BLB, Kara-Jose AC, Melo LAS, Jr., et al. The estimates of retinal ganglion cell counts performed better than isolated structure and functional tests for glaucoma diagnosis. J Ophthalmol. 2017;2017:2724312. doi: 10.1155/2017/2724312. PMID: 28811934. Excluded for wrong study design for key question. [PMC free article: PMC5546054] [PubMed: 28811934] [CrossRef]
216.
Eura M, Matsumoto C, Hashimoto S, et al. Test conditions in macular visual field testing in glaucoma. J Glaucoma. 2017;26(12):1101–6. doi: 10.1097/IJG.0000000000000782. PMID: 29045331. Excluded for wrong study design for key question. [PubMed: 29045331] [CrossRef]
217.
Evans DW, Bartlett JD, Houde B, et al. Latanoprost-induced stabilization of central visual function in patients with primary open-angle glaucoma. J Ocul Pharmacol Ther. 2008;24(2):224–9. doi: 10.1089/jop.2007.0106. PMID: 18355134. Excluded for wrong comparator. [PubMed: 18355134] [CrossRef]
218.
Eyawo O, Nachega J, Lefebvre P, et al. Efficacy and safety of prostaglandin analogues in patients with predominantly primary open-angle glaucoma or ocular hypertension: a meta-analysis. Clin Ophthalmol. 2009;3(1):447–56. Excluded for wrong comparator. [PMC free article: PMC2724035] [PubMed: 19684868]
219.
Eye W, Control CfD, Prevention, et al. Philadelphia telemedicine glaucoma detection and follow-up study. https:​//ClinicalTrials​.gov/show/NCT02390245; 2014. Excluded for wrong publication type.
220.
Fallon M, Valero O, Pazos M, et al. Diagnostic accuracy of imaging devices in glaucoma: a meta-analysis. Surv Ophthalmol. 2017;62(4):446–61. doi: 10.1016/j.survophthal.2017.01.001. PMID: 28093287. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 28093287] [CrossRef]
221.
Fama F, Santamaria S. Comparison of the ocular effects of three beta-blockers: timolol, carteolol, and betaxolol. Ann Ophthalmol. 1996;28(5):317–20. Excluded for wrong comparator.
222.
Fan KC, Tsikata E, Khoueir Z, et al. Enhanced diagnostic capability for glaucoma of 3-dimensional versus 2-dimensional neuroretinal rim parameters using spectral domain optical coherence tomography. J Glaucoma. 2017;26(5):450–8. doi: 10.1097/IJG.0000000000000647. PMID: 28234677. Excluded for wrong study design for key question. [PMC free article: PMC5408323] [PubMed: 28234677] [CrossRef]
223.
Fan X, Wu LL, Di X, et al. Applications of isolated-check visual evoked potential in early stage of open-angle glaucoma patients. Chin Med J. 2018;131(20):2439–46. doi: 10.4103/0366-6999.243564. PMID: 30334529. Excluded for wrong study design for key question. [PMC free article: PMC6202595] [PubMed: 30334529] [CrossRef]
224.
Fang Y, Pan YZ, Li M, et al. Diagnostic capability of fourier-domain optical coherence tomography in early primary open angle glaucoma. Chin Med J (Engl). 2010;123(15):2045–50. PMID: 20819540. Excluded for wrong study design for key question. [PubMed: 20819540]
225.
Fang Y, Zhang HQ, Qiao RH, et al. Effectiveness of glaucoma diagnostic parameters from spectral domain-optical coherence tomography of myopic patients. Chin Med J. 2018;131(15):1819–26. doi: 10.4103/0366-6999.237391. PMID: 30058579. Excluded for wrong study design for key question. [PMC free article: PMC6071466] [PubMed: 30058579] [CrossRef]
226.
Faria BM, Duman F, Zheng CX, et al. Evaluating contrast sensitivity in age-related macular degeneration using a novel computer-based test, the Spaeth/Richman Contrast Sensitivity Test. Retina. 2015;35(7):1465–73. doi: 10.1097/IAE.0000000000000474. PMID: 25658175. Excluded for wrong intervention. [PubMed: 25658175] [CrossRef]
227.
Farris EP. Efficacy and tolerability of a large scale change in regimen from latanoprost to travoprost in glaucoma patients at the Manhattan Veterans Administration Hospital. Clin Ophthalmol. 2008;2(2):303–12. doi: 10.2147/opth.s2647. PMID: 19668721. Excluded for wrong comparator. [PMC free article: PMC2693979] [PubMed: 19668721] [CrossRef]
228.
Fea AM. Phacoemulsification versus phacoemulsification with micro-bypass stent implantation in primary open-angle glaucoma: randomized double-masked clinical trial. J Cataract Refract Surg. 2010;36(3):407–12. doi: 10.1016/j.jcrs.2009.10.031. PMID: 20202537. Excluded for wrong intervention. [PubMed: 20202537] [CrossRef]
229.
Feke GT, Bex PJ, Taylor CP, et al. Effect of brimonidine on retinal vascular autoregulation and short-term visual function in normal tension glaucoma. Am J Ophthalmol. 2014;158(1):105–12.e1. doi: 10.1016/j.ajo.2014.03.015. PMID: 24709811. Excluded for wrong study design for key question. [PMC free article: PMC6693340] [PubMed: 24709811] [CrossRef]
230.
Feldman RM, Katz G, McMenemy M, et al. A randomized trial of fixed-dose combination brinzolamide 1%/brimonidine 0.2% as adjunctive therapy to travoprost 0.004. Am J Ophthalmol. 2016;165:188–97. doi: 10.1016/j.ajo.2016.02.026. PMID: 26940161. Excluded for wrong comparator. [PubMed: 26940161] [CrossRef]
231.
Ferreira GA, Rezende MA, Meneghim R, et al. Barriers between community screening for visual problems and treatments in a tertiary center. Rev Saude Publica. 2018;52:85. doi: 10.11606/S1518-8787.2018052000589. PMID: 30517520. Excluded for wrong study design for key question. [PMC free article: PMC6280626] [PubMed: 30517520] [CrossRef]
232.
Ferreras A, Pablo LE, Pajarin AB, et al. Diagnostic ability of the Heidelberg Retina Tomograph 3 for glaucoma. Am J Ophthalmol. 2008;145(2):354–9. doi: 10.1016/j.ajo.2007.09.039. PMID: 18078851. Excluded for wrong study design for key question. [PubMed: 18078851] [CrossRef]
233.
Ferreras A, Pajarin AB, Polo V, et al. Diagnostic ability of Heidelberg Retina Tomograph 3 classifications: glaucoma probability score versus Moorfields regression analysis. Ophthalmology. 2007;114(11):1981–7. doi: 10.1016/j.ophtha.2007.01.015. PMID: 17445899. Excluded for wrong study design for key question. [PubMed: 17445899] [CrossRef]
234.
Ferreras A, Polo V, Larrosa JM, et al. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? J Glaucoma. 2007;16(4):372–83. doi: 10.1097/IJG.0b013e31803bbb17. PMID: 17571000. Excluded for wrong study design for key question. [PubMed: 17571000] [CrossRef]
235.
Fidalgo BM, Crabb DP, Lawrenson JG. Methodology and reporting of diagnostic accuracy studies of automated perimetry in glaucoma: evaluation using a standardised approach. Ophthalmic Physiol Opt. 2015;35(3):315–23. doi: 10.1111/opo.12208. PMID: 25913874. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 25913874] [CrossRef]
236.
Flammer J, Kitazawa Y, Bonomi L, et al. Influence of carteolol and timolol on IOP an visual fields in glaucoma: a multi-center, double-masked, prospective study. Eur J Ophthalmol. 1992;2(4):169–74. PMID: 1490088. Excluded for wrong comparator. [PubMed: 1490088]
237.
Fogagnolo P, Modarelli A, Oddone F, et al. Comparison of compass and Humphrey perimeters in detecting glaucomatous defects. Eur J Ophthalmol. 2016;26(6):598–606. doi: 10.5301/ejo.5000821. PMID: 27375066. Excluded for wrong outcome. [PubMed: 27375066] [CrossRef]
238.
Fortune B, Demirel S, Zhang X, et al. Comparison between multifocal visual evoked potentials (mfVEP) and standard automated perimetry (SAP) in high-risk ocular hypertension and early glaucoma. Iovs. 2006;47. Excluded for wrong publication type. [PubMed: 17325161]
239.
Foster PJ, Buhrmann R, Quigley HA, et al. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86(2):238–42. doi: 10.1136/bjo.86.2.238. PMID: 11815354. Excluded for not a study. [PMC free article: PMC1771026] [PubMed: 11815354] [CrossRef]
240.
Foulsham WS, Fu L, Tatham AJ. Prior rates of visual field loss and lifetime risk of blindness in glaucomatous patients undergoing trabeculectomy. Eye. 2015;29(10):1353–9. doi: 10.1038/eye.2015.156. PMID: 26315699. Excluded for wrong intervention. [PMC free article: PMC4815691] [PubMed: 26315699] [CrossRef]
241.
Frenkel RE, Shin DH, Epstein DL, et al. Laser trabeculoplasty: how little is enough? Ophthalmic Surg Lasers. 1997;28(11):900–4. PMID: 9387175. Excluded for wrong comparator. [PubMed: 9387175]
242.
Fu H, Cheng J, Xu Y, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging. 2018;37(7):1597–605. doi: 10.1109/TMI.2018.2791488. PMID: 29969410. Excluded for wrong study design for key question. [PubMed: 29969410] [CrossRef]
243.
Fu H, Cheng J, Xu Y, et al. Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans Med Imaging. 2018;37(11):2493–501. doi: 10.1109/TMI.2018.2837012. PMID: 29994764. Excluded for wrong study design for key question. [PubMed: 29994764] [CrossRef]
244.
Fu L, Aspinall P, Bennett G, et al. The influence of optical coherence tomography measurements of retinal nerve fiber layer on decision-making in glaucoma diagnosis. Curr Eye Res. 2017;42(4):575–82. doi: 10.1080/02713683.2016.1220591. PMID: 27754717. Excluded for wrong comparator. [PubMed: 27754717] [CrossRef]
245.
Fuertes-Lazaro I, Sanchez-Cano A, Ferreras A, et al. Structure-function relationship between frequency-doubling technology perimetry and optical coherence tomography in glaucoma. Ophthalmologica. 2014;Journal international d’ophtalmologie [international journal of ophthalmology]. 232(4):230–8. PMID: 25427775. Excluded for wrong study design for key question. [PubMed: 25427775]
246.
Fung AT, Reid SE, Jones MP, et al. Meta-analysis of randomised controlled trials comparing latanoprost with brimonidine in the treatment of open-angle glaucoma, ocular hypertension or normal-tension glaucoma. Br J Ophthalmol. 2007;91(1):62–8. doi: 10.1136/bjo.2006.096693. Excluded for wrong comparator. [PMC free article: PMC1857560] [PubMed: 16956912] [CrossRef]
247.
Gandolfi S, Paredes T, Goldberg I, et al. Comparison of a travoprost BAK-free formulation preserved with polyquaternium-1 with BAK-preserved travoprost in ocular hypertension or open-angle glaucoma. Eur J Ophthalmol. 2012;22(1):34–44. doi: 10.5301/ejo.5000001. PMID: 22167541. Excluded for wrong comparator. [PubMed: 22167541] [CrossRef]
248.
Gandolfi SA, Chetta A, Cimino L, et al. Bronchial reactivity in healthy individuals undergoing long-term topical treatment with beta-blockers. Arch Ophthalmol. 2005;123(1):35–8. PMID: 15642809. Excluded for wrong intervention. [PubMed: 15642809]
249.
Gandolfi SA, Vecchi M. Serial administration of adrenergic antagonist and agonist (“pulsatile therapy”) reduces the incidence of long-term drift to timolol in humans. Invest Ophthalmol Vis Sci. 1996;37(4):684–8. PMID: 8595970. Excluded for wrong comparator. [PubMed: 8595970]
250.
Ganekal S. Ganglion cell complex scan in the early prediction of glaucoma. Nepal J Ophthalmol. 2012;4(2):236–41. doi: 10.3126/nepjoph.v4i2.6538. PMID: 22864028. Excluded for wrong study design for key question. [PubMed: 22864028] [CrossRef]
251.
Gangwani RA, Chan J, Lee J, et al. Detection of glaucoma in a cohort of chinese subjects with systemic hypertension. J Ophthalmol. 2013;2013:463710. doi: 10.1155/2013/463710. PMID: 23401742. Excluded for wrong population. [PMC free article: PMC3557632] [PubMed: 23401742] [CrossRef]
252.
Gangwani RA, McGhee SM, Lai JS, et al. Detection of glaucoma and Its association with diabetic retinopathy in a diabetic retinopathy screening program. J Glaucoma. 2016;25(1):101–5. doi: 10.1097/IJG.0000000000000138. PMID: 25264989. Excluded for wrong study design for key question. [PubMed: 25264989] [CrossRef]
253.
Garas A, Vargha P, Hollo G. Comparison of diagnostic accuracy of the RTVue Fourier-domain OCT and the GDx-VCC/ECC polarimeter to detect glaucoma. Eur J Ophthalmol. 2012;22(1):45–54. doi: 10.5301/ejo.5000011. PMID: 22167542. Excluded for wrong intervention. [PubMed: 22167542] [CrossRef]
254.
Garcia G, Colomer A, Naranjo V. Glaucoma detection from raw SD-OCT volumes: a novel approach focused on spatial dependencies. Comput Methods Programs Biomed. 2020:105855. doi: 10.1016/j.cmpb.2020.105855. PMID: 33303289. Excluded for wrong study design for key question. [PubMed: 33303289] [CrossRef]
255.
Garg A, Vickerstaff V, Nathwani N, et al. Primary selective laser trabeculoplasty for open-angle glaucoma and ocular hypertension: clinical outcomes, predictors of success, and safety from the laser in glaucoma and ocular hypertension trial. Ophthalmology. 2019;126(9):1238–48. doi: 10.1016/j.ophtha.2019.04.012. PMID: 31028768. Excluded for wrong study design for key question. [PubMed: 31028768] [CrossRef]
256.
Garg A, Vickerstaff V, Nathwani N, et al. Efficacy of repeat selective laser trabeculoplasty in medication-naive open-angle glaucoma and ocular hypertension during the LiGHT Trial. Ophthalmology. 2020;127(4):467–76. doi: 10.1016/j.ophtha.2019.10.023. PMID: 32005561. Excluded for wrong intervention. [PubMed: 32005561] [CrossRef]
257.
Garudadri CS, Rao HL, Parikh RS, et al. Effect of optic disc size and disease severity on the diagnostic capability of glaucoma imaging technologies in an Indian population. J Glaucoma. 2012;21(7):475–80. doi: 10.1097/IJG.0b013e31821829f1. PMID: 21522023. Excluded for wrong study design for key question. [PubMed: 21522023] [CrossRef]
258.
Gedde SJ, Feuer WJ, Shi W, et al. Treatment outcomes in the primary tube versus trabeculectomy study after 1 year of follow-up. Ophthalmology. 2018;125(5):650–63. doi: 10.1016/j.ophtha.2018.02.003. PMID: 29477688. Excluded for wrong comparator. [PubMed: 29477688] [CrossRef]
259.
Geyer O, Lazar M, Novack GD, et al. Levobunolol compared with timolol: a four-year study. Br J Ophthalmol. 1988;72(12):892–6. doi: 10.1136/bjo.72.12.892. PMID: 3067745. Excluded for wrong comparator. [PMC free article: PMC1041616] [PubMed: 3067745] [CrossRef]
260.
Ghassibi MP, Chien JL, Patthanathamrongkasem T, et al. Glaucoma diagnostic capability of circumpapillary retinal nerve fiber layer thickness in circle scans with different diameters. J Glaucoma. 2017;26(4):335–42. doi: 10.1097/IJG.0000000000000610. PMID: 28355173. Excluded for wrong study design for key question. [PubMed: 28355173] [CrossRef]
261.
Giorgis AT, Alemu AM, Arora S, et al. Results from the first teleglaucoma pilot project in Addis Ababa, Ethiopia. J Glaucoma. 2019;28(8):701–7. doi: 10.1097/ijg.0000000000001271. PMID: 31082882. Excluded for wrong country. [PubMed: 31082882] [CrossRef]
262.
Girkin CA, Liebmann J, Fingeret M, et al. The effects of race, optic disc area, age, and disease severity on the diagnostic performance of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(9):6148–53. doi: 10.1167/iovs.10-6698. PMID: 21421879. Excluded for wrong study design for key question. [PubMed: 21421879] [CrossRef]
263.
Glaucoma Laser Trial Research Group. The Glaucoma Laser Trial: 4. Contralateral effects of timolol on the intraocular pressure of eyes treated with ALT. GLT Research Group. Ophthalmic Surg. 1991;22(6):324–9. PMID: 1896168. Excluded for wrong intervention. [PubMed: 1896168]
264.
Glaucoma Laser Trial Research Group. The Glaucoma Laser Trial (GLT) and glaucoma laser trial follow-up study: 7. Results. Am J Ophthalmol. 1995;120(6):718–31. doi: 10.1016/s0002-9394(14)72725-4. PMID: 8540545. Excluded for wrong intervention. [PubMed: 8540545] [CrossRef]
265.
Goldberg I, Crowston JG, Jasek MC, et al. Intraocular pressure-lowering efficacy of brinzolamide when added to travoprost/timolol fixed combination as adjunctive therapy. J Glaucoma. 2012;21(1):55–9. doi: 10.1097/IJG.0b013e3181fc8142. PMID: 21048504. Excluded for wrong comparator. [PubMed: 21048504] [CrossRef]
266.
Goldberg I, Gil Pina R, Lanzagorta-Aresti A, et al. Bimatoprost 0.03%/timolol 0.5% preservative-free ophthalmic solution versus bimatoprost 0.03%/timolol 0.5% ophthalmic solution (Ganfort) for glaucoma or ocular hypertension: a 12-week randomised controlled trial. Br J Ophthalmol. 2014;98(7):926–31. doi: 10.1136/bjophthalmol-2013-304064. PMID: 24667994. Excluded for wrong comparator. [PMC free article: PMC4078699] [PubMed: 24667994] [CrossRef]
267.
Goldenfeld M, Melamed S, Simon G, et al. Titanium:sapphire laser trabeculoplasty versus argon laser trabeculoplasty in patients with open-angle glaucoma. Ophthalmic Surg Lasers Imaging. 2009;40(3):264–9. doi: 10.3928/15428877-20090430-07. PMID: 19485290. Excluded for wrong comparator. [PubMed: 19485290] [CrossRef]
268.
Gomez-Valverde JJ, Anton A, Fatti G, et al. Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed Opt Express. 2019;10(2):892–913. doi: 10.1364/BOE.10.000892. PMID: 30800522. Excluded for wrong study design for key question. [PMC free article: PMC6377910] [PubMed: 30800522] [CrossRef]
269.
Gonzalez de la Rosa M, Gonzalez-Hernandez M, Sanchez-Garcia M, et al. Oculus-Spark perimetry compared with 3 procedures of glaucoma morphologic analysis (GDx, HRT, and OCT). Eur J Ophthalmol. 2013;23(3):316–23. doi: 10.5301/ejo.5000233. PMID: 23397160. Excluded for wrong study design for key question. [PubMed: 23397160] [CrossRef]
270.
Goukon H, Hirasawa K, Kasahara M, et al. Comparison of Humphrey Field Analyzer and imo visual field test results in patients with glaucoma and pseudo-fixation loss. PLoS One. 2019;14(11):e0224711. doi: 10.1371/journal.pone.0224711. PMID: 31697732. Excluded for wrong comparator. [PMC free article: PMC6837373] [PubMed: 31697732] [CrossRef]
271.
Graham SL, Klistorner AI, Goldberg I. Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Ophthalmol. 2005;123(6):729–39. PMID: 15955974. Excluded for wrong intervention. [PubMed: 15955974]
272.
Gray TA, Fenerty C, Harper R, et al. Preliminary survey of educational support for patients prescribed ocular hypotensive therapy. Eye (Lond). 2010;24(12):1777–86. doi: 10.1038/eye.2010.121. PMID: 20829888. Excluded for wrong intervention. [PubMed: 20829888] [CrossRef]
273.
Grayson D, Chi T, Liebmann J, et al. Initial argon laser trabeculoplasty to the inferior vs superior half of trabecular meshwork. Arch Ophthalmol. 1994;112(4):446–7. doi: 10.1001/archopht.1994.01090160020004. PMID: 8155044. Excluded for wrong comparator. [PubMed: 8155044] [CrossRef]
274.
Grayson DK, Ritch R, Camras C, et al. Influence of treatment protocol on the long-term efficacy of argon laser trabeculoplasty. J Glaucoma. 1993;2(1):7–12. PMID: 19920476. Excluded for wrong comparator. [PubMed: 19920476]
275.
Greig SL, Deeks ED. Brinzolamide/brimonidine: a review of its use in patients with open-angle glaucoma or ocular hypertension. Drugs Aging. 2015;32(3):251–60. doi: 10.1007/s40266-015-0250-4. PMID: 25732405. Excluded for not a study. [PubMed: 25732405] [CrossRef]
276.
Guerri N, Polo V, Larrosa JM, et al. Performance of imaging devices versus optic disc and fiber layer photography in a clinical practice guideline for glaucoma diagnosis. Eur J Ophthalmol. 2012;22(4):554–62. doi: 10.5301/ejo.5000075. PMID: 22081672. Excluded for wrong study design for key question. [PubMed: 22081672] [CrossRef]
277.
Gunn PJG, Marks JR, Konstantakopoulou E, et al. Clinical effectiveness of the manchester glaucoma enhanced referral scheme. Br J Ophthalmol. 2019;103(8):1066–71. doi: 10.1136/bjophthalmol-2018-312385. PMID: 30309913. Excluded for wrong study design for key question. [PMC free article: PMC6678050] [PubMed: 30309913] [CrossRef]
278.
Guo F, Li W, Tang J, et al. Automated glaucoma screening method based on image segmentation and feature extraction. Med Biol Eng Comput. 2020;58(10):2567–86. doi: 10.1007/s11517-020-02237-2. PMID: 32820355. Excluded for wrong population. [PubMed: 32820355] [CrossRef]
279.
Guo F, Li W, Zhao X, et al. A mobile app for Glaucoma diagnosis and its possible clinical applications. BMC Med Inform Decis Mak. 2020;20(Suppl 3):128. doi: 10.1186/s12911-020-1123-2. PMID: 32646472. Excluded for wrong study design for key question. [PMC free article: PMC7346323] [PubMed: 32646472] [CrossRef]
280.
Gupta SC, Sinha SK, Dagar AB. Evaluation of the effectiveness of diagnostic & management decision by teleophthalmology using indigenous equipment in comparison with in-clinic assessment of patients. Indian J Med Res. 2013;138(4):531–5. PMID: 24434260. Excluded for wrong intervention. [PMC free article: PMC3868066] [PubMed: 24434260]
281.
Gutierrez P, Wilson MR, Johnson C, et al. Influence of glaucomatous visual field loss on health-related quality of life. Arch Ophthalmol. 1997;115(6):777–84. doi: 10.1001/archopht.1997.01100150779014. PMID: 9194730. Excluded for wrong study design for key question. [PubMed: 9194730] [CrossRef]
282.
Halpern MT, Covert DW, Robin AL. Projected impact of travoprost versus both timolol and latanoprost on visual field deficit progression and costs among black glaucoma subjects. Trans Am Ophthalmol Soc. 2002;100:109–17; discussion 17-8. PMID: 12545683. Excluded for wrong comparator. [PMC free article: PMC1358952] [PubMed: 12545683]
283.
Han SB, Yang HK, Oh JE, et al. Efficacy of automated computer-aided diagnosis of retinal nerve fibre layer defects in healthcare screening. Br J Ophthalmol. 2017;101(3):295–8. doi: 10.1136/bjophthalmol-2015-307527. PMID: 27281753. Excluded for wrong comparator. [PubMed: 27281753] [CrossRef]
284.
Harasymowycz PJ, Papamatheakis DG, Fansi AK, et al. Validity of screening for glaucomatous optic nerve damage using confocal scanning laser ophthalmoscopy (Heidelberg Retina Tomograph II) in high-risk populations: a pilot study. Ophthalmology. 2005;112(12):2164–71. doi: 10.1016/j.ophtha.2005.09.009. PMID: 16325710. Excluded for wrong intervention. [PubMed: 16325710] [CrossRef]
285.
Hark L, Acito M, Adeghate J, et al. Philadelphia telemedicine glaucoma detection and follow-up study: ocular findings at two health centers. J Health Care Poor Underserved. 2018;29(4):1400–15. doi: 10.1353/hpu.2018.0103. PMID: 30449754. Excluded for wrong study design for key question. [PubMed: 30449754] [CrossRef]
286.
Hark LA, Katz LJ, Myers JS, et al. Philadelphia telemedicine glaucoma detection and follow-up study: methods and screening results. Am J Ophthalmol. 2017;181:114–24. doi: 10.1016/j.ajo.2017.06.024. PMID: 28673747. Excluded for wrong outcome. [PubMed: 28673747] [CrossRef]
287.
Harper RA, Hill AR, Reeves BC. Effectiveness of unsupervised oculokinetic perimetry for detecting glaucomatous visual field defects. Ophthalmic Physiol Opt. 1994;14(2):199–202. doi: 10.1111/j.1475-1313.1994.tb00109.x. PMID: 8022603. Excluded for wrong study design for key question. [PubMed: 8022603] [CrossRef]
288.
Hasanreisoglu M, Priel E, Naveh L, et al. Digital versus film stereo-photography for assessment of the optic nerve head in glaucoma and glaucoma suspect patients. J Glaucoma. 2013;22(3):238–42. doi: 10.1097/IJG.0b013e31823298da. PMID: 21946551. Excluded for wrong comparator. [PubMed: 21946551] [CrossRef]
289.
Hasebe Y, Kashiwagi K, Tsumura T, et al. Changes in adherence and associated factors among patients on newly introduced prostaglandin analog and timolol fixed-combination therapy. Patient Prefer Adherence. 2018;12:1567–77. doi: 10.2147/PPA.S168921. PMID: 30214159. Excluded for wrong outcome. [PMC free article: PMC6118338] [PubMed: 30214159] [CrossRef]
290.
Hashimoto Y, Asaoka R, Kiwaki T, et al. Deep learning model to predict visual field in central 10degree from optical coherence tomography measurement in glaucoma. Br J Ophthalmol. 2021;105(4):507–13. doi: 10.1136/bjophthalmol-2019-315600. PMID: 32593978. Excluded for wrong study design for key question. [PubMed: 32593978] [CrossRef]
291.
Hatt S, Wormald R, Burr J. Screening for prevention of optic nerve damage due to chronic open angle glaucoma. Cochrane Database Syst Rev. 2006 (4):Cd006129. doi: 10.1002/14651858.CD006129.pub2. PMID: 17054274. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC8407423] [PubMed: 17054274] [CrossRef]
292.
Hauser MA, Allingham RR, Aung T, et al. Association of genetic variants with primary open-angle glaucoma among individuals with African ancestry. JAMA. 2019;322(17):1682–91. doi: 10.1001/jama.2019.16161. PMID: 31688885. Excluded for wrong study design for key question. [PMC free article: PMC6865235] [PubMed: 31688885] [CrossRef]
293.
He M, Wang W, Huang W. Efficacy and tolerability of the fixed combinations latanoprost/timolol versus dorzolamide/timolol in patients with elevated intraocular pressure: a meta-analysis of randomized controlled trials. PLoS One. 2013;8(12):e83606. doi: 10.1371/journal.pone.0083606. PMID: 24349536. Excluded for wrong comparator. [PMC free article: PMC3859645] [PubMed: 24349536] [CrossRef]
294.
Healey PR, Lee AJ, Aung T, et al. Diagnostic accuracy of the Heidelberg Retina Tomograph for glaucoma a population-based assessment. Ophthalmology. 2010;117(9):1667–73. doi: 10.1016/j.ophtha.2010.07.001. PMID: 20816247. Excluded for wrong intervention. [PubMed: 20816247] [CrossRef]
295.
Heeg GP, Blanksma LJ, Hardus PL, et al. The Groningen Longitudinal Glaucoma Study. I. Baseline sensitivity and specificity of the frequency doubling perimeter and the GDx nerve fibre analyser. Acta Ophthalmol Scand. 2005;83(1):46–52. doi: 10.1111/j.1600-0420.2005.00423.x. PMID: 15715556. Excluded for wrong study design for key question. [PubMed: 15715556] [CrossRef]
296.
Heeg GP, Stoutenbeek R, Jansonius NM. Strategies for improving the diagnostic specificity of the frequency doubling perimeter. Acta Ophthalmol Scand. 2005;83(1):53–6. doi: 10.1111/j.1600-0420.2005.00424.x. PMID: 15715557. Excluded for wrong study design for key question. [PubMed: 15715557] [CrossRef]
297.
Heijl A, Bengtsson B, Chauhan BC, et al. A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients. Ophthalmology. 2008;115(9):1557–65. doi: 10.1016/j.ophtha.2008.02.005. PMID: 18378317. Excluded for wrong comparator. [PubMed: 18378317] [CrossRef]
298.
Heijl A, Bengtsson B, Hyman L, et al. Natural history of open-angle glaucoma. Ophthalmology. 2009;116(12):2271–6. doi: 10.1016/j.ophtha.2009.06.042. PMID: 19854514. Excluded for wrong study design for key question. [PubMed: 19854514] [CrossRef]
299.
Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120(10):1268–79. doi: 10.1001/archopht.120.10.1268. Excluded for wrong intervention. [PubMed: 12365904] [CrossRef]
300.
Hemelings R, Elen B, Barbosa-Breda J, et al. Accurate prediction of glaucoma from colour fundus images with a convolutional neural network that relies on active and transfer learning. Acta Ophthalmol. 2020;98(1):e94–e100. doi: 10.1111/aos.14193. PMID: 31344328. Excluded for wrong study design for key question. [PubMed: 31344328] [CrossRef]
301.
Herman DC, Gordon MO, Beiser JA, et al. Topical ocular hypotensive medication and lens opacification: evidence from the ocular hypertension treatment study. Am J Ophthalmol. 2006;142(5):800–10. doi: 10.1016/j.ajo.2006.06.052. PMID: 17056362. Excluded for wrong population. [PMC free article: PMC1976472] [PubMed: 17056362] [CrossRef]
302.
Hiller R, Kahn HA. Blindness from glaucoma. Am J Ophthalmol. 1975;80(1):62–9. doi: 10.1016/0002-9394(75)90870-3. PMID: 1155551. Excluded for wrong study design for key question. [PubMed: 1155551] [CrossRef]
303.
Hirasawa K, Shoji N, Kasahara M, et al. Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients. Sci Rep. 2016;6:25563. doi: 10.1038/srep25563. PMID: 27149561. Excluded for wrong comparator. [PMC free article: PMC4857736] [PubMed: 27149561] [CrossRef]
304.
Hirasawa K, Takahashi N, Matsumura K, et al. Diagnostic capability of pulsar perimetry in pre-perimetric and early glaucoma. Sci Rep. 2017;7(1):3293. doi: 10.1038/s41598-017-03550-x. PMID: 28607414. Excluded for wrong study design for key question. [PMC free article: PMC5468287] [PubMed: 28607414] [CrossRef]
305.
Hirasawa K, Takahashi N, Satou T, et al. Comparison of size modulation standard automated perimetry and conventional standard automated perimetry with a 10-2 test program in glaucoma patients. Curr Eye Res. 2017;42(8):1160–8. doi: 10.1080/02713683.2017.1293114. PMID: 28441081. Excluded for wrong comparator. [PubMed: 28441081] [CrossRef]
306.
Hirooka K, Nitta E, Ukegawa K, et al. Vision-related quality of life following glaucoma filtration surgery. BMC Ophthalmol. 2017;17(1):66. doi: 10.1186/s12886-017-0466-7. PMID: 28499445. Excluded for wrong intervention. [PMC free article: PMC5429566] [PubMed: 28499445] [CrossRef]
307.
Hirooka K, Sato S, Nitta E, et al. The relationship between vision-related quality of life and visual function in glaucoma patients. J Glaucoma. 2016;25(6):505–9. doi: 10.1097/IJG.0000000000000372. PMID: 26766401. Excluded for wrong study design for key question. [PMC free article: PMC4888932] [PubMed: 26766401] [CrossRef]
308.
Hodge WG, Lachaine J, Steffensen I, et al. The efficacy and harm of prostaglandin analogues for IOP reduction in glaucoma patients compared to dorzolamide and brimonidine: a systematic review. Br J Ophthalmol. 2008;92(1):7–12. doi: 10.1136/bjo.2007.123737. Excluded for wrong comparator. [PubMed: 18156371] [CrossRef]
309.
Hoesl LM, Tornow RP, Schrems WA, et al. Glaucoma diagnostic performance of GDxVCC and spectralis OCT on eyes with atypical retardation pattern. J Glaucoma. 2013;22(4):317–24. doi: 10.1097/IJG.0b013e318237c8c5. PMID: 22027931. Excluded for wrong study design for key question. [PubMed: 22027931] [CrossRef]
310.
Hoevenaars JG, Schouten JS, van den Borne B, et al. Knowledge base and preferred methods of obtaining knowledge of glaucoma patients. Eur J Ophthalmol. 2005;15(1):32–40. doi: 10.1177/112067210501500106. PMID: 15751237. Excluded for wrong intervention. [PubMed: 15751237] [CrossRef]
311.
Holdsworth E, Datta J, Marks D, et al. A mixed-methods evaluation of a community-based glaucoma check service in Hackney, London, UK. Ophthalmic Epidemiol. 2017;24(4):248–56. doi: 10.1080/09286586.2016.1272702. PMID: 28287859. Excluded for wrong study design for key question. [PubMed: 28287859] [CrossRef]
312.
Hollands H, Johnson D, Hollands S, et al. Do findings on routine examination identify patients at risk for primary open-angle glaucoma? The rational clinical examination systematic review. JAMA. 2013;309(19):2035–42. doi: 10.1001/jama.2013.5099. PMID: 23677315. Excluded for wrong study design for key question. [PubMed: 23677315] [CrossRef]
313.
Hollo G, Kothy P, Geczy A, et al. Health anxiety in a non-population-based, pre-publicised glaucoma screening exercise. Eye. 2010;24(4):699–705. doi: 10.1038/eye.2009.131. PMID: 19521429. Excluded for wrong study design for key question. [PubMed: 19521429] [CrossRef]
314.
Hollows FC, Graham PA. Intra-ocular pressure, glaucoma, and glaucoma suspects in a defined population. Br J Ophthalmol. 1966;50(10):570–86. doi: 10.1136/bjo.50.10.570. PMID: 5954089. Excluded for wrong outcome. [PMC free article: PMC506274] [PubMed: 5954089] [CrossRef]
315.
Hong S, Chung W, Hong YJ, et al. Discriminating ability of Humphrey Matrix Perimetry in early glaucoma patients. Ophthalmologica. 2007;221(3):195–9. doi: 10.1159/000099301. PMID: 17440283. Excluded for wrong study design for key question. [PubMed: 17440283] [CrossRef]
316.
Hong SW, Lee SB, Jee DH, et al. Evaluation of interocular retinal nerve fiber layer thickness symmetry as a diagnostic modality for glaucoma. J Glaucoma. 2016;25(9):e763–71. doi: 10.1097/IJG.0000000000000496. PMID: 27513902. Excluded for wrong study design for key question. [PubMed: 27513902] [CrossRef]
317.
Honjo M, Omodaka K, Ishizaki T, et al. Retinal thickness and the structure/function relationship in the eyes of older adults with glaucoma. PLoS One. 2015;10(10):e0141293. doi: 10.1371/journal.pone.0141293. PMID: 26505757. Excluded for wrong study design for key question. [PMC free article: PMC4624632] [PubMed: 26505757] [CrossRef]
318.
Honrubia F, García-Sánchez J, Polo V, et al. Conjunctival hyperaemia with the use of latanoprost versus other prostaglandin analogues in patients with ocular hypertension or glaucoma: a meta-analysis of randomised clinical trials. Br J Ophthalmol. 2009;93(3):316–21. doi: 10.1136/bjo.2007.135111. Excluded for wrong comparator. [PMC free article: PMC2639645] [PubMed: 19019922] [CrossRef]
319.
Horn FK, Mardin CY, Bendschneider D, et al. Frequency doubling technique perimetry and spectral domain optical coherence tomography in patients with early glaucoma. Eye. 2011;25(1):17–29. doi: 10.1038/eye.2010.155. PMID: 21102494. Excluded for wrong study design for key question. [PMC free article: PMC3144638] [PubMed: 21102494] [CrossRef]
320.
Horn FK, Tornow RP, Junemann AG, et al. Perimetric measurements with flicker-defined form stimulation in comparison with conventional perimetry and retinal nerve fiber measurements. Invest Ophthalmol Vis Sci. 2014;55(4):2317–23. doi: 10.1167/iovs.13-12469. PMID: 24355823. Excluded for wrong study design for key question. [PubMed: 24355823] [CrossRef]
321.
Hou H, Moghimi S, Zangwill LM, et al. Macula vessel density and thickness in early primary open-angle glaucoma. Am J Ophthalmol. 2019;199:120–32. doi: 10.1016/j.ajo.2018.11.012. PMID: 30496723. Excluded for wrong study design for key question. [PMC free article: PMC6382614] [PubMed: 30496723] [CrossRef]
322.
Hoy SM. Latanoprostene bunod ophthalmic solution 0.024%: a review in open-angle glaucoma and ocular hypertension. Drugs. 2018;78(7):773–80. doi: 10.1007/s40265-018-0914-6. PMID: 29761382. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC5976683] [PubMed: 29761382] [CrossRef]
323.
Huang A, Smith S, Quigley H. A comparison of the dicon screening field with the Humphrey threshold field in detecting glaucoma. Iovs. 1996;37. Excluded for wrong publication type.
324.
Huang J, Yapp M, Hennessy MP, et al. Impact of referral refinement on management of glaucoma suspects in Australia. Clin Experiment Ophthalmol. 2020;103(5):675–83. doi: 10.1111/cxo.13030. PMID: 31852027. Excluded for wrong intervention. [PubMed: 31852027] [CrossRef]
325.
Huang JY, Pekmezci M, Mesiwala N, et al. Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with Fourier-domain optical coherence tomography. J Glaucoma. 2011;20(2):87–94. doi: 10.1097/IJG.0b013e3181d787b6. PMID: 20577117. Excluded for wrong study design for key question. [PubMed: 20577117] [CrossRef]
326.
Hugkulstone CE. Argon laser trabeculoplasty with standard and long duration. Acta Ophthalmol (Copenh). 1990;68(5):579–81. doi: 10.1111/j.1755-3768.1990.tb04791.x. PMID: 2275355. Excluded for wrong comparator. [PubMed: 2275355] [CrossRef]
327.
Hwang YH, Kim YY. Glaucoma diagnostic ability of quadrant and clock-hour neuroretinal rim assessment using cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(4):2226–34. doi: 10.1167/iovs.11-8689. PMID: 22410556. Excluded for wrong study design for key question. [PubMed: 22410556] [CrossRef]
328.
Hyman LG, Komaroff E, Heijl A, et al. Treatment and vision-related quality of life in the early manifest glaucoma trial. Ophthalmology. 2005;112(9):1505–13. doi: 10.1016/j.ophtha.2005.03.028. Excluded for wrong intervention. [PubMed: 16019074] [CrossRef]
329.
Ichhpujani P, Thakur S, Sahi RK, et al. Validating tablet perimetry against standard Humphrey Visual Field Analyzer for glaucoma screening in Indian population. Indian J Ophthalmol. 2021;69(1):87–91. doi: 10.4103/ijo.IJO_1847_19. PMID: 33323582. Excluded for wrong study design for key question. [PMC free article: PMC7926121] [PubMed: 33323582] [CrossRef]
330.
Ieong A, Murdoch I, Cousens S, et al. Sensitivity and specificity of two glaucoma case-finding strategies for optometrists. Ophthalmic Physiol Opt. 2003;23(4):341–6. doi: 10.1046/j.1475-1313.2003.00124.x. PMID: 12828624. Excluded for wrong study design for key question. [PubMed: 12828624] [CrossRef]
331.
Inoue K, Ishida K, Tomita G, et al. A scoping review and network meta-analysis for efficacy and safety of glaucoma medication in Japanese patients. Jpn J Ophthalmol. 2020;64(2):103–13. doi: 10.1007/s10384-019-00708-0. PMID: 32096022. Excluded for wrong comparator. [PubMed: 32096022] [CrossRef]
332.
Inoue K, Shiokawa M, Wakakura M, et al. Deepening of the upper eyelid sulcus caused by 5 types of prostaglandin analogs. J Glaucoma. 2013;22(8):626–31. doi: 10.1097/IJG.0b013e31824d8d7c. PMID: 22936280. Excluded for wrong study design for key question. [PubMed: 22936280] [CrossRef]
333.
Iyer JV, Boland MV, Jefferys J, et al. Defining glaucomatous optic neuropathy using objective criteria from structural and functional testing. Br J Ophthalmol. 2020;22:22. doi: 10.1136/bjophthalmol-2020-316237. PMID: 32699052. Excluded for wrong population. [PubMed: 32699052] [CrossRef]
334.
Jammal AA, Thompson AC, Mariottoni EB, et al. Human versus machine: comparing a deep learning algorithm to human gradings for detecting glaucoma on fundus photographs. Am J Ophthalmol. 2020;211:123–31. doi: 10.1016/j.ajo.2019.11.006. PMID: 31730838. Excluded for wrong study design for key question. [PMC free article: PMC7073295] [PubMed: 31730838] [CrossRef]
335.
Jampel HD, Lubomski LH, Friedman DS, et al. Treatment of coexisting cataract and glaucoma. Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]. 2003. Excluded for wrong intervention.
336.
Jan S, Nazim M, Karim S, et al. Intravitreal bevacizumab: indications and complications. J Ayub Med Coll Abbottabad. 2016;28(2):364–8. PMID: 28718542. Excluded for wrong study design for key question. [PubMed: 28718542]
337.
Januleviciene I, Kuzmiene L, Sliesoraityte I. Comparison of intraocular pressure fluctuations measured by goldmann applanation tonometer and pulsatile ocular blood flow analyser. Int J Biomed Sci. 2006;2(4):428–33. PMID: 23675012. Excluded for wrong comparator. [PMC free article: PMC3614641] [PubMed: 23675012]
338.
Janz NK, Wren PA, Guire KE, et al. Fear of blindness in the Collaborative Initial Glaucoma Treatment Study. Patterns and correlates over time. Ophthalmology. 2007;114(12):2213–20. doi: 10.1016/j.ophtha.2007.02.014. Excluded for wrong comparator. [PubMed: 17490746] [CrossRef]
339.
Janz NK, Wren PA, Lichter PR, et al. The collaborative initial glaucoma treatment study: interim quality of life findings after initial medical or surgical treatment of glaucoma. Ophthalmology. 2001;108(11):1954–65. doi: 10.1016/S0161-6420(01)00874-0. Excluded for wrong comparator. [PubMed: 11713062] [CrossRef]
340.
Javitt J, Goldberg I. Comparison of the clinical success rates and quality of life effects of brimonidine tartrate 0.2% and betaxolol 0.25% suspension in patients with open-angle glaucoma and ocular hypertension. Brimonidine Outcomes Study Group II. J Glaucoma. 2000;9(5):398–408. doi: 10.1097/00061198-200010000-00009. PMID: 11039742. Excluded for wrong comparator. [PubMed: 11039742] [CrossRef]
341.
Javitt JC, Schiffman RM, Atlas W, et al. Clinical success and quality of life with brimonidine 0.2% or timolol 0.5% used twice daily in glaucoma or ocular hypertension: a randomized clinical trial. J Glaucoma. 2000;9(3):224–34. doi: 10.1097/00061198-200006000-00005. Excluded for wrong comparator. [PubMed: 10877373] [CrossRef]
342.
Jay JL, Allan D. The benefit of early trabeculectomy versus conventional management in primary open angle glaucoma relative to severity of disease. Eye (Lond). 1989;3 (Pt 5):528–35. doi: 10.1038/eye.1989.84. PMID: 2698360. Excluded for wrong comparator. [PubMed: 2698360] [CrossRef]
343.
Jea SY, Francis BA, Vakili G, et al. Ab interno trabeculectomy versus trabeculectomy for open-angle glaucoma. Ophthalmology. 2012;119(1):36–42. doi: 10.1016/j.ophtha.2011.06.046. PMID: 21982416. Excluded for wrong intervention. [PubMed: 21982416] [CrossRef]
344.
Jensen H, Tubaek G. Elderly people need an eye examination before entering nursing homes. Dan Med J. 2017;64(2) PMID: 28157061. Excluded for wrong study design for key question. [PubMed: 28157061]
345.
Jeoung JW, Kim TW, Weinreb RN, et al. Diagnostic ability of spectral-domain versus time-domain optical coherence tomography in preperimetric glaucoma. J Glaucoma. 2014;23(5):299–306. doi: 10.1097/IJG.0b013e3182741cc4. PMID: 23377582. Excluded for wrong study design for key question. [PubMed: 23377582] [CrossRef]
346.
Jimenez-Aragon F, Garcia-Martin E, Larrosa-Lopez R, et al. Role of color doppler imaging in early diagnosis and prediction of progression in glaucoma. Biomed Res Int. 2013;2013:871689. doi: 10.1155/2013/871689. PMID: 24151625. Excluded for wrong study design for key question. [PMC free article: PMC3789324] [PubMed: 24151625] [CrossRef]
347.
Jin K, Zhou M, Wang S, et al. Computer-aided diagnosis based on enhancement of degraded fundus photographs. Acta Ophthalmol. 2018;96(3):e320–e6. doi: 10.1111/aos.13573. PMID: 29090844. Excluded for wrong outcome. [PubMed: 29090844] [CrossRef]
348.
Jindal A, Ctori I, Virgili G, et al. Non-contact tests for identifying people at risk of primary angle closure glaucoma. Cochrane Database Syst Rev. 2020;5:CD012947. doi: 10.1002/14651858.CD012947.pub2. PMID: 32468576. Excluded for wrong intervention. [PMC free article: PMC7390269] [PubMed: 32468576] [CrossRef]
349.
John D, Parikh R. Cost-effectiveness and cost utility of community screening for glaucoma in urban India. Public Health. 2017;148:37–48. doi: 10.1016/j.puhe.2017.02.016. PMID: 28404532. Excluded for wrong outcome. [PubMed: 28404532] [CrossRef]
350.
Johnson CA, Cioffi GA, Van Buskirik EM. Evaluation of two screening tests for frequency doubling technology perimetry. 13th International Perimetric Society Meeting. 1999:103. Excluded for wrong study design for key question.
351.
Johnson CA, Thapa S, George Kong YX, et al. Performance of an iPad application to detect moderate and advanced visual field loss in Nepal. Am J Ophthalmol. 2017;182:147–54. doi: 10.1016/j.ajo.2017.08.007. PMID: 28844641. Excluded for wrong study design for key question. [PubMed: 28844641] [CrossRef]
352.
Johnson KA, Meyer J, Yazar S, et al. Real-time teleophthalmology in rural western Australia. Aust J Rural Health. 2015;23(3):142–9. doi: 10.1111/ajr.12150. PMID: 25851959. Excluded for wrong outcome. [PubMed: 25851959] [CrossRef]
353.
Jung JH, Seo JH, Kang MS, et al. Comparison of glaucoma diagnostic ability of ganglion cell-inner plexiform layer according to the range around the fovea. BMC Ophthalmol. 2019;19(1):270. doi: 10.1186/s12886-019-1283-y. PMID: 31888556. Excluded for wrong study design for key question. [PMC free article: PMC6937720] [PubMed: 31888556] [CrossRef]
354.
Kaiser HJ, Flammer J, Stumpfig D, et al. Longterm visual field follow-up of glaucoma patients treated with beta-blockers. Surv Ophthalmol. 1994;38 Suppl:S156–9; discussion S60. doi: 10.1016/0039-6257(94)90060-4. PMID: 7940137. Excluded for wrong comparator. [PubMed: 7940137] [CrossRef]
355.
Kamdeu Fansi AA, Agoumi Y, Harasymowycz PJ. Screening for glaucoma with moorfields regression analysis and glaucoma probability score in confocal scanning laser ophthalmoscopy. Can J Ophthalmol. 2011;46(3):254–60. doi: 10.1016/j.jcjo.2011.05.005. PMID: 21784211. Excluded for wrong intervention. [PubMed: 21784211] [CrossRef]
356.
Kanamori A, Nagai-Kusuhara A, Escano MF, et al. Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage. Graefes Arch Clin Exp Ophthalmol. 2006;244(1):58–68. doi: 10.1007/s00417-005-0029-0. PMID: 16044326. Excluded for results not usable or not fully reported. [PubMed: 16044326] [CrossRef]
357.
Kansal V, Armstrong JJ, Pintwala R, et al. Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS One. 2018;13(1):e0190621. doi: 10.1371/journal.pone.0190621. PMID: 29300765. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC5754143] [PubMed: 29300765] [CrossRef]
358.
Kaplan-Messas A, Cohen Y, Blumenthal EZ, et al. Trabeculectomy and phaco-trabeculectomy with and without peripheral iridectomy. Eur J Ophthalmol. 2009;19(2):231–4. Excluded for wrong intervention. [PubMed: 19253239]
359.
Kapoor R, Yuksel-Elgin C, Patel V, et al. Detecting common eye diseases using the first teleophthalmology globechek kiosk in the United States: a pilot study. Asia Pac J Ophthalmol (Phila). 2020;9(4):315–25. doi: 10.1097/APO.0000000000000295. PMID: 32694347. Excluded for wrong outcome. [PubMed: 32694347] [CrossRef]
360.
Kass MA. Timolol treatment prevents or delays glaucomatous visual field loss in individuals with ocular hypertension: a five-year, randomized, double-masked, clinical trial. Trans Am Ophthalmol Soc. 1989;87:598–618. PMID: 2562546. Excluded for wrong comparator. [PMC free article: PMC1298559] [PubMed: 2562546]
361.
Kassam F, Amin S, Sogbesan E, et al. The use of teleglaucoma at the University of Alberta. J Telemed Telecare. 2012;18(7):367–73. doi: 10.1258/jtt.2012.120313. PMID: 22977196. Excluded for not a study. [PubMed: 22977196] [CrossRef]
362.
Kassam F, Sogbesan E, Boucher S, et al. Collaborative care and teleglaucoma: a novel approach to delivering glaucoma services in Northern Alberta, Canada. Clin Exp Optom. 2013;96(6):577–80. doi: 10.1111/cxo.12065. PMID: 23763510. Excluded for not a study. [PubMed: 23763510] [CrossRef]
363.
Kassam F, Yogesan K, Sogbesan E, et al. Teleglaucoma: improving access and efficiency for glaucoma care. Middle East Afr J Ophthalmol. 2013;20(2):142–9. doi: 10.4103/0974-9233.110619. PMID: 23741133. Excluded for not a study. [PMC free article: PMC3669491] [PubMed: 23741133] [CrossRef]
364.
Katz G, Dubiner H, Samples J, et al. Three-month randomized trial of fixed-combination brinzolamide, 1%, and brimonidine, 0.2%. JAMA Ophthalmol. 2013;131(6):724–30. doi: 10.1001/jamaophthalmol.2013.188. PMID: 23579344. Excluded for wrong intervention. [PubMed: 23579344] [CrossRef]
365.
Katz J, Sommer A, Gaasterland DE, et al. Comparison of analytic algorithms for detecting glaucomatous visual field loss. Arch Ophthalmol. 1991;109(12):1684–9. doi: 10.1001/archopht.1991.01080120068028. PMID: 1841576. Excluded for wrong outcome. [PubMed: 1841576] [CrossRef]
366.
Katz LJ, Rauchman SH, Cottingham AJ, Jr., et al. Fixed-combination brimonidine-timolol versus latanoprost in glaucoma and ocular hypertension: a 12-week, randomized, comparison study. Curr Med Res Opin. 2012;28(5):781–8. doi: 10.1185/03007995.2012.681036. PMID: 22458918. Excluded for wrong intervention. [PubMed: 22458918] [CrossRef]
367.
Katz LJ, Steinmann WC, Kabir A, et al. Selective laser trabeculoplasty versus medical therapy as initial treatment of glaucoma: a prospective, randomized trial. J Glaucoma. 2012;21(7):460–8. doi: 10.1097/IJG.0b013e318218287f. PMID: 21543992. Excluded for wrong population. [PubMed: 21543992] [CrossRef]
368.
Kaufman PL. Latanoprostene bunod ophthalmic solution 0.024% for IOP lowering in glaucoma and ocular hypertension. Expert Opin Pharmacother. 2017;18(4):433–44. PMID: 28234563. Excluded for not a study. [PubMed: 28234563]
369.
Kawase K, Vittitow JL, Weinreb RN, et al. Long-term safety and efficacy of latanoprostene bunod 0.024% in Japanese subjects with open-angle glaucoma or ocular hypertension: the JUPITER Study. Adv Ther. 2016;33(9):1612–27. doi: 10.1007/s12325-016-0385-7. PMID: 27457469. Excluded for wrong study design for key question. [PMC free article: PMC5020123] [PubMed: 27457469] [CrossRef]
370.
Kazemi A, McLaren JW, Kopczynski CC, et al. The effects of netarsudil ophthalmic solution on aqueous humor dynamics in a randomized study in humans. J Ocul Pharmacol Ther. 2018;34(5):380–6. doi: 10.1089/jop.2017.0138. PMID: 29469601. Excluded for wrong population. [PMC free article: PMC5995263] [PubMed: 29469601] [CrossRef]
371.
Kee AR, Yip VCH, Tay ELT, et al. Comparison of two different optical coherence tomography angiography devices in detecting healthy versus glaucomatous eyes - an observational cross-sectional study. BMC Ophthalmol. 2020;20(1):440. doi: 10.1186/s12886-020-01701-9. PMID: 33167902. Excluded for wrong study design for key question. [PMC free article: PMC7653880] [PubMed: 33167902] [CrossRef]
372.
Keel S, Wu J, Lee PY, et al. Visualizing deep learning models for the detection of referable diabetic retinopathy and glaucoma. JAMA Ophthalmol. 2019;137(3):288–92. doi: 10.1001/jamaophthalmol.2018.6035. PMID: 30570648. Excluded for wrong study design for key question. [PMC free article: PMC6440231] [PubMed: 30570648] [CrossRef]
373.
Khawaja AP, Chua S, Hysi PG, et al. Comparison of associations with different macular inner retinal thickness parameters in a large cohort: the UK Biobank. Ophthalmology. 2020;127(1):62–71. doi: 10.1016/j.ophtha.2019.08.015. PMID: 31585827. Excluded for wrong comparator. [PubMed: 31585827] [CrossRef]
374.
Khong JJ, Dimitrov PN, Rait J, et al. Can the specificity of the FDT for glaucoma be improved by confirming abnormal results? J Glaucoma. 2001;10(3):199–202. doi: 10.1097/00061198-200106000-00009. PMID: 11442182. Excluded for wrong intervention. [PubMed: 11442182] [CrossRef]
375.
Khoueir Z, Jassim F, Poon LY, et al. Diagnostic capability of peripapillary three-dimensional retinal nerve fiber layer volume for glaucoma using optical coherence tomography volume scans. Am J Ophthalmol. 2017;182:180–93. doi: 10.1016/j.ajo.2017.08.001. PMID: 28807732. Excluded for wrong study design for key question. [PMC free article: PMC5610646] [PubMed: 28807732] [CrossRef]
376.
Kiage D, Kherani IN, Gichuhi S, et al. The Muranga Teleophthalmology Study: comparison of virtual (teleglaucoma) with in-person clinical assessment to diagnose glaucoma. Middle East Afr J Ophthalmol. 2013;20(2):150–7. doi: 10.4103/0974-9233.110604. PMID: 23741134. Excluded for wrong intervention. [PMC free article: PMC3669492] [PubMed: 23741134] [CrossRef]
377.
Kiddee W, Atthavuttisilp S. The effects of selective laser trabeculoplasty and travoprost on circadian intraocular pressure fluctuations: a randomized clinical trial. Medicine. 2017;96(6):e6047. doi: 10.1097/MD.0000000000006047. PMID: 28178150. Excluded for wrong population. [PMC free article: PMC5313007] [PubMed: 28178150] [CrossRef]
378.
Kim DH, Addis VM, Pan W, et al. Comparative effectiveness of generic latanoprost versus branded prostaglandin analogs for primary open angle glaucoma. Ophthalmic Epidemiol. 2019;26(1):63–71. doi: 10.1080/09286586.2018.1516786. PMID: 30188773. Excluded for wrong study design for key question. [PMC free article: PMC6344297] [PubMed: 30188773] [CrossRef]
379.
Kim HW, Choi YJ, Lee KW, et al. Periorbital changes associated with prostaglandin analogs in Korean patients. BMC Ophthalmol. 2017;17(1):126. doi: 10.1186/s12886-017-0521-4. PMID: 28716077. Excluded for wrong study design for key question. [PMC free article: PMC5514502] [PubMed: 28716077] [CrossRef]
380.
Kim JH, Lee HS, Kim NR, et al. Relationship between visual acuity and retinal structures measured by spectral domain optical coherence tomography in patients with open-angle glaucoma. Invest Ophthalmol Vis Sci. 2014;55(8):4801–11. doi: 10.1167/iovs.13-13052. PMID: 25034596. Excluded for wrong population. [PubMed: 25034596] [CrossRef]
381.
Kim JS, Kim YK, Baek SU, et al. Topographic correlation between macular superficial microvessel density and ganglion cell-inner plexiform layer thickness in glaucoma-suspect and early normal-tension glaucoma. Br J Ophthalmol. 2020;104(1):104–9. doi: 10.1136/bjophthalmol-2018-313732. PMID: 30940619. Excluded for wrong study design for key question. [PubMed: 30940619] [CrossRef]
382.
Kim KE, Kim SH, Jeoung JW, et al. Comparison of ability of time-domain and spectral-domain optical coherence tomography to detect diffuse retinal nerve fiber layer atrophy. Jpn J Ophthalmol. 2013;57(6):529–39. doi: 10.1007/s10384-013-0270-8. PMID: 24000036. Excluded for wrong study design for key question. [PubMed: 24000036] [CrossRef]
383.
Kim KE, Kim SH, Oh S, et al. Additive diagnostic role of imaging in glaucoma: optical coherence tomography and retinal nerve fiber layer photography. Invest Ophthalmol Vis Sci. 2014;55(12):8024–30. doi: 10.1167/iovs.14-15237. PMID: 25414196. Excluded for wrong study design for key question. [PubMed: 25414196] [CrossRef]
384.
Kim KN, Jeoung JW, Park KH, et al. Comparison of the new rebound tonometer with goldmann applanation tonometer in a clinical setting. Acta Ophthalmol. 2013;91(5):e392–6. doi: 10.1111/aos.12109. PMID: 23521889. Excluded for wrong comparator. [PubMed: 23521889] [CrossRef]
385.
Kim NR, Hong S, Kim JH, et al. Comparison of macular ganglion cell complex thickness by Fourier-domain OCT in normal tension glaucoma and primary open-angle glaucoma. J Glaucoma. 2013;22(2):133–9. doi: 10.1097/IJG.0b013e3182254cde. PMID: 21701394. Excluded for wrong study design for key question. [PubMed: 21701394] [CrossRef]
386.
Kim NR, Kim CY, Kim H, et al. Comparison of goldmann applanation tonometer, noncontact tonometer, and TonoPen XL for intraocular pressure measurement in different types of glaucomatous, ocular hypertensive, and normal eyes. Curr Eye Res. 2011;36(4):295–300. PMID: 21284505. Excluded for wrong study design for key question. [PubMed: 21284505]
387.
Kim NR, Lee ES, Seong GJ, et al. Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia. Br J Ophthalmol. 2011;95(8):1115–21. doi: 10.1136/bjo.2010.182493. PMID: 20805125. Excluded for wrong study design for key question. [PubMed: 20805125] [CrossRef]
388.
Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma. PLoS One. 2017;12(5):e0177726. doi: 10.1371/journal.pone.0177726. PMID: 28542342. Excluded for wrong study design for key question. [PMC free article: PMC5441603] [PubMed: 28542342] [CrossRef]
389.
Kim YJ, Kang MH, Cho HY, et al. Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol. 2014;58(3):244–51. doi: 10.1007/s10384-014-0315-7. PMID: 24610541. Excluded for wrong study design for key question. [PubMed: 24610541] [CrossRef]
390.
Kim YY, Sexton RM, Shin DH, et al. Outcomes of primary phakic trabeculectomies without versus with 0.5- to 1-minute versus 3- to 5-minute mitomycin C. Am J Ophthalmol. 1998;126(6):755–62. doi: 10.1016/s0002-9394(98)00279-7. PMID: 9859998. Excluded for wrong intervention. [PubMed: 9859998] [CrossRef]
391.
King AJ, Rotchford AP. Validity of the monocular trial of intraocular pressure-lowering at different time points in patients starting topical glaucoma medication. JAMA Ophthalmol. 2016;134(7):742–7. doi: 10.1001/jamaophthalmol.2016.0994. PMID: 27148831. Excluded for wrong study design for key question. [PubMed: 27148831] [CrossRef]
392.
King AJ, Uppal S, Rotchford AP, et al. Monocular trial of intraocular pressure-lowering medication: a prospective study. Ophthalmology. 2011;118(11):2190–5. doi: 10.1016/j.ophtha.2011.03.034. PMID: 21724262. Excluded for wrong study design for key question. [PubMed: 21724262] [CrossRef]
393.
Kirwan JF, Rennie C, Evans JR. Beta radiation for glaucoma surgery. Cochrane Database Syst Rev. 2012 (6) PMID: 22696336. Excluded for wrong intervention. [PMC free article: PMC7177209] [PubMed: 22696336]
394.
Kita Y, Hollo G, Saito T, et al. Circumpapillary microperimetry to detect glaucoma: a pilot study for sector-based comparison to circumpapillary retinal nerve fiber layer measurement. Int Ophthalmol. 2019;39(1):127–36. doi: 10.1007/s10792-017-0796-8. PMID: 29249069. Excluded for wrong study design for key question. [PubMed: 29249069] [CrossRef]
395.
Kita Y, Kita R, Takeyama A, et al. Ability of optical coherence tomography-determined ganglion cell complex thickness to total retinal thickness ratio to diagnose glaucoma. J Glaucoma. 2013;22(9):757–62. doi: 10.1097/IJG.0b013e31825af58a. PMID: 22668980. Excluded for wrong study design for key question. [PubMed: 22668980] [CrossRef]
396.
Kita Y, Soutome N, Horie D, et al. Circumpapillary ganglion cell complex thickness to diagnose glaucoma: a pilot study. Indian J Ophthalmol. 2017;65(1):41–7. doi: 10.4103/ijo.IJO_437_16. PMID: 28300739. Excluded for wrong study design for key question. [PMC free article: PMC5369292] [PubMed: 28300739] [CrossRef]
397.
Kitazawa Y. The effect of timolol on topographic features of the optic disk in ocular hypertension. Chibret International Journal of Ophthalmology. 1990;7(1):14–7. Excluded for irretreivable.
398.
Klamann MK, Grunert A, Maier AK, et al. Comparison of functional and morphological diagnostics in glaucoma patients and healthy subjects. Ophthalmic Res. 2013;49(4):192–8. doi: 10.1159/000345074. PMID: 23306647. Excluded for wrong study design for key question. [PubMed: 23306647] [CrossRef]
399.
Klein BE, Johnson CA, Meuer SM, et al. Nerve fiber layer thickness and characteristics associated with glaucoma in community living older adults: prelude to a screening trial? Ophthalmic Epidemiol. 2017;24(2):104–10. doi: 10.1080/09286586.2016.1258082. PMID: 28032805. Excluded for wrong study design for key question. [PMC free article: PMC5624712] [PubMed: 28032805] [CrossRef]
400.
Kobayashi H, Kobayashi K. Randomized comparison of the intraocular pressure-lowering effect of phacoviscocanalostomy and phacotrabeculectomy. Ophthalmology. 2007;114(5):909–14. doi: 10.1016/j.ophtha.2006.12.032. PMID: 17397924. Excluded for wrong intervention. [PubMed: 17397924] [CrossRef]
401.
Kobayashi H, Kobayashi K. A correlation between latanoprost-induced conjunctival hyperemia and intraocular pressure-lowering effect. J Glaucoma. 2011;20(1):3–6. doi: 10.1097/IJG.0b013e3181d26024. PMID: 20520573. Excluded for wrong study design for key question. [PubMed: 20520573] [CrossRef]
402.
Kobayashi H, Kobayashi K. A comparison of the intraocular pressure lowering effect of adjustable suture versus laser suture lysis for trabeculectomy. J Glaucoma. 2011;20(4):228–33. Excluded for wrong intervention. [PubMed: 20577111]
403.
Koh JEW, Acharya UR, Hagiwara Y, et al. Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies. Comput Biol Med. 2017;84:89–97. doi: 10.1016/j.compbiomed.2017.03.008. PMID: 28351716. Excluded for wrong study design for key question. [PubMed: 28351716] [CrossRef]
404.
Koh JEW, Ng EYK, Bhandary SV, et al. Automated retinal health diagnosis using pyramid histogram of visual words and fisher vector techniques. Comput Biol Med. 2018;92:204–9. doi: 10.1016/j.compbiomed.2017.11.019. PMID: 29227822. Excluded for wrong outcome. [PubMed: 29227822] [CrossRef]
405.
Koh KM, Jin S, Hwang YH. Cirrus high-definition optical coherence tomography versus spectral optical coherence tomography/scanning laser ophthalmoscopy in the diagnosis of glaucoma. Curr Eye Res. 2014;39(1):62–8. doi: 10.3109/02713683.2013.824989. PMID: 24074220. Excluded for wrong study design for key question. [PubMed: 24074220] [CrossRef]
406.
Konstas AG, Kozobolis VP, Tersis I, et al. The efficacy and safety of the timolol/dorzolamide fixed combination vs latanoprost in exfoliation glaucoma. Eye (Lond). 2003;17(1):41–6. doi: 10.1038/sj.eye.6700257. PMID: 12579169. Excluded for wrong comparator. [PubMed: 12579169] [CrossRef]
407.
Kook MS, Cho HS, Yang SJ, et al. Efficacy of latanoprost in patients with chronic angle-closure glaucoma and no visible ciliary-body face: a preliminary study. J Ocul Pharmacol Ther. 2005;21(1):75–84. doi: 10.1089/jop.2005.21.75. PMID: 15718831. Excluded for wrong study design for key question. [PubMed: 15718831] [CrossRef]
408.
Kopczynski CC, Heah T. Netarsudil ophthalmic solution 0.02% for the treatment of patients with open-angle glaucoma or ocular hypertension. Drugs Today. 2018;54(8):467–78. doi: 10.1358/dot.2018.54.8.2849627. PMID: 30209441. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 30209441] [CrossRef]
409.
Kopic A, Biuk D, Barac J, et al. Retinal nerve fiber layer thickness in glaucoma patients treated with multiple intravitreal anti-VEGF (bevacizumab) injections. Acta Clinica Croatica. 2017;56(3):406–14. doi: 10.20471/acc.2017.56.03.07. PMID: 29479906. Excluded for wrong study design for key question. [PubMed: 29479906] [CrossRef]
410.
Kose HC, Tekeli O. Optical coherence tomography angiography of the peripapillary region and macula in normal, primary open angle glaucoma, pseudoexfoliation glaucoma and ocular hypertension eyes. Int J Ophthalmol. 2020;13(5):744–54. doi: 10.18240/ijo.2020.05.08. PMID: 32420221. Excluded for wrong study design for key question. [PMC free article: PMC7201354] [PubMed: 32420221] [CrossRef]
411.
Kotecha A, Brookes J, Foster PJ. A technician-delivered ‘virtual clinic’ for triaging low-risk glaucoma referrals. Eye. 2017;31(6):899–905. doi: 10.1038/eye.2017.9. PMID: 28211881. Excluded for wrong study design for key question. [PMC free article: PMC5518844] [PubMed: 28211881] [CrossRef]
412.
Kotecha A, Feuer WJ, Barton K, et al. Quality of life in the tube versus trabeculectomy study. Am J Ophthalmol. 2017;176:228–35. doi: 10.1016/j.ajo.2017.01.019. PMID: 28161049. Excluded for wrong intervention. [PubMed: 28161049] [CrossRef]
413.
Kotowski J, Folio LS, Wollstein G, et al. Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol. 2012;96(11):1420–5. doi: 10.1136/bjophthalmol-2011-301021. PMID: 22914498. Excluded for wrong study design for key question. [PMC free article: PMC3721629] [PubMed: 22914498] [CrossRef]
414.
Kourkoutas D, Buys YM, Flanagan JG, et al. Comparison of glaucoma progression evaluated with Heidelberg retina tomograph II versus optic nerve head stereophotographs. Can J Ophthalmol. 2007;42(1):82–8. PMID: 17361246. Excluded for wrong outcome. [PubMed: 17361246]
415.
Kozobolis VP, Siganos CS, Christodoulakis EV, et al. Two-site phacotrabeculectomy with intraoperative mitomycin-C: fornix- versus limbus-based conjunctival opening in fellow eyes. J Cataract Refract Surg. 2002;28(10):1758–62. doi: 10.1016/s0886-3350(02)01270-1. PMID: 12388024. Excluded for wrong intervention. [PubMed: 12388024] [CrossRef]
416.
Krupin T, Liebmann JM, Greenfield DS, et al. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure glaucoma treatment study. Am J Ophthalmol. 2011;151(4):671–81. doi: 10.1016/j.ajo.2010.09.026. PMID: 21257146. Excluded for wrong comparator. [PubMed: 21257146] [CrossRef]
417.
Kuang TM, Zhang C, Zangwill LM, et al. Estimating lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects. Ophthalmology. 2015;122(10):2002–9. doi: 10.1016/j.ophtha.2015.06.015. PMID: 26198809. Excluded for wrong study design for key question. [PMC free article: PMC4581949] [PubMed: 26198809] [CrossRef]
418.
Kucukevcilioglu M, Bayer A, Uysal Y, et al. Prostaglandin associated periorbitopathy in patients using bimatoprost, latanoprost and travoprost. Clin Experiment Ophthalmol. 2014;42(2):126–31. doi: 10.1111/ceo.12163. PMID: 23844550. Excluded for wrong study design for key question. [PubMed: 23844550] [CrossRef]
419.
Kucur SS, Hackel S, Stapelfeldt J, et al. Comparative study between the SORS and dynamic strategy visual Field testing methods on glaucomatous and healthy subjects. Transl Vis Sci Technol. 2020;9(13):3. doi: 10.1167/tvst.9.13.3. PMID: 33344047. Excluded for wrong outcome. [PMC free article: PMC7718825] [PubMed: 33344047] [CrossRef]
420.
Kucur SS, Hollo G, Sznitman R. A deep learning approach to automatic detection of early glaucoma from visual fields. PLoS One. 2018;13(11):e0206081. doi: 10.1371/journal.pone.0206081. PMID: 30485270. Excluded for results not usable or not fully reported. [PMC free article: PMC6261540] [PubMed: 30485270] [CrossRef]
421.
Kumar S, Malik A, Singh M, et al. Efficacy of latanoprost in management of chronic angle closure glaucoma. Nepal J Ophthalmol. 2009;1(1):32–6. doi: 10.3126/nepjoph.v1i1.3671. PMID: 21141019. Excluded for wrong study design for key question. [PubMed: 21141019] [CrossRef]
422.
Kurysheva NI, Maslova EV, Zolnikova IV, et al. A comparative study of structural, functional and circulatory parameters in glaucoma diagnostics. PLoS One. 2018;13(8):e0201599. doi: 10.1371/journal.pone.0201599. PMID: 30138396. Excluded for wrong study design for key question. [PMC free article: PMC6107119] [PubMed: 30138396] [CrossRef]
423.
Kuwayama Y, Hashimoto M, Kakegawa R, et al. Prospective observational post-marketing study of tafluprost for glaucoma and ocular hypertension: effectiveness and treatment persistence. Adv Ther. 2017 PMID: 28502035. Excluded for wrong study design for key question. [PubMed: 28502035]
424.
Kwon HJ, Kwon J, Sung KR. Additive role of optical coherence tomography angiography vessel density measurements in glaucoma diagnoses. Korean J Ophthalmol. 2019;33(4):315–25. doi: 10.3341/kjo.2019.0016. PMID: 31389207. Excluded for wrong study design for key question. [PMC free article: PMC6685832] [PubMed: 31389207] [CrossRef]
425.
Kwon J, Choi J, Shin JW, et al. Glaucoma diagnostic capabilities of foveal avascular zone parameters using optical coherence tomography angiography according to visual field defect location. J Glaucoma. 2017;26(12):1120–9. doi: 10.1097/IJG.0000000000000800. PMID: 29016521. Excluded for wrong study design for key question. [PubMed: 29016521] [CrossRef]
426.
Kyei S, Aberor J, Assiamah F, et al. Optical coherence tomography indices in the diagnosis and discrimination of stages of primary open-angle glaucoma in an African population. Int Ophthalmol. 2020;41(3):981–90. doi: 10.1007/s10792-020-01652-6. PMID: 33185821. Excluded for wrong study design for key question. [PubMed: 33185821] [CrossRef]
427.
LaMonica LC, Bhardwaj MK, Hawley NL, et al. Remote screening for optic nerve cupping using smartphone-based nonmydriatic fundus photography. J Glaucoma. 2021;30(1):58–60. doi: 10.1097/IJG.0000000000001680. PMID: 32969917. Excluded for wrong outcome. [PMC free article: PMC7755732] [PubMed: 32969917] [CrossRef]
428.
Larrosa JM, Moreno-Montanes J, Martinez-de-la-Casa JM, et al. A diagnostic calculator for detecting glaucoma on the basis of retinal nerve fiber layer, optic disc, and retinal ganglion cell analysis by optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56(11):6788–95. doi: 10.1167/iovs.15-17176. PMID: 26567791. Excluded for wrong study design for key question. [PubMed: 26567791] [CrossRef]
429.
Larrosa JM, Polo V, Ferreras A, et al. Neural network analysis of different segmentation strategies of nerve fiber layer assessment for glaucoma diagnosis. J Glaucoma. 2015;24(9):672–8. doi: 10.1097/IJG.0000000000000071. PMID: 25055209. Excluded for wrong study design for key question. [PubMed: 25055209] [CrossRef]
430.
Larsson LI. Intraocular pressure over 24 hours after repeated administration of latanoprost 0.005% or timolol gel-forming solution 0.5% in patients with ocular hypertension. Ophthalmology. 2001;108(8):1439–44. doi: 10.1016/s0161-6420(01)00605-4. PMID: 11470697. Excluded for wrong comparator. [PubMed: 11470697] [CrossRef]
431.
Lascaratos G, Garway-Heath DF, Burton R, et al. The United Kingdom Glaucoma Treatment Study: a multicenter, randomized, double-masked, placebo-controlled trial: baseline characteristics. Ophthalmology. 2013;120(12):2540–5. doi: 10.1016/j.ophtha.2013.07.054. PMID: 24126032. Excluded for wrong outcome. [PubMed: 24126032] [CrossRef]
432.
Lavanya R, Riyazuddin M, Dasari S, et al. A comparison of the visual field parameters of SITA faster and SITA standard strategies in glaucoma. J Glaucoma. 2020;29(9):783–8. doi: 10.1097/IJG.0000000000001551. PMID: 32459685. Excluded for wrong comparator. [PubMed: 32459685] [CrossRef]
433.
Lavia C, Dallorto L, Maule M, et al. Minimally-invasive glaucoma surgeries (MIGS) for open angle glaucoma: a systematic review and meta-analysis. PLoS One. 2017;12(8):e0183142. doi: 10.1371/journal.pone.0183142. PMID: 28850575. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC5574616] [PubMed: 28850575] [CrossRef]
434.
LeBlanc RP. Twelve-month results of an ongoing randomized trial comparing brimonidine tartrate 0.2% and timolol 0.5% given twice daily in patients with glaucoma or ocular hypertension. Brimonidine Study Group 2. Ophthalmology. 1998;105(10):1960–7. doi: 10.1016/s0161-6420(98)91048-x. PMID: 9787370. Excluded for wrong comparator. [PubMed: 9787370] [CrossRef]
435.
Lee J, Kim Y, Kim JH, et al. Screening glaucoma with red-free fundus photography using deep learning classifier and polar transformation. J Glaucoma. 2019;28(3):258–64. doi: 10.1097/IJG.0000000000001187. PMID: 30676415. Excluded for wrong study design for key question. [PubMed: 30676415] [CrossRef]
436.
Lee J, Kim YK, Park KH, et al. Diagnosing glaucoma with spectral-domain optical coherence tomography using deep learning classifier. J Glaucoma. 2020;29(4):287–94. doi: 10.1097/IJG.0000000000001458. PMID: 32053552. Excluded for wrong study design for key question. [PubMed: 32053552] [CrossRef]
437.
Lee J, Kim YW, Ha A, et al. Estimating visual field loss from monoscopic optic disc photography using deep learning model. Sci Rep. 2020;10(1):21052. doi: 10.1038/s41598-020-78144-1. PMID: 33273643. Excluded for wrong study design for key question. [PMC free article: PMC7712913] [PubMed: 33273643] [CrossRef]
438.
Lee JW, Chan CW, Wong MO, et al. A randomized control trial to evaluate the effect of adjuvant selective laser trabeculoplasty versus medication alone in primary open-angle glaucoma: preliminary results. Clin Ophthalmol. 2014;8:1987–92. doi: 10.2147/OPTH.S70903. PMID: 25284983. Excluded for wrong intervention. [PMC free article: PMC4181747] [PubMed: 25284983] [CrossRef]
439.
Lee JW, Ho WL, Chan JC, et al. Efficacy of selective laser trabeculoplasty for normal tension glaucoma: 1 year results. BMC Ophthalmol. 2015;15:1. doi: 10.1186/1471-2415-15-1. PMID: 25571769. Excluded for wrong study design for key question. [PMC free article: PMC4417344] [PubMed: 25571769] [CrossRef]
440.
Lee JW, Shum JJ, Chan JC, et al. Two-year clinical results after selective laser trabeculoplasty for normal tension glaucoma. Medicine. 2015;94(24):e984. doi: 10.1097/MD.0000000000000984. PMID: 26091474. Excluded for wrong study design for key question. [PMC free article: PMC4616563] [PubMed: 26091474] [CrossRef]
441.
Lee NY, Park HY, Park CK. Effects of a dorzolamide/timolol fixed combination on diurnal intraocular pressure, heart rate, blood pressure, and ocular perfusion pressure in normal-tension glaucoma. Jpn J Ophthalmol. 2016;60(5):377–82. doi: 10.1007/s10384-016-0455-z. PMID: 27312903. Excluded for wrong intervention. [PubMed: 27312903] [CrossRef]
442.
Lee SD, Lee JH, Choi YG, et al. Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis. Artif Intell Med. 2019;94:110–6. doi: 10.1016/j.artmed.2019.02.006. PMID: 30871677. Excluded for wrong study design for key question. [PubMed: 30871677] [CrossRef]
443.
Lee SY, Bae HW, Seong GJ, et al. Diagnostic ability of swept-source and spectral-domain optical coherence tomography for glaucoma. Yonsei Med J. 2018;59(7):887–96. doi: 10.3349/ymj.2018.59.7.887. PMID: 30091323. Excluded for wrong study design for key question. [PMC free article: PMC6082988] [PubMed: 30091323] [CrossRef]
444.
Leeprechanon N, Giangiacomo A, Fontana H, et al. Frequency-doubling perimetry: comparison with standard automated perimetry to detect glaucoma. Am J Ophthalmol. 2007;143(2):263–71. doi: 10.1016/j.ajo.2006.10.033. PMID: 17178091. Excluded for wrong study design for key question. [PubMed: 17178091] [CrossRef]
445.
Leite MT, Rao HL, Zangwill LM, et al. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011;118(7):1334–9. doi: 10.1016/j.ophtha.2010.11.029. PMID: 21377735. Excluded for wrong study design for key question. [PMC free article: PMC3881436] [PubMed: 21377735] [CrossRef]
446.
Leite MT, Zangwill LM, Weinreb RN, et al. Structure-function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry. J Glaucoma. 2012;21(1):49–54. doi: 10.1097/IJG.0b013e31822af27a. PMID: 21952500. Excluded for wrong study design for key question. [PMC free article: PMC3751805] [PubMed: 21952500] [CrossRef]
447.
Leite MT, Zangwill LM, Weinreb RN, et al. Effect of disease severity on the performance of cirrus spectral-domain OCT for glaucoma diagnosis. Invest Ophthalmol Vis Sci. 2010;51(8):4104–9. doi: 10.1167/iovs.09-4716. PMID: 20335619. Excluded for wrong study design for key question. [PMC free article: PMC2910643] [PubMed: 20335619] [CrossRef]
448.
Lerner SF, Park KH, Hubatsch DA, et al. Efficacy and tolerability of travoprost 0.004%/timolol 0.5% fixed-dose combination for the treatment of primary open-angle glaucoma or ocular hypertension inadequately controlled with beta-blocker monotherapy. J Ophthalmol. 2017;2017:1917570. doi: 10.1155/2017/1917570. PMID: 28239491. Excluded for wrong study design for key question. [PMC free article: PMC5292368] [PubMed: 28239491] [CrossRef]
449.
Leung CK, Chan WM, Yung WH, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112(3):391–400. doi: 10.1016/j.ophtha.2004.10.020. PMID: 15745764. Excluded for wrong study design for key question. [PubMed: 15745764] [CrossRef]
450.
Leung CK, Yung WH, Ng AC, et al. Evaluation of scanning resolution on retinal nerve fiber layer measurement using optical coherence tomography in normal and glaucomatous eyes. J Glaucoma. 2004;13(6):479–85. doi: 10.1097/01.ijg.0000138205.99424.24. PMID: 15534473. Excluded for wrong intervention. [PubMed: 15534473] [CrossRef]
451.
Lewis RA, Levy B, Ramirez N, et al. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br J Ophthalmol. 2016;100(3):339–44. doi: 10.1136/bjophthalmol-2015-306778. PMID: 26209587. Excluded for wrong intervention. [PubMed: 26209587] [CrossRef]
452.
Li F, Huang W, Zhang X. Efficacy and safety of different regimens for primary open-angle glaucoma or ocular hypertension: a systematic review and network meta-analysis. Acta Ophthalmol. 2018;96(3):e277–e84. doi: 10.1111/aos.13568. PMID: 29144028. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC5947254] [PubMed: 29144028] [CrossRef]
453.
Li F, Song D, Chen H, et al. Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection. NPJ Digit Med. 2020;3:123. doi: 10.1038/s41746-020-00329-9. PMID: 33043147. Excluded for wrong study design for key question. [PMC free article: PMC7508974] [PubMed: 33043147] [CrossRef]
454.
Li F, Wang Z, Qu G, et al. Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC Med Imaging. 2018;18(1):35. doi: 10.1186/s12880-018-0273-5. PMID: 30286740. Excluded for wrong study design for key question. [PMC free article: PMC6172715] [PubMed: 30286740] [CrossRef]
455.
Li F, Yan L, Wang Y, et al. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs. Graefes Arch Clin Exp Ophthalmol. 2020;258(4):851–67. doi: 10.1007/s00417-020-04609-8. PMID: 31989285. Excluded for wrong study design for key question. [PubMed: 31989285] [CrossRef]
456.
Li F, Zhou R, Gao K, et al. Volumetric parameters-based differentiation of narrow angle from open angle and classification of angle configurations: an SS-OCT study. Br J Ophthalmol. 2020;104(1):92–7. doi: 10.1136/bjophthalmol-2018-313386. PMID: 31036585. Excluded for wrong study design for key question. [PubMed: 31036585] [CrossRef]
457.
Li G, Fansi AK, Boivin JF, et al. Screening for glaucoma in high-risk populations using optical coherence tomography. Ophthalmology. 2010;117(3):453–61. doi: 10.1016/j.ophtha.2009.07.033. PMID: 20031231. Excluded for wrong study design for key question. [PubMed: 20031231] [CrossRef]
458.
Li N, Chen XM, Zhou Y, et al. Travoprost compared with other prostaglandin analogues or timolol in patients with open-angle glaucoma or ocular hypertension: meta-analysis of randomized controlled trials. Clin Exp Optom. 2006;34(8):755–64. doi: 10.1111/j.1442-9071.2006.01237.x. Excluded for wrong comparator. [PubMed: 17073898] [CrossRef]
459.
Li T, Lindsley K, Rouse B, et al. Comparative effectiveness of first-line medications for primary open-angle glaucoma: a systematic review and network meta-analysis. Ophthalmology. 2016;123(1):129–40. doi: 10.1016/j.ophtha.2015.09.005. PMID: 26526633. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC4695285] [PubMed: 26526633] [CrossRef]
460.
Li X, Wang W, Zhang X. Meta-analysis of selective laser trabeculoplasty versus topical medication in the treatment of open-angle glaucoma. BMC Ophthalmol. 2015;15:107. doi: 10.1186/s12886-015-0091-2. PMID: 26286384. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC4544808] [PubMed: 26286384] [CrossRef]
461.
Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018;125(8):1199–206. doi: 10.1016/j.ophtha.2018.01.023. PMID: 29506863. Excluded for wrong study design for key question. [PubMed: 29506863] [CrossRef]
462.
Liang Y, Jiang J, Ou W, et al. Effect of community screening on the demographic makeup and clinical severity of glaucoma patients receiving care in urban China. Am J Ophthalmol. 2018;195:1–7. doi: 10.1016/j.ajo.2018.07.013. PMID: 30053479. Excluded for wrong study design for key question. [PubMed: 30053479] [CrossRef]
463.
Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the collaborative initial glaucoma treatment study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108(11):1943–53. doi: 10.1016/s0161-6420(01)00873-9. PMID: 11713061. Excluded for wrong comparator. [PubMed: 11713061] [CrossRef]
464.
Liebmann JM, Lee JK. Current therapeutic options and treatments in development for the management of primary open-angle glaucoma. Am J Manag Care. 2017;23(15 Suppl):S279–S92. PMID: 29164845. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 29164845]
465.
Lim CW, Diaconita V, Liu E, et al. Effect of 6-week washout period on intraocular pressure following chronic prostaglandin analogue treatment: a randomized controlled trial. Can J Ophthalmol. 2020;55(2):143–51. doi: 10.1016/j.jcjo.2019.08.004. PMID: 31712013. Excluded for wrong comparator. [PubMed: 31712013] [CrossRef]
466.
Lin D, Leung CK, Weinreb RN, et al. Longitudinal evaluation of optic disc measurement variability with optical coherence tomography and confocal scanning laser ophthalmoscopy. J Glaucoma. 2009;18(2):101–6. doi: 10.1097/IJG.0b013e318179f879. PMID: 19225344. Excluded for wrong study design for key question. [PubMed: 19225344] [CrossRef]
467.
Lin JP, Lin PW, Lai IC, et al. Segmental inner macular layer analysis with spectral-domain optical coherence tomography for early detection of normal tension glaucoma. PLoS One. 2019;14(1):e0210215. doi: 10.1371/journal.pone.0210215. PMID: 30629663. Excluded for wrong study design for key question. [PMC free article: PMC6328176] [PubMed: 30629663] [CrossRef]
468.
Lin L, Zhao YJ, Chew PT, et al. Comparative efficacy and tolerability of topical prostaglandin analogues for primary open-angle glaucoma and ocular hypertension. Ann Pharmacother. 2014;48(12):1585–93. doi: 10.1177/1060028014548569. PMID: 25184309. Excluded for wrong comparator. [PubMed: 25184309] [CrossRef]
469.
Lin PW, Chang HW, Lin JP, et al. Analysis of peripapillary retinal nerve fiber layer and inner macular layers by spectral-domain optical coherence tomography for detection of early glaucoma. Int J Ophthalmol. 2018;11(7):1163–72. doi: 10.18240/ijo.2018.07.15. PMID: 30046534. Excluded for wrong study design for key question. [PMC free article: PMC6048328] [PubMed: 30046534] [CrossRef]
470.
Lisboa R, Leite MT, Zangwill LM, et al. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology. 2012;119(11):2261–9. doi: 10.1016/j.ophtha.2012.06.009. PMID: 22883689. Excluded for wrong study design for key question. [PMC free article: PMC3787835] [PubMed: 22883689] [CrossRef]
471.
Lisboa R, Mansouri K, Zangwill LM, et al. Likelihood ratios for glaucoma diagnosis using spectral-domain optical coherence tomography. Am J Ophthalmol. 2013;156(5):918–26.e2. doi: 10.1016/j.ajo.2013.06.017. PMID: 23972303. Excluded for wrong study design for key question. [PMC free article: PMC4081013] [PubMed: 23972303] [CrossRef]
472.
Liu CJ, Ko YC, Cheng CY, et al. Changes in intraocular pressure and ocular perfusion pressure after latanoprost 0.005% or brimonidine tartrate 0.2% in normal-tension glaucoma patients. Ophthalmology. 2002;109(12):2241–7. doi: 10.1016/s0161-6420(02)01247-2. PMID: 12466165. Excluded for wrong comparator. [PubMed: 12466165] [CrossRef]
473.
Liu D, Chen D, Tan Q, et al. Outcome of selective laser trabeculoplasty in young patients with primary open-angle glaucoma and ocular hypertension. J Ophthalmol. 2020;2020:5742832. doi: 10.1155/2020/5742832. PMID: 32587760. Excluded for wrong study design for key question. [PMC free article: PMC7301184] [PubMed: 32587760] [CrossRef]
474.
Liu H, Li L, Wormstone IM, et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs. JAMA Ophthalmol. 2019;137(12):1353–60. doi: 10.1001/jamaophthalmol.2019.3501. PMID: 31513266. Excluded for wrong study design for key question. [PMC free article: PMC6743057] [PubMed: 31513266] [CrossRef]
475.
Liu JHK, Slight JR, Vittitow JL, et al. Efficacy of latanoprostene bunod 0.024% compared with timolol 0.5% in lowering intraocular pressure over 24 hours. Am J Ophthalmol. 2016;169:249–57. doi: 10.1016/j.ajo.2016.04.019. PMID: 27457257. Excluded for wrong outcome. [PubMed: 27457257] [CrossRef]
476.
Liu HN, Chen XL, Li X, et al. Efficacy and tolerability of one-site versus two-site phaco-trabeculectomy: a meta-analysis of randomized controlled clinical trials. Chin Med J (Engl). 2010;123(15):2111–5. PMID: 20819551. Excluded for wrong intervention. [PubMed: 20819551]
477.
Liu JL, McAnany JJ, Wilensky JT, et al. M&S smart system contrast sensitivity measurements compared with standard visual function measurements in primary open-angle glaucoma patients. J Glaucoma. 2017;26(6):528–33. doi: 10.1097/IJG.0000000000000659. PMID: 28333894. Excluded for wrong outcome. [PMC free article: PMC5453812] [PubMed: 28333894] [CrossRef]
478.
Liu L, Tan O, Ing E, et al. Sectorwise visual field simulation using optical coherence tomographic angiography nerve fiber layer plexus measurements in glaucoma. Am J Ophthalmol. 2020;212:57–68. doi: 10.1016/j.ajo.2019.11.018. PMID: 31770516. Excluded for wrong comparator. [PMC free article: PMC7113124] [PubMed: 31770516] [CrossRef]
479.
Liu MM, Cho C, Jefferys JL, et al. Use of optical coherence tomography by nonexpert personnel as a screening approach for glaucoma. J Glaucoma. 2018;27(1):64–70. doi: 10.1097/IJG.0000000000000822. PMID: 29194196. Excluded for wrong study design for key question. [PMC free article: PMC5741480] [PubMed: 29194196] [CrossRef]
480.
Liu S, Wang B, Yin B, et al. Retinal nerve fiber layer reflectance for early glaucoma diagnosis. J Glaucoma. 2014;23(1):e45–52. doi: 10.1097/IJG.0b013e31829ea2a7. PMID: 23835671. Excluded for wrong study design for key question. [PMC free article: PMC3844555] [PubMed: 23835671] [CrossRef]
481.
Lockwood AJ, Kirwan JF, Ashleigh Z. Optometrists referrals for glaucoma assessment: a prospective survey of clinical data and outcomes. Eye. 2010;24(9):1515–9. doi: 10.1038/eye.2010.77. PMID: 20559331. Excluded for wrong comparator. [PubMed: 20559331] [CrossRef]
482.
Loewen NA, Zhang X, Tan O, et al. Combining measurements from three anatomical areas for glaucoma diagnosis using fourier-domain optical coherence tomography. Br J Ophthalmol. 2015;99(9):1224–9. doi: 10.1136/bjophthalmol-2014-305907. PMID: 25795917. Excluded for wrong study design for key question. [PMC free article: PMC5457797] [PubMed: 25795917] [CrossRef]
483.
Lommatzsch C, Rothaus K, Koch JM, et al. OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 2018;256(8):1499–508. doi: 10.1007/s00417-018-3965-1. PMID: 29637255. Excluded for wrong study design for key question. [PubMed: 29637255] [CrossRef]
484.
Lommatzsch C, Rothaus K, Koch JM, et al. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads. Int J Ophthalmol. 2018;11(5):835–43. doi: 10.18240/ijo.2018.05.20. PMID: 29862185. Excluded for wrong study design for key question. [PMC free article: PMC5957038] [PubMed: 29862185] [CrossRef]
485.
Loon SC, Liew G, Fung A, et al. Meta-analysis of randomized controlled trials comparing timolol with brimonidine in the treatment of glaucoma. Clin Exp Ophthalmol. 2008;36(3):281–9. doi: 10.1111/j.1442-9071.2008.01720.x. Excluded for wrong comparator. [PubMed: 18412600] [CrossRef]
486.
Lopes F, Matsubara I, Almeida I, et al. Using enhanced depth imaging optical coherence tomography - derived parameters to discriminate between eyes with and without glaucoma: a cross-sectional comparative study. Ophthalmic Res. 2021;64(1):108–15. doi: 10.1159/000508952. PMID: 32454499. Excluded for wrong study design for key question. [PubMed: 32454499] [CrossRef]
487.
Loureiro M, Matos R, Sepulveda P, et al. Intravitreal injections of bevacizumab: the impact of needle size in intraocular pressure and pain. J Curr Glaucoma Pract. 2017;11(2):38–41. PMID: 28924336. Excluded for wrong comparator. [PMC free article: PMC5577117] [PubMed: 28924336]
488.
Lowry EA, Hou J, Hennein L, et al. Comparison of peristat online perimetry with the Humphrey perimetry in a clinic-based setting. Transl Vis Sci Technol. 2016;5(4):4. PMID: 27486554. Excluded for wrong study design for key question. [PMC free article: PMC4959820] [PubMed: 27486554]
489.
Lu AT, Wang M, Varma R, et al. Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography. Ophthalmology. 2008;115(8):1352–7, 7.e1–2. doi: 10.1016/j.ophtha.2008.01.011. PMID: 18514318. Excluded for wrong study design for key question. [PMC free article: PMC2756507] [PubMed: 18514318] [CrossRef]
490.
Luo M, Miao CY, Chen W, et al. Comparison of latanoprost and brimonidine in the treatment of open angle glaucoma. International Eye Science. 2015;15(7):1256–8. Excluded for not English language.
491.
Maa AY, Patel S, Chasan JE, et al. Retrospective evaluation of a teleretinal screening program in detecting multiple nondiabetic eye diseases. Telemed J E Health. 2017;23(1):41–8. doi: 10.1089/tmj.2016.0039. PMID: 27310867. Excluded for wrong study design for key question. [PubMed: 27310867] [CrossRef]
492.
MacCormick IJC, Williams BM, Zheng Y, et al. Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile. PLoS One. 2019;14(1):e0209409. doi: 10.1371/journal.pone.0209409. PMID: 30629635. Excluded for wrong study design for key question. [PMC free article: PMC6328156] [PubMed: 30629635] [CrossRef]
493.
Macky TA. Bimatoprost versus travoprost in an Egyptian population: a hospital-based prospective, randomized study. J Ocul Pharmacol Ther. 2010;26(6):605–10. doi: 10.1089/jop.2010.0068. PMID: 21034177. Excluded for wrong comparator. [PubMed: 21034177] [CrossRef]
494.
Maddess T, Essex RW, Kolic M, et al. High- versus low-density multifocal pupillographic objective perimetry in glaucoma. Clin Exp Ophthalmol. 2013;41(2):140–7. doi: 10.1111/ceo.12016. PMID: 23078067. Excluded for wrong study design for key question. [PubMed: 23078067] [CrossRef]
495.
Maetschke S, Antony B, Ishikawa H, et al. A feature agnostic approach for glaucoma detection in OCT volumes. PLoS One. 2019;14(7):e0219126. doi: 10.1371/journal.pone.0219126. PMID: 31260494. Excluded for wrong study design for key question. [PMC free article: PMC6602191] [PubMed: 31260494] [CrossRef]
496.
Maheshwari S, Kanhangad V, Pachori RB, et al. Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques. Comput Biol Med. 2019;105:72–80. doi: 10.1016/j.compbiomed.2018.11.028. PMID: 30590290. Excluded for wrong study design for key question. [PubMed: 30590290] [CrossRef]
497.
Maheshwari S, Pachori RB, Acharya UR. Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE J Biomed Health Inform. 2017;21(3):803–13. doi: 10.1109/JBHI.2016.2544961. PMID: 28113877. Excluded for wrong study design for key question. [PubMed: 28113877] [CrossRef]
498.
Mai TA, Reus NJ, Lemij HG. Diagnostic accuracy of scanning laser polarimetry with enhanced versus variable corneal compensation. Ophthalmology. 2007;114(11):1988–93. doi: 10.1016/j.ophtha.2007.01.022. PMID: 17459481. Excluded for wrong study design for key question. [PubMed: 17459481] [CrossRef]
499.
Maier PC, Funk J, Schwarzer G, et al. Treatment of ocular hypertension and open angle glaucoma: meta-analysis of randomised controlled trials. BMJ. 2005;331(7509):134–6. doi: 10.1136/bmj.38506.594977.E0. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC558697] [PubMed: 15994659] [CrossRef]
500.
Manalastas PIC, Zangwill LM, Daga FB, et al. The association between macula and ONH optical coherence tomography angiography (OCT-A) vessel densities in glaucoma, glaucoma suspect, and healthy eyes. J Glaucoma. 2018;27(3):227–32. doi: 10.1097/IJG.0000000000000862. PMID: 29303870. Excluded for wrong study design for key question. [PMC free article: PMC5831477] [PubMed: 29303870] [CrossRef]
501.
Mansberger SL, Johnson CA, Cioffi GA, et al. Predictive value of frequency doubling technology perimetry for detecting glaucoma in a developing country. J Glaucoma. 2005;14(2):128–34. doi: 10.1097/01.ijg.0000151883.07232.54. PMID: 15741814. Excluded for wrong intervention. [PubMed: 15741814] [CrossRef]
502.
Mansoori T, Gamalapati J, Sivaswamy J, et al. Optical coherence tomography angiography measured capillary density in the normal and glaucoma eyes. Saudi J Ophthalmol. 2018;32(4):295–302. doi: 10.1016/j.sjopt.2018.09.006. PMID: 30581300. Excluded for wrong study design for key question. [PMC free article: PMC6300758] [PubMed: 30581300] [CrossRef]
503.
Mansoori T, Viswanath K, Balakrishna N. Quantification of retinal nerve fiber layer thickness in normal eyes, eyes with ocular hypertension, and glaucomatous eyes with SD-OCT. Ophthalmic Surg Lasers Imaging. 2010;41 Suppl:S50–7. doi: 10.3928/15428877-20101031-13. PMID: 21117601. Excluded for wrong study design for key question. [PubMed: 21117601] [CrossRef]
504.
Mansoori T, Viswanath K, Balakrishna N. Ability of spectral domain optical coherence tomography peripapillary retinal nerve fiber layer thickness measurements to identify early glaucoma. Indian J Ophthalmol. 2011;59(6):455–9. doi: 10.4103/0301-4738.86312. PMID: 22011489. Excluded for wrong study design for key question. [PMC free article: PMC3214415] [PubMed: 22011489] [CrossRef]
505.
Marcon IM. A double-masked comparison of betaxolol and levobunolol for the treatment of primly open-angle glaucoma. Arq Bras Oftalmol. 1990:27–32. Excluded for wrong comparator.
506.
Mariottoni EB, Datta S, Dov D, et al. Artificial intelligence mapping of structure to function in glaucoma. Transl Vis Sci Technol. 2020;9(2):19. doi: 10.1167/tvst.9.2.19. PMID: 32818080. Excluded for wrong study design for key question. [PMC free article: PMC7395675] [PubMed: 32818080] [CrossRef]
507.
Mariottoni EB, Jammal AA, Berchuck SI, et al. An objective structural and functional reference standard in glaucoma. Sci Rep. 2021;11(1):1752. doi: 10.1038/s41598-021-80993-3. PMID: 33462288. Excluded for wrong intervention. [PMC free article: PMC7814070] [PubMed: 33462288] [CrossRef]
508.
Marshall LL, Hayslett RL, Stevens GA. Therapy for open-angle glaucoma. Consult Pharm. 2018;33(8):432–45. doi: 10.4140/TCP.n.2018.432. PMID: 30068436. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 30068436] [CrossRef]
509.
Martin KR, Mansouri K, Weinreb RN, et al. Use of machine learning on contact lens sensor-derived parameters for the diagnosis of primary open-angle glaucoma. Am J Ophthalmol. 2018;194:46–53. doi: 10.1016/j.ajo.2018.07.005. PMID: 30053471. Excluded for wrong study design for key question. [PubMed: 30053471] [CrossRef]
510.
Martinez A, Sanchez-Salorio M. Predictors for visual field progression and the effects of treatment with dorzolamide 2% or brinzolamide 1% each added to timolol 0.5% in primary open-angle glaucoma. Acta Ophthalmol. 2010;88(5):541–52. doi: 10.1111/j.1755-3768.2009.01595.x. PMID: 19799592. Excluded for wrong comparator. [PubMed: 19799592] [CrossRef]
511.
Martinez-de-la-Casa JM, Cifuentes-Canorea P, Berrozpe C, et al. Diagnostic ability of macular nerve fiber layer thickness using new segmentation software in glaucoma suspects. Invest Ophthalmol Vis Sci. 2014;55(12):8343–8. doi: 10.1167/iovs.14-15501. PMID: 25425301. Excluded for wrong study design for key question. [PubMed: 25425301] [CrossRef]
512.
Martins J, Cardoso JS, Soares F. Offline computer-aided diagnosis for glaucoma detection using fundus images targeted at mobile devices. Comput Methods Programs Biomed. 2020;192:105341. doi: 10.1016/j.cmpb.2020.105341. PMID: 32155534. Excluded for wrong population. [PubMed: 32155534] [CrossRef]
513.
Maruyama K, Tsuchisaka A, Sakamoto J, et al. Incidence of deepening of upper eyelid sulcus after topical use of tafluprost ophthalmic solution in Japanese patients. Clin Ophthalmol. 2013;7:1441–6. doi: 10.2147/OPTH.S47783. PMID: 23885167. Excluded for wrong study design for key question. [PMC free article: PMC3716560] [PubMed: 23885167] [CrossRef]
514.
Matos AG, Asrani SG, Paula JS. Feasibility of laser trabeculoplasty in angle closure glaucoma: a review of favourable histopathological findings in narrow angles. Clin Experiment Ophthalmol. 2017;45(6):632–9. doi: 10.1111/ceo.12938. PMID: 28245337. Excluded for not a study. [PubMed: 28245337] [CrossRef]
515.
Matsumoto C, Eura M, Okuyama S, et al. CLOCK CHART(): a novel multi-stimulus self-check visual field screener. Jpn J Ophthalmol. 2015;59(3):187–93. doi: 10.1007/s10384-014-0368-7. PMID: 25649519. Excluded for wrong study design for key question. [PubMed: 25649519] [CrossRef]
516.
Matsumoto C, Yamao S, Nomoto H, et al. Visual field testing with head-mounted perimeter ‘imo’. PLoS One. 2016;11(8):e0161974. doi: 10.1371/journal.pone.0161974. PMID: 27564382. Excluded for wrong outcome. [PMC free article: PMC5001626] [PubMed: 27564382] [CrossRef]
517.
Maupin E, Baudin F, Arnould L, et al. Accuracy of the ISNT rule and its variants for differentiating glaucomatous from normal eyes in a population-based study. Br J Ophthalmol. 2020;104(10):1412–7. doi: 10.1136/bjophthalmol-2019-315554. PMID: 31959590. Excluded for wrong outcome. [PubMed: 31959590] [CrossRef]
518.
Mayama C, Araie M, Suzuki Y, et al. Statistical evaluation of the diagnostic accuracy of methods used to determine the progression of visual field defects in glaucoma. Ophthalmology. 2004;111(11):2117–25. PMID: 15522380. Excluded for wrong comparator. [PubMed: 15522380]
519.
Mayama C, Saito H, Hirasawa H, et al. Circle- and grid-wise analyses of peripapillary nerve fiber layers by spectral domain optical coherence tomography in early-stage glaucoma. Invest Ophthalmol Vis Sci. 2013;54(7):4519–26. doi: 10.1167/iovs.13-11603. PMID: 23761086. Excluded for wrong study design for key question. [PubMed: 23761086] [CrossRef]
520.
McAlinden C. Selective laser trabeculoplasty (SLT) vs other treatment modalities for glaucoma: systematic review. Eye. 2014;28(3):249–58. doi: 10.1038/eye.2013.267. PMID: 24310236. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC3965810] [PubMed: 24310236] [CrossRef]
521.
McCafferty S, Tetrault K, McColgin A, et al. Intraocular pressure measurement accuracy and repeatability of a modified goldmann prism: multicenter randomized clinical trial. Am J Ophthalmol. 2018;196:145–53. PMID: 30195894. Excluded for wrong population. [PMC free article: PMC6366945] [PubMed: 30195894]
522.
McIlraith I, Strasfeld M, Colev G, et al. Selective laser trabeculoplasty as initial and adjunctive treatment for open-angle glaucoma. J Glaucoma. 2006;15(2):124–30. doi: 10.1097/00061198-200604000-00009. PMID: 16633226. Excluded for wrong intervention. [PubMed: 16633226] [CrossRef]
523.
McTrusty AD, Cameron LA, Perperidis A, et al. Comparison of threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in glaucoma. Part II: patterns of visual field loss and acceptability. Transl Vis Sci Technol. 2017;6(5):4. doi: 10.1167/tvst.6.5.4. PMID: 28900577. Excluded for wrong study design for key question. [PMC free article: PMC5588911] [PubMed: 28900577] [CrossRef]
524.
Medeiros FA, Bowd C, Zangwill LM, et al. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci. 2007;48(7):3146–53. doi: 10.1167/iovs.06-1139. PMID: 17591884. Excluded for wrong study design for key question. [PubMed: 17591884] [CrossRef]
525.
Medeiros FA, Jammal AA, Thompson AC. From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs. Ophthalmology. 2019;126(4):513–21. doi: 10.1016/j.ophtha.2018.12.033. PMID: 30578810. Excluded for wrong study design for key question. [PMC free article: PMC6884092] [PubMed: 30578810] [CrossRef]
526.
Medeiros FA, Vizzeri G, Zangwill LM, et al. Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. Ophthalmology. 2008;115(8):1340–6. doi: 10.1016/j.ophtha.2007.11.008. PMID: 18207246. Excluded for wrong study design for key question. [PMC free article: PMC2832850] [PubMed: 18207246] [CrossRef]
527.
Medeiros FA, Zangwill LM, Bowd C, et al. Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detection of glaucoma. Arch Ophthalmol. 2004;122(5):698–704. doi: 10.1001/archopht.122.5.698. PMID: 15136317. Excluded for wrong intervention. [PubMed: 15136317] [CrossRef]
528.
Medeiros FA, Zangwill LM, Bowd C, et al. Influence of disease severity and optic disc size on the diagnostic performance of imaging instruments in glaucoma. Invest Ophthalmol Vis Sci. 2006;47(3):1008–15. doi: 10.1167/iovs.05-1133. PMID: 16505035. Excluded for wrong study design for key question. [PubMed: 16505035] [CrossRef]
529.
Medeiros FA, Zangwill LM, Bowd C, et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139(1):44–55. doi: 10.1016/j.ajo.2004.08.069. PMID: 15652827. Excluded for wrong study design for key question. [PubMed: 15652827] [CrossRef]
530.
Medeiros FA, Zangwill LM, Bowd C, et al. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol. 2004;122(6):827–37. doi: 10.1001/archopht.122.6.827. PMID: 15197057. Excluded for wrong study design for key question. [PubMed: 15197057] [CrossRef]
531.
Melamed S, David R. Ongoing clinical assessment of the safety profile and efficacy of brimonidine compared with timolol: year-three results. Brimonidine Study Group II. Clin Ther. 2000;22(1):103–11. doi: 10.1016/s0149-2918(00)87981-3. PMID: 10688394. Excluded for wrong comparator. [PubMed: 10688394] [CrossRef]
532.
Meng X. Effectiveness of latanoprost in lowering intraocular pressure in patients with primary angle-closure glaucoma. China Medical University. 2008. Excluded for not English language.
533.
Messmer C, Flammer J, Stumpfig D. Influence of betaxolol and timolol on the visual fields of patients with glaucoma. Am J Ophthalmol. 1991;112(6):678–81. doi: 10.1016/s0002-9394(14)77274-5. PMID: 1957903. Excluded for wrong comparator. [PubMed: 1957903] [CrossRef]
534.
Michelessi M, Li T, Miele A, et al. Accuracy of optical coherence tomography for diagnosing glaucoma: an overview of systematic reviews. Br J Ophthalmol. 2021;105(4):490–5. doi: 10.1136/bjophthalmol-2020-316152. PMID: 32493760. Excluded for wrong study design for key question. [PMC free article: PMC7876780] [PubMed: 32493760] [CrossRef]
535.
Michelessi M, Lucenteforte E, Oddone F, et al. Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev. 2015 (11):CD008803. doi: 10.1002/14651858.CD008803.pub2. PMID: 26618332. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC4732281] [PubMed: 26618332] [CrossRef]
536.
Mielke C, Dawda VK, Anand N. Deep sclerectomy and low dose mitomycin C: a randomised prospective trial in west Africa. Br J Ophthalmol. 2006;90(3):310–3. doi: 10.1136/bjo.2005.079483. PMID: 16488952. Excluded for wrong intervention. [PMC free article: PMC1856941] [PubMed: 16488952] [CrossRef]
537.
Migdal C, Gregory W, Hitchings R. Long-term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology. 1994;101(10):1651–6; discussion 7. doi: 10.1016/s0161-6420(94)31120-1. PMID: 7936562. Excluded for wrong population. [PubMed: 7936562] [CrossRef]
538.
Migdal C, Hitchings R. Control of chronic simple glaucoma with primary medical, surgical and laser treatment. Trans Ophthalmol Soc U K. 1986;105 (Pt 6):653–6. PMID: 3310341. Excluded for wrong comparator. [PubMed: 3310341]
539.
Miglior S, Riva I, Guareschi M, et al. Retinal sensitivity and retinal nerve fiber layer thickness measured by optical coherence tomography in glaucoma. Am J Ophthalmol. 2007;144(5):733–40. PMID: 17707327. Excluded for wrong study design for key question. [PubMed: 17707327]
540.
Miguel AIM, Silva AB, Azevedo LF. Diagnostic performance of optical coherence tomography angiography in glaucoma: a systematic review and meta-analysis. Br J Ophthalmol. 2019;103(11):1677–84. doi: 10.1136/bjophthalmol-2018-313461. PMID: 30728123. Excluded for wrong study design for key question. [PubMed: 30728123] [CrossRef]
541.
Miki A, Kawashima R, Usui S, et al. Treatment outcomes and prognostic factors of selective laser trabeculoplasty for open-angle glaucoma receiving maximal-tolerable medical therapy. J Glaucoma. 2016;25(10):785–9. PMID: 26918911. Excluded for wrong study design for key question. [PubMed: 26918911]
542.
Minckler DS, Vedula SS, Li TJ, et al. Aqueous shunts for glaucoma. Cochrane Database Syst Rev. 2006 (2):Cd004918. doi: 10.1002/14651858.CD004918.pub2. PMID: 16625616. Excluded for wrong intervention. [PMC free article: PMC4292853] [PubMed: 16625616] [CrossRef]
543.
Mirza GE, Karakucuk S, Temel E. Comparison of the effects of 0.5% timolol maleate, 2% carteolol hydrochloride, and 0.3% metipranolol on intraocular pressure and perimetry findings and evaluation of their ocular and systemic effects. J Glaucoma. 2000;9(1):45–50. doi: 10.1097/00061198-200002000-00009. PMID: 10708231. Excluded for wrong comparator. [PubMed: 10708231] [CrossRef]
544.
Mitra A, Banerjee PS, Roy S, et al. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning. Comput Methods Programs Biomed. 2018;165:25–35. doi: 10.1016/j.cmpb.2018.08.003. PMID: 30337079. Excluded for wrong outcome. [PubMed: 30337079] [CrossRef]
545.
Mohammadi SF, Mirhadi S, Mehrjardi HZ, et al. An algorithm for glaucoma screening in clinical settings and its preliminary performance profile. J Ophthalmic Vis Res. 2013;8(4):314–20. PMID: 24653818. Excluded for wrong outcome. [PMC free article: PMC3957037] [PubMed: 24653818]
546.
Monsalve B, Ferreras A, Calvo P, et al. Diagnostic ability of Humphrey perimetry, octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy. Eye. 2017;31(3):443–51. doi: 10.1038/eye.2016.251. PMID: 27834960. Excluded for wrong study design for key question. [PMC free article: PMC5350372] [PubMed: 27834960] [CrossRef]
547.
Montemayor F, Sibley LM, Courtright P, et al. Contribution of multiple glaucoma medications to visual function and quality of life in patients with glaucoma. Can J Ophthalmol. 2001;36(7):385–90. doi: 10.1016/s0008-4182(01)80082-x. PMID: 11794387. Excluded for wrong study design for key question. [PubMed: 11794387] [CrossRef]
548.
Montesano G, Bryan SR, Crabb DP, et al. A comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer. Ophthalmology. 2019;126(2):242–51. doi: 10.1016/j.ophtha.2018.08.010. PMID: 30114416. Excluded for wrong study design for key question. [PubMed: 30114416] [CrossRef]
549.
Moreno-Montanes J, Anton A, Garcia N, et al. Glaucoma probability score vs moorfields classification in normal, ocular hypertensive, and glaucomatous eyes. Am J Ophthalmol. 2008;145(2):360–8. doi: 10.1016/j.ajo.2007.09.006. PMID: 18045569. Excluded for wrong intervention. [PubMed: 18045569] [CrossRef]
550.
Moreno-Montanes J, Anton A, Garcia N, et al. Comparison of retinal nerve fiber layer thickness values using stratus optical coherence tomography and Heidelberg retina tomograph-III. J Glaucoma. 2009;18(7):528–34. doi: 10.1097/IJG.0b013e318193c29f. PMID: 19745667. Excluded for wrong study design for key question. [PubMed: 19745667] [CrossRef]
551.
Moreno-Montanes J, Olmo N, Alvarez A, et al. Cirrus high-definition optical coherence tomography compared with stratus optical coherence tomography in glaucoma diagnosis. Invest Ophthalmol Vis Sci. 2010;51(1):335–43. doi: 10.1167/iovs.08-2988. PMID: 19737881. Excluded for wrong study design for key question. [PubMed: 19737881] [CrossRef]
552.
Mori S, Hangai M, Sakamoto A, et al. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma. 2010;19(8):528–34. doi: 10.1097/IJG.0b013e3181ca7acf. PMID: 20164794. Excluded for wrong study design for key question. [PubMed: 20164794] [CrossRef]
553.
Moriarty BJ, Char JN, Acheson RW, et al. Argon laser trabeculoplasty in primary open-angle glaucoma-results in black Jamaican population. Int Ophthalmol. 1988;12(4):217–21. doi: 10.1007/bf00133936. PMID: 3220672. Excluded for wrong intervention. [PubMed: 3220672] [CrossRef]
554.
Motlagh BF. Medical therapy versus trabeculectomy in patients with open-angle glaucoma. Arq Bras Oftalmol. 2016;79(4):233–7. doi: 10.5935/0004-2749.20160067. PMID: 27626147. Excluded for wrong comparator. [PubMed: 27626147] [CrossRef]
555.
Mousa MF, Cubbidge RP, Al-Mansouri F, et al. The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects. Clin Ophthalmol. 2013;7:843–58. doi: 10.2147/OPTH.S44009. PMID: 23690675. Excluded for wrong study design for key question. [PMC free article: PMC3656925] [PubMed: 23690675] [CrossRef]
556.
Muhammad H, Fuchs TJ, De Cuir N, et al. Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects. J Glaucoma. 2017;26(12):1086–94. doi: 10.1097/IJG.0000000000000765. PMID: 29045329. Excluded for wrong study design for key question. [PMC free article: PMC5716847] [PubMed: 29045329] [CrossRef]
557.
Muratov S, Podbielski DW, Kennedy K, et al. Preference-based glaucoma-specific health-related quality of life Instrument: development of the health utility for glaucoma. J Glaucoma. 2018;27(7):585–91. doi: 10.1097/IJG.0000000000000984. PMID: 29762270. Excluded for wrong intervention. [PubMed: 29762270] [CrossRef]
558.
Murray IC, Perperidis A, Cameron LA, et al. Comparison of saccadic vector optokinetic perimetry and standard automated perimetry in glaucoma. Part I: threshold values and repeatability. Transl Vis Sci Technol. 2017;6(5):3. doi: 10.1167/tvst.6.5.3. PMID: 28900576. Excluded for wrong study design for key question. [PMC free article: PMC5588909] [PubMed: 28900576] [CrossRef]
559.
Murtagh P, Greene G, O’Brien C. Current applications of machine learning in the screening and diagnosis of glaucoma: a systematic review and meta-analysis. Int J Ophthalmol. 2020;13(1):149–62. doi: 10.18240/ijo.2020.01.22. PMID: 31956584. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC6942952] [PubMed: 31956584] [CrossRef]
560.
Mvoulana A, Kachouri R, Akil M. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Comput Med Imaging Graph. 2019;77:101643. doi: 10.1016/j.compmedimag.2019.101643. PMID: 31541937. Excluded for wrong study design for key question. [PubMed: 31541937] [CrossRef]
561.
Mwanza JC, Budenz DL, Godfrey DG, et al. Diagnostic performance of optical coherence tomography ganglion cell-inner plexiform layer thickness measurements in early glaucoma. Ophthalmology. 2014;121(4):849–54. doi: 10.1016/j.ophtha.2013.10.044. PMID: 24393348. Excluded for wrong study design for key question. [PubMed: 24393348] [CrossRef]
562.
Mwanza JC, Durbin MK, Budenz DL, et al. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology. 2012;119(6):1151–8. doi: 10.1016/j.ophtha.2011.12.014. PMID: 22365056. Excluded for wrong study design for key question. [PubMed: 22365056] [CrossRef]
563.
Mwanza JC, Kim HY, Budenz DL, et al. Residual and dynamic range of retinal nerve fiber layer thickness in glaucoma: comparison of three OCT platforms. Invest Ophthalmol Vis Sci. 2015;56(11):6344–51. doi: 10.1167/iovs.15-17248. PMID: 26436887. Excluded for wrong study design for key question. [PMC free article: PMC5109982] [PubMed: 26436887] [CrossRef]
564.
Mwanza JC, Lee G, Budenz DL. Effect of adjusting retinal nerve fiber layer profile to fovea-disc angle axis on the thickness and glaucoma diagnostic performance. Am J Ophthalmol. 2016;161 PMID: 26387935. Excluded for wrong study design for key question. [PubMed: 26387935]
565.
Mwanza JC, Lee G, Budenz DL, et al. Validation of the UNC OCT index for the diagnosis of early glaucoma. Transl Vis Sci Technol. 2018;7(2):16. doi: 10.1167/tvst.7.2.16. PMID: 29629238. Excluded for wrong study design for key question. [PMC free article: PMC5886105] [PubMed: 29629238] [CrossRef]
566.
Mwanza JC, Oakley JD, Budenz DL, et al. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology. 2011;118(2):241–8.e1. doi: 10.1016/j.ophtha.2010.06.036. PMID: 20920824. Excluded for wrong study design for key question. [PMC free article: PMC3017237] [PubMed: 20920824] [CrossRef]
567.
Mwanza JC, Warren JL, Budenz DL, et al. Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss. Invest Ophthalmol Vis Sci. 2013;54(13):8393–400. doi: 10.1167/iovs.13-12749. PMID: 24282232. Excluded for wrong study design for key question. [PMC free article: PMC4368131] [PubMed: 24282232] [CrossRef]
568.
Myers JS, Vold S, Zaman F, et al. Bimatoprost 0.01% or 0.03% in patients with glaucoma or ocular hypertension previously treated with latanoprost: two randomized 12-week trials. Clin Ophthalmol. 2014;8:643–52. doi: 10.2147/OPTH.S59197. PMID: 24707169. Excluded for wrong comparator. [PMC free article: PMC3971936] [PubMed: 24707169] [CrossRef]
569.
Na JH, Lee KS, Lee JR, et al. The glaucoma detection capability of spectral-domain OCT and GDx-VCC deviation maps in early glaucoma patients with localized visual field defects. Graefes Arch Clin Exp Ophthalmol. 2013;251(10):2371–82. doi: 10.1007/s00417-013-2362-z. PMID: 23818227. Excluded for wrong study design for key question. [PubMed: 23818227] [CrossRef]
570.
Na JH, Sung KR, Baek S, et al. Progression of retinal nerve fiber layer thinning in glaucoma assessed by cirrus optical coherence tomography-guided progression analysis. Curr Eye Res. 2013;38(3):386–95. doi: 10.3109/02713683.2012.742913. PMID: 23441595. Excluded for wrong outcome. [PubMed: 23441595] [CrossRef]
571.
Nagayama M, Nakajima T, Ono J. Safety and efficacy of a fixed versus unfixed brinzolamide/timolol combination in Japanese patients with open-angle glaucoma or ocular hypertension. Clin Ophthalmol. 2014;8:219–28. doi: 10.2147/OPTH.S55590. PMID: 24531757. Excluded for wrong comparator. [PMC free article: PMC3895032] [PubMed: 24531757] [CrossRef]
572.
Naithani P, Sihota R, Sony P, et al. Evaluation of optical coherence tomography and Heidelberg retinal tomography parameters in detecting early and moderate glaucoma. Invest Ophthalmol Vis Sci. 2007;48(7):3138–45. doi: 10.1167/iovs.06-1407. PMID: 17591883. Excluded for wrong intervention. [PubMed: 17591883] [CrossRef]
573.
Naito T, Fujiwara M, Miki T, et al. Effect of trabeculectomy on visual field progression in Japanese progressive normal-tension glaucoma with intraocular pressure < 15 mmHg. PLoS One. 2017;12(8):e0184096. doi: 10.1371/journal.pone.0184096. PMID: 28850613. Excluded for wrong intervention. [PMC free article: PMC5574552] [PubMed: 28850613] [CrossRef]
574.
Nakatani Y, Higashide T, Ohkubo S, et al. Influences of the inner retinal sublayers and analytical areas in macular scans by spectral-domain OCT on the diagnostic ability of early glaucoma. Invest Ophthalmol Vis Sci. 2014;55(11):7479–85. doi: 10.1167/iovs.14-15530. PMID: 25342613. Excluded for wrong study design for key question. [PubMed: 25342613] [CrossRef]
575.
Nakatani Y, Higashide T, Ohkubo S, et al. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma. 2011;20(4):252–9. doi: 10.1097/IJG.0b013e3181e079ed. PMID: 20520570. Excluded for wrong study design for key question. [PubMed: 20520570] [CrossRef]
576.
Nassiri N, Nassiri N, Rahnavardi M, et al. A comparison of corneal endothelial cell changes after 1-site and 2-site phacotrabeculectomy. Cornea. 2008;27(8):889–94. doi: 10.1097/ICO.0b013e31817618b0. PMID: 18724149. Excluded for wrong intervention. [PubMed: 18724149] [CrossRef]
577.
National Eye Health Education Program. Eye-Q Test. https://www​.nei.nih.gov​/sites/default/files​/nehep-pdfs/EyeQTest_for_Toolkit.pdf. Accessed Februrary 12, 2020. Excluded for wrong intervention.
578.
Nazareth T, Rocha J, Scoralick ALB, et al. Retinal sensitivity thresholds obtained through easyfield and Humphrey perimeters in eyes with glaucoma: a cross-sectional comparative study. Clin Ophthalmol. 2020;14:4201–7. doi: 10.2147/OPTH.S280692. PMID: 33299296. Excluded for wrong outcome. [PMC free article: PMC7719433] [PubMed: 33299296] [CrossRef]
579.
Nebbioso M, Gregorio FD, Prencipe L, et al. Psychophysical and electrophysiological testing in ocular hypertension. Optom Vis Sci. 2011;88(8):E928–39. doi: 10.1097/OPX.0b013e31821c6ca4. PMID: 21532514. Excluded for wrong study design for key question. [PubMed: 21532514] [CrossRef]
580.
Netland PA, Weiss HS, Stewart WC, et al. Cardiovascular effects of topical carteolol hydrochloride and timolol maleate in patients with ocular hypertension and primary open-angle glaucoma. Night Study Group. Am J Ophthalmol. 1997;123(4):465–77. doi: 10.1016/s0002-9394(14)70172-2. PMID: 9124243. Excluded for wrong comparator. [PubMed: 9124243] [CrossRef]
581.
Nezu N, Usui Y, Saito A, et al. Machine learning approach for intraocular disease prediction based on aqueous humor immune mediator profiles. Ophthalmology. 2021;20:20. doi: 10.1016/j.ophtha.2021.01.019. PMID: 33484732. Excluded for wrong population. [PubMed: 33484732] [CrossRef]
582.
Ng M, Racette L, Pascual JP, et al. Comparing the full-threshold and Swedish interactive thresholding algorithms for short-wavelength automated perimetry. Invest Ophthalmol Vis Sci. 2009;50(4):1726–33. doi: 10.1167/iovs.08-2718. PMID: 19074800. Excluded for wrong intervention. [PMC free article: PMC2716113] [PubMed: 19074800] [CrossRef]
583.
Nicolela MT, Drance SM, Broadway DC, et al. Agreement among clinicians in the recognition of patterns of optic disk damage in glaucoma. Am J Ophthalmol. 2001;132(6):836–44. doi: 10.1016/s0002-9394(01)01254-5. PMID: 11730646. Excluded for wrong comparator. [PubMed: 11730646] [CrossRef]
584.
Nieves-Moreno M, Martinez-de-la-Casa JM, Bambo MP, et al. New normative database of inner macular layer thickness measured by spectralis OCT used as reference standard for glaucoma detection. Transl Vis Sci Technol. 2018;7(1):20. doi: 10.1167/tvst.7.1.20. PMID: 29497582. Excluded for wrong study design for key question. [PMC free article: PMC5829952] [PubMed: 29497582] [CrossRef]
585.
Niwas SI, Lin W, Kwoh CK, et al. Cross-examination for angle-closure glaucoma feature detection. IEEE J Biomed Health Inform. 2016;20(1):343–54. doi: 10.1109/JBHI.2014.2387207. PMID: 25561599. Excluded for wrong study design for key question. [PubMed: 25561599] [CrossRef]
586.
Nixon DR, Simonyi S, Bhogal M, et al. An observational study of bimatoprost 0.01% in treatment-naive patients with primary open angle glaucoma or ocular hypertension: the CLEAR trial. Clin Ophthalmol. 2012;6:2097–103. doi: 10.2147/OPTH.S35394. PMID: 23269858. Excluded for wrong study design for key question. [PMC free article: PMC3529655] [PubMed: 23269858] [CrossRef]
587.
Niziol LM, Gillespie BW, Musch DC. Association of fellow eye with study eye disease trajectories and need for fellow eye treatment in Collaborative Initial Glaucoma Treatment Study (CIGTS) participants. JAMA Ophthalmol. 2018;136(10):1149–56. doi: 10.1001/jamaophthalmol.2018.3274. PMID: 30098162. Excluded for wrong outcome. [PMC free article: PMC6583863] [PubMed: 30098162] [CrossRef]
588.
Nolan WP, Ganzorig S, Undraa A, et al. Randomized controlled trial of screening for primary angle-closure in Mongolia. Iovs. 2000;41. Excluded for wrong publication type.
589.
Nouri-Mahdavi K, Nikkhou K, Hoffman DC, et al. Detection of early glaucoma with optical coherence tomography (StratusOCT). J Glaucoma. 2008;17(3):183–8. doi: 10.1097/IJG.0b013e31815768c4. PMID: 18414102. Excluded for wrong study design for key question. [PubMed: 18414102] [CrossRef]
590.
Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, et al. Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol. 2013;156(6):1297–307.e2. doi: 10.1016/j.ajo.2013.08.001. PMID: 24075422. Excluded for wrong study design for key question. [PMC free article: PMC3834195] [PubMed: 24075422] [CrossRef]
591.
Oddone F, Centofanti M, Iester M, et al. Sector-based analysis with the Heidelberg Retinal Tomograph 3 across disc sizes and glaucoma stages: a multicenter study. Ophthalmology. 2009;116(6):1106–11.e1–3. doi: 10.1016/j.ophtha.2009.01.020. PMID: 19376590. Excluded for wrong study design for key question. [PubMed: 19376590] [CrossRef]
592.
Oddone F, Centofanti M, Tanga L, et al. Influence of disc size on optic nerve head versus retinal nerve fiber layer assessment for diagnosing glaucoma. Ophthalmology. 2011;118(7):1340–7. doi: 10.1016/j.ophtha.2010.12.017. PMID: 21474186. Excluded for wrong study design for key question. [PubMed: 21474186] [CrossRef]
593.
Oddone F, Lucenteforte E, Michelessi M, et al. Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies. Ophthalmology. 2016;123(5):939–49. doi: 10.1016/j.ophtha.2015.12.041. PMID: 26891880. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 26891880] [CrossRef]
594.
Ohnell H, Bengtsson B, Heijl A. Making a correct diagnosis of glaucoma: data from the EMGT. J Glaucoma. 2019;28(10):859–64. doi: 10.1097/IJG.0000000000001342. PMID: 31567622. Excluded for wrong outcome. [PMC free article: PMC6776427] [PubMed: 31567622] [CrossRef]
595.
Ohnell H, Heijl A, Brenner L, et al. Structural and functional progression in the early manifest glaucoma trial. Ophthalmology. 2016;123(6):1173–80. doi: 10.1016/j.ophtha.2016.01.039. PMID: 26949119. Excluded for wrong study design for key question. [PMC free article: PMC4877258] [PubMed: 26949119] [CrossRef]
596.
Onishi AC, Treister AD, Nesper PL, et al. Parafoveal vessel changes in primary open-angle glaucoma and normal-tension glaucoma using optical coherence tomography angiography. Clin Ophthalmol. 2019;13:1935–45. doi: 10.2147/OPTH.S206288. PMID: 31579266. Excluded for wrong study design for key question. [PMC free article: PMC6773972] [PubMed: 31579266] [CrossRef]
597.
Orlando JI, Fu H, Barbosa Breda J, et al. REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med Image Anal. 2020;59:101570. doi: 10.1016/j.media.2019.101570. PMID: 31630011. Excluded for wrong study design for key question. [PubMed: 31630011] [CrossRef]
598.
Orzalesi N, Rossetti L, Bottoli A, et al. Comparison of the effects of latanoprost, travoprost, and bimatoprost on circadian intraocular pressure in patients with glaucoma or ocular hypertension. Ophthalmology. 2006;113(2):239–46. doi: 10.1016/j.ophtha.2005.10.045. PMID: 16458092. Excluded for wrong comparator. [PubMed: 16458092] [CrossRef]
599.
Oskarsdottir SE, Heijl A, Bengtsson B. Predicting undetected glaucoma according to age and IOP: a prediction model developed from a primarily European-derived population. Acta Ophthalmol. 2019;97(4):422–6. doi: 10.1111/aos.13941. PMID: 30324772. Excluded for wrong study design for key question. [PMC free article: PMC6465174] [PubMed: 30324772] [CrossRef]
600.
Owsley C, Rhodes LA, McGwin G, Jr., et al. Eye care Quality and Accessibility Improvement in the Community (EQUALITY) for adults at risk for glaucoma: study rationale and design. Int J Equity Health. 2015;14:135. doi: 10.1186/s12939-015-0213-8. PMID: 26582103. Excluded for not a study. [PMC free article: PMC4652429] [PubMed: 26582103] [CrossRef]
601.
Pablo LE, Ferreras A, Schlottmann PG. Retinal nerve fibre layer evaluation in ocular hypertensive eyes using optical coherence tomography and scanning laser polarimetry in the diagnosis of early glaucomatous defects. Br J Ophthalmol. 2011;95(1):51–5. doi: 10.1136/bjo.2009.170936. PMID: 20576777. Excluded for wrong intervention. [PubMed: 20576777] [CrossRef]
602.
Paletta Guedes RA, Gravina DM, Paletta Guedes VM, et al. Factors associated with unqualified success after trabecular bypass surgery: a case-control study. J Glaucoma. 2020;29(11):1082–7. doi: 10.1097/IJG.0000000000001626. PMID: 32769734. Excluded for wrong study design for key question. [PubMed: 32769734] [CrossRef]
603.
Parikh RS, Parikh SR, Kumar RS, et al. Diagnostic capability of scanning laser polarimetry with variable cornea compensator in Indian patients with early primary open-angle glaucoma. Ophthalmology. 2008;115(7):1167–72.e1. doi: 10.1016/j.ophtha.2007.09.015. PMID: 18061269. Excluded for wrong study design for key question. [PubMed: 18061269] [CrossRef]
604.
Park HY, Park CK. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Ophthalmology. 2013;120(4):745–52. doi: 10.1016/j.ophtha.2012.09.051. PMID: 23260259. Excluded for wrong study design for key question. [PubMed: 23260259] [CrossRef]
605.
Park K, Kim J, Lee J. Macular vessel density and ganglion cell/inner plexiform layer thickness and their combinational index using artificial intelligence. J Glaucoma. 2018;27(9):750–60. doi: 10.1097/IJG.0000000000001028. PMID: 30005033. Excluded for wrong study design for key question. [PubMed: 30005033] [CrossRef]
606.
Park KH, Caprioli J. Development of a novel reference plane for the Heidelberg retina tomograph with optical coherence tomography measurements. J Glaucoma. 2002;11(5):385–91. PMID: 12362076. Excluded for wrong study design for key question. [PubMed: 12362076]
607.
Park KH, Simonyi S, Kim CY, et al. Bimatoprost 0.01% in treatment-naive patients with open-angle glaucoma or ocular hypertension: an observational study in the Korean clinical setting. BMC Ophthalmol. 2014;14:160. doi: 10.1186/1471-2415-14-160. PMID: 25519810. Excluded for wrong study design for key question. [PMC free article: PMC4289567] [PubMed: 25519810] [CrossRef]
608.
Park SB, Sung KR, Kang SY, et al. Comparison of glaucoma diagnostic capabilities of Cirrus HD and stratus optical coherence tomography. Arch Ophthalmol. 2009;127(12):1603–9. doi: 10.1001/archophthalmol.2009.296. PMID: 20008715. Excluded for wrong study design for key question. [PubMed: 20008715] [CrossRef]
609.
Parkins DJ, Edgar DF. Comparison of the effectiveness of two enhanced glaucoma referral schemes. Ophthalmic Physiol Opt. 2011;31(4):343–52. doi: 10.1111/j.1475-1313.2011.00853.x. PMID: 21615447. Excluded for wrong comparator. [PubMed: 21615447] [CrossRef]
610.
Parrish RK, 2nd, Feuer WJ, Schiffman JC, et al. Five-year follow-up optic disc findings of the Collaborative Initial Glaucoma Treatment Study. Am J Ophthalmol. 2009;147(4):717–24.e1. doi: 10.1016/j.ajo.2008.10.007. PMID: 19152871. Excluded for wrong study design for key question. [PMC free article: PMC2714658] [PubMed: 19152871] [CrossRef]
611.
Pasquale LR, Asefzadeh B, Dunphy RW, et al. Detection of glaucoma-like optic discs in a diabetes teleretinal program. Optometry. 2007;78(12):657–63. PMID: 18054136. Excluded for wrong population. [PubMed: 18054136]
612.
Patyal S, Thulasidas M. Comparison of 24-2 faster, fast, and standard programs of Swedish interactive threshold algorithm of Humphrey field analyzer for perimetry in patients with manifest and suspect glaucoma. J Glaucoma. 2020;29(11):1070–6. doi: 10.1097/IJG.0000000000001611. PMID: 32890104. Excluded for wrong comparator. [PubMed: 32890104] [CrossRef]
613.
Peace JH, Ahlberg P, Wagner M, et al. Polyquaternium-1-preserved travoprost 0.003% or benzalkonium chloride-preserved travoprost 0.004% for glaucoma and ocular hypertension. Am J Ophthalmol. 2015;160(2):266–74.e1. doi: 10.1016/j.ajo.2015.04.041. PMID: 25935098. Excluded for wrong comparator. [PubMed: 25935098] [CrossRef]
614.
Penteado RC, Bowd C, Proudfoot JA, et al. Diagnostic ability of optical coherence tomography angiography macula vessel density for the diagnosis of glaucoma using difference scan sizes. J Glaucoma. 2020;29(4):245–51. doi: 10.1097/IJG.0000000000001447. PMID: 31977545. Excluded for wrong study design for key question. [PubMed: 31977545] [CrossRef]
615.
Perez CI, Chansangpetch S, Mora M, et al. Ethnicity-specific database improves the diagnostic ability of peripapillary retinal nerve fiber layer thickness to detect glaucoma. Am J Ophthalmol. 2021;221:311–2. doi: 10.1016/j.ajo.2020.07.043. PMID: 32777372. Excluded for wrong study design for key question. [PubMed: 32777372] [CrossRef]
616.
Perez E, Rada G, Maul E. Selective laser trabeculoplasty compared with medical treatment for the initial management of open angle glaucoma or ocular hypertension. Medwave. 2015;15 Suppl 3:e6337. doi: 10.5867/medwave.2015.6337. PMID: 26730963. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 26730963] [CrossRef]
617.
Pfeiffer N, group T. Timolol versus brinzolamide added to travoprost in glaucoma or ocular hypertension. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1065–71. doi: 10.1007/s00417-011-1650-8. PMID: 21499770. Excluded for wrong comparator. [PubMed: 21499770] [CrossRef]
618.
Pfennigsdorf S, Ramez O, von Kistowski G, et al. Multicenter, prospective, open-label, observational study of bimatoprost 0.01% in patients with primary open-angle glaucoma or ocular hypertension. Clin Ophthalmol. 2012;6(1):739–46. Excluded for wrong study design for key question. [PMC free article: PMC3363312] [PubMed: 22654501]
619.
Phan S, Satoh S, Yoda Y, et al. Evaluation of deep convolutional neural networks for glaucoma detection. Jpn J Ophthalmol. 2019;63(3):276–83. doi: 10.1007/s10384-019-00659-6. PMID: 30798379. Excluded for wrong study design for key question. [PubMed: 30798379] [CrossRef]
620.
Phene S, Dunn RC, Hammel N, et al. Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs. Ophthalmology. 2019;126(12):1627–39. doi: 10.1016/j.ophtha.2019.07.024. PMID: 31561879. Excluded for wrong study design for key question. [PubMed: 31561879] [CrossRef]
621.
Phu J, Khuu SK, Agar A, et al. Visualizing the consistency of clinical characteristics that distinguish healthy persons, glaucoma suspect patients, and manifest glaucoma patients. Ophthalmol Glaucoma. 2020;3(4):274–87. doi: 10.1016/j.ogla.2020.04.009. PMID: 33012332. Excluded for wrong outcome. [PubMed: 33012332] [CrossRef]
622.
Pillunat KR, Herber R, Spoerl E, et al. A new biomechanical glaucoma factor to discriminate normal eyes from normal pressure glaucoma eyes. Acta Ophthalmol. 2019;97(7):e962–e7. doi: 10.1111/aos.14115. PMID: 31016882. Excluded for wrong study design for key question. [PubMed: 31016882] [CrossRef]
623.
Plange N, Harris A, Wolter P, et al. Retinal hemodynamics, perimetry and contrast sensitivity in glaucoma therapy. Iovs. 2001;42(113). Excluded for wrong publication type.
624.
PLoS One Staff. Correction: the effectiveness of teleglaucoma versus in-patient examination for glaucoma screening: a systematic review and meta-analysis. PLoS One. 2015;10(3):e0118688. doi: 10.1371/journal.pone.0118688. PMID: 25742019. Excluded for not a study. [PMC free article: PMC4351251] [PubMed: 25742019] [CrossRef]
625.
Pluhacek F, Wagner J. Comparison of reliability of the eye optic disc cup and pallor areas in glaucoma diagnostics. Coll Antropol. 2013;37 Suppl 1:59–63. PMID: 23837222. Excluded for wrong study design for key question. [PubMed: 23837222]
626.
Polaczek-Krupa B, Grabska-Liberek I. The reliability and applicability of a macular thickness measurement in the diagnostic evaluation of primary open angle glaucoma. Klin Oczna. 2013;115(3):184–8. PMID: 24741921. Excluded for wrong study design for key question. [PubMed: 24741921]
627.
Polaczek-Krupa B, Grabska-Liberek I. Applicability of standard parameters in diagnostics of primary open-angle glaucoma. Med Sci Monit. 2013;19:657–60. doi: 10.12659/MSM.883994. PMID: 23934540. Excluded for wrong intervention. [PMC free article: PMC3743461] [PubMed: 23934540] [CrossRef]
628.
Polo V, Larrosa JM, Ferreras A, et al. Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography. Ophthalmologica. 2009;223(1):2–6. doi: 10.1159/000161875. PMID: 18849629. Excluded for wrong intervention. [PubMed: 18849629] [CrossRef]
629.
Porporato N, Baskaran M, Tun TA, et al. Understanding diagnostic disagreement in angle closure assessment between anterior segment optical coherence tomography and gonioscopy. Br J Ophthalmol. 2020;104(6):795–9. doi: 10.1136/bjophthalmol-2019-314672. PMID: 31492674. Excluded for wrong comparator. [PubMed: 31492674] [CrossRef]
630.
Porporato N, Baskaran M, Tun TA, et al. Assessment of circumferential angle closure with swept-source optical coherence tomography: a community based study. Am J Ophthalmol. 2019;199:133–9. doi: 10.1016/j.ajo.2018.11.015. PMID: 30502338. Excluded for wrong comparator. [PubMed: 30502338] [CrossRef]
631.
Prata TS, Dorairaj S, Trancoso L, et al. Eyes with large disc cupping and normal intraocular pressure: using optical coherence tomography to discriminate those with and without glaucoma. Med Hypothesis Discov Innov Ophthalmol. 2014;3(3):91–8. PMID: 25741525. Excluded for wrong study design for key question. [PMC free article: PMC4348491] [PubMed: 25741525]
632.
Prata TS, Piassi MV, Melo LA, Jr. Changes in visual function after intraocular pressure reduction using antiglaucoma medications. Eye (Lond). 2009;23(5):1081–5. doi: 10.1038/eye.2008.226. PMID: 18670465. Excluded for wrong comparator. [PubMed: 18670465] [CrossRef]
633.
Pratt NL, Ramsay EN, Kalisch Ellett LM, et al. Association between ophthalmic timolol and hospitalisation for bradycardia. J Ophthalmol. 2015;2015:567387. doi: 10.1155/2015/567387. PMID: 25874117. Excluded for wrong study design for key question. [PMC free article: PMC4385589] [PubMed: 25874117] [CrossRef]
634.
Prevent Blindness America. Glaucoma Eye Q Test. 2017. Excluded for wrong intervention.
635.
Prokosch V, Eter N. Correlation between early retinal nerve fiber layer loss and visual field loss determined by three different perimetric strategies: white-on-white, frequency-doubling, or flicker-defined form perimetry. Graefes Arch Clin Exp Ophthalmol. 2014;252(10):1599–606. doi: 10.1007/s00417-014-2718-z. PMID: 25074041. Excluded for wrong study design for key question. [PubMed: 25074041] [CrossRef]
636.
Pueyo V, Polo V, Larrosa JM, et al. Diagnostic ability of the Heidelberg retina tomograph, optical coherence tomograph, and scanning laser polarimeter in open-angle glaucoma. J Glaucoma. 2007;16(2):173–7. doi: 10.1097/IJG.0b013e31802dfc1d. PMID: 17473725. Excluded for wrong intervention. [PubMed: 17473725] [CrossRef]
637.
Pueyo V, Polo V, Larrosa JM, et al. Ability of optical imaging devices to detect early structural damage in ocular hypertension. Ann Ophthalmol (Skokie). 2009;41(3-4):150–6. PMID: 20214046. Excluded for wrong intervention. [PubMed: 20214046]
638.
Qiu K, Zhang M. Re: Pazos et al.: diagnostic accuracy of spectralis SD OCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes Ophthalmology. 2018;125(3):e20–e1. doi: 10.1016/j.ophtha.2017.10.017. PMID: 29458834. Excluded for not a study. [PubMed: 29458834] [CrossRef]
639.
Qiu M, Boland MV, Ramulu PY. Cup-to-disc ratio asymmetry in U.S. adults: prevalence and association with glaucoma in the 2005-2008 National Health and Nutrition Examination Survey. Ophthalmology. 2017;124(8):1229–36. doi: 10.1016/j.ophtha.2017.03.049. PMID: 28545734. Excluded for wrong intervention. [PubMed: 28545734] [CrossRef]
640.
Quaranta L, Bettelli S, Gandolfo E. Efficacy of sulodexide as adjunct in trabeculectomy. A two-year randomized clinical study. Acta Ophthalmol Scand Suppl. 2000 (232):63–5. doi: 10.1111/j.1600-0420.2000.tb01111.x. PMID: 11235544. Excluded for wrong intervention. [PubMed: 11235544] [CrossRef]
641.
Quaranta L, Gandolfo F, Turano R, et al. Effects of topical hypotensive drugs on circadian IOP, blood pressure, and calculated diastolic ocular perfusion pressure in patients with glaucoma. Invest Ophthalmol Vis Sci. 2006;47(7):2917–23. doi: 10.1167/iovs.05-1253. PMID: 16799034. Excluded for wrong population. [PubMed: 16799034] [CrossRef]
642.
Quaranta L, Pizzolante T, Riva I, et al. Twenty-four-hour intraocular pressure and blood pressure levels with bimatoprost versus latanoprost in patients with normal-tension glaucoma. Br J Ophthalmol. 2008;92(9):1227–31. doi: 10.1136/bjo.2008.138024. PMID: 18586898. Excluded for wrong comparator. [PubMed: 18586898] [CrossRef]
643.
Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Arch Ophthalmol. 1980;98(9):1564–71. doi: 10.1001/archopht.1980.01020040416003. PMID: 7425916. Excluded for wrong study design for key question. [PubMed: 7425916] [CrossRef]
644.
Ra S, Ayaki M, Yuki K, et al. Dry eye, sleep quality, and mood status in glaucoma patients receiving prostaglandin monotherapy were comparable with those in non-glaucoma subjects. PLoS One. 2017;12(11):e0188534. doi: 10.1371/journal.pone.0188534. PMID: 29176799. Excluded for wrong comparator. [PMC free article: PMC5703517] [PubMed: 29176799] [CrossRef]
645.
Racette L, Medeiros FA, Zangwill LM, et al. Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Invest Ophthalmol Vis Sci. 2008;49(3):954–60. doi: 10.1167/iovs.07-0493. PMID: 18326718. Excluded for wrong study design for key question. [PMC free article: PMC2367320] [PubMed: 18326718] [CrossRef]
646.
Raghavendra U, Gudigar A, Bhandary SV, et al. A two layer sparse autoencoder for glaucoma identification with fundus images. J Med Syst. 2019;43(9):299. doi: 10.1007/s10916-019-1427-x. PMID: 31359230. Excluded for wrong intervention. [PubMed: 31359230] [CrossRef]
647.
Rainer G, Dorner GT, Garhofer G, et al. Changing antiglaucoma therapy from timolol to betaxolol: effect on ocular blood flow. Ophthalmologica. 2003;217(4):288–93. doi: 10.1159/000070637. PMID: 12792136. Excluded for wrong comparator. [PubMed: 12792136] [CrossRef]
648.
Raja C, Gangatharan N. A hybrid swarm algorithm for optimizing glaucoma diagnosis. Comput Biol Med. 2015;63:196–207. doi: 10.1016/j.compbiomed.2015.05.018. PMID: 26093787. Excluded for wrong study design for key question. [PubMed: 26093787] [CrossRef]
649.
Raja H, Akram MU, Shaukat A, et al. Extraction of retinal layers through convolution neural network (CNN) in an OCT Image for glaucoma diagnosis. J Digit Imaging. 2020;33(6):1428–42. doi: 10.1007/s10278-020-00383-5. PMID: 32968881. Excluded for wrong study design for key question. [PMC free article: PMC7728844] [PubMed: 32968881] [CrossRef]
650.
Raja H, Hassan T, Akram MU, et al. Clinically verified hybrid deep learning system for retinal ganglion cells aware grading of glaucomatous progression. IEEE Trans Biomed Eng. 2020;12:12. doi: 10.1109/TBME.2020.3030085. PMID: 33044925. Excluded for wrong outcome. [PubMed: 33044925] [CrossRef]
651.
Ran AR, Cheung CY, Wang X, et al. Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. Lancet Digit Health. 2019;1(4):e172–e82. doi: 10.1016/S2589-7500(19)30085-8. PMID: 33323187. Excluded for wrong study design for key question. [PubMed: 33323187] [CrossRef]
652.
Rao HL, Addepalli UK, Chaudhary S, et al. Ability of different scanning protocols of spectral domain optical coherence tomography to diagnose preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2013;54(12):7252–7. doi: 10.1167/iovs.13-12731. PMID: 24114539. Excluded for wrong study design for key question. [PubMed: 24114539] [CrossRef]
653.
Rao HL, Babu JG, Addepalli UK, et al. Retinal nerve fiber layer and macular inner retina measurements by spectral domain optical coherence tomograph in Indian eyes with early glaucoma. Eye. 2012;26(1):133–9. doi: 10.1038/eye.2011.277. PMID: 22079964. Excluded for wrong study design for key question. [PMC free article: PMC3259596] [PubMed: 22079964] [CrossRef]
654.
Rao HL, Dasari S, Riyazuddin M, et al. Diagnostic ability and structure-function relationship of peripapillary optical microangiography measurements in glaucoma. J Glaucoma. 2018;27(3):219–26. doi: 10.1097/IJG.0000000000000873. PMID: 29329139. Excluded for wrong study design for key question. [PubMed: 29329139] [CrossRef]
655.
Rao HL, Kadambi SV, Mehta P, et al. Diagnostic ability of automated pupillography in glaucoma. Curr Eye Res. 2017;42(5):743–7. doi: 10.1080/02713683.2016.1238944. PMID: 27897448. Excluded for wrong study design for key question. [PubMed: 27897448] [CrossRef]
656.
Rao HL, Kadambi SV, Weinreb RN, et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017;101(8):1066–70. doi: 10.1136/bjophthalmol-2016-309377. PMID: 27899368. Excluded for wrong study design for key question. [PubMed: 27899368] [CrossRef]
657.
Rao HL, Pradhan ZS, Weinreb RN, et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol. 2016;171:75–83. doi: 10.1016/j.ajo.2016.08.030. PMID: 27590118. Excluded for wrong study design for key question. [PubMed: 27590118] [CrossRef]
658.
Rao HL, Pradhan ZS, Weinreb RN, et al. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS One. 2017;12(3):e0173930. doi: 10.1371/journal.pone.0173930. PMID: 28288185. Excluded for wrong study design for key question. [PMC free article: PMC5348011] [PubMed: 28288185] [CrossRef]
659.
Rao HL, Pradhan ZS, Weinreb RN, et al. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol. 2017;177:106–15. doi: 10.1016/j.ajo.2017.02.020. PMID: 28254626. Excluded for wrong study design for key question. [PubMed: 28254626] [CrossRef]
660.
Rao HL, Riyazuddin M, Dasari S, et al. Diagnostic abilities of the optical microangiography parameters of the 3x3 mm and 6x6 mm macular scans in glaucoma. J Glaucoma. 2018;27(6):496–503. doi: 10.1097/IJG.0000000000000952. PMID: 29578891. Excluded for wrong study design for key question. [PubMed: 29578891] [CrossRef]
661.
Rao HL, Yadav RK, Addepalli UK, et al. Reference standard test and the diagnostic ability of spectral domain optical coherence tomography in glaucoma. J Glaucoma. 2015;24(6):e151–6. doi: 10.1097/IJG.0000000000000087. PMID: 25014362. Excluded for wrong study design for key question. [PubMed: 25014362] [CrossRef]
662.
Rao HL, Yadav RK, Addepalli UK, et al. Peripapillary retinal nerve fiber layer assessment of spectral domain optical coherence tomography and scanning laser polarimetry to diagnose preperimetric glaucoma. PLoS One. 2014;9(10):e108992. doi: 10.1371/journal.pone.0108992. PMID: 25279801. Excluded for duplicate data. [PMC free article: PMC4184835] [PubMed: 25279801] [CrossRef]
663.
Rao HL, Yadav RK, Addepalli UK, et al. Retinal nerve fiber layer evaluation of spectral domain optical coherence tomograph and scanning laser polarimeter to diagnose glaucoma. Eye. 2014;28(6):654–61. doi: 10.1038/eye.2014.46. PMID: 24603422. Excluded for duplicate data. [PMC free article: PMC4058612] [PubMed: 24603422] [CrossRef]
664.
Rao HL, Yadav RK, Begum VU, et al. Role of visual field reliability indices in ruling out glaucoma. JAMA Ophthalmol. 2015;133(1):40–4. doi: 10.1001/jamaophthalmol.2014.3609. PMID: 25256758. Excluded for wrong intervention. [PubMed: 25256758] [CrossRef]
665.
Rao HL, Zangwill LM, Weinreb RN, et al. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010;117(9):1692–9, 9.e1. doi: 10.1016/j.ophtha.2010.01.031. PMID: 20493529. Excluded for wrong study design for key question. [PubMed: 20493529] [CrossRef]
666.
Rao S, Narayanan PV. A randomised open label comparative clinical trial on the efficacy of latanoprost and timolol in primary open angle glaucoma. J Clin Diagn Res 2016;10(1):FC13–5. doi: 10.7860/JCDR/2016/16923.7135. PMID: 26894085. Excluded for wrong comparator. [PMC free article: PMC4740613] [PubMed: 26894085] [CrossRef]
667.
Raza AS, Zhang X, De Moraes CG, et al. Improving glaucoma detection using spatially correspondent clusters of damage and by combining standard automated perimetry and optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(1):612–24. doi: 10.1167/iovs.13-12351. PMID: 24408977. Excluded for wrong study design for key question. [PMC free article: PMC3908820] [PubMed: 24408977] [CrossRef]
668.
Razeghinejad R, Gonzalez-Garcia A, Myers JS, et al. Preliminary report on a novel virtual reality perimeter compared with standard automated perimetry. J Glaucoma. 2021;30(1):17–23. doi: 10.1097/IJG.0000000000001670. PMID: 32941320. Excluded for wrong study design for key question. [PubMed: 32941320] [CrossRef]
669.
Realini T. Selective laser trabeculoplasty for the management of open-angle glaucoma in St. Lucia. JAMA Ophthalmol. 2013;131(3):321–7. doi: 10.1001/jamaophthalmol.2013.1706. PMID: 23348420. Excluded for wrong study design for key question. [PubMed: 23348420] [CrossRef]
670.
Reddy S, Xing D, Arthur SN, et al. HRT III glaucoma probability score and moorfields regression across the glaucoma spectrum. J Glaucoma. 2009;18(5):368–72. doi: 10.1097/IJG.0b013e31818c6edd. PMID: 19525726. Excluded for wrong study design for key question. [PubMed: 19525726] [CrossRef]
671.
Reibaldi A, Uva MG, Longo A. Nine-year follow-up of trabeculectomy with or without low-dosage mitomycin-c in primary open-angle glaucoma. Br J Ophthalmol. 2008;92(12):1666–70. doi: 10.1136/bjo.2008.140939. PMID: 18782799. Excluded for wrong intervention. [PubMed: 18782799] [CrossRef]
672.
Renieri G, Fuhrer K, Scheithe K, et al. Efficacy and tolerability of preservative-free eye drops containing a fixed combination of dorzolamide and timolol in glaucoma patients. J Ocul Pharmacol Ther. 2010;26(6):597–603. doi: 10.1089/jop.2010.0060. PMID: 20977366. Excluded for wrong intervention. [PubMed: 20977366] [CrossRef]
673.
Rennie G, Wilkinson A, White A, et al. Topical medical therapy and ocular perfusion pressure in open angle glaucoma: a systematic review and meta-analysis. Curr Med Res Opin. 2019;35(8):1421–31. doi: 10.1080/03007995.2019.1595553. PMID: 30880485. Excluded for wrong comparator. [PubMed: 30880485] [CrossRef]
674.
Reus NJ, Lemij HG. Diagnostic accuracy of the GDx VCC for glaucoma. Ophthalmology. 2004;111(10):1860–5. doi: 10.1016/j.ophtha.2004.04.024. PMID: 15465547. Excluded for wrong study design for key question. [PubMed: 15465547] [CrossRef]
675.
Reus NJ, Lemij HG, Garway-Heath DF, et al. Clinical assessment of stereoscopic optic disc photographs for glaucoma: the European Optic Disc Assessment Trial. Ophthalmology. 2010;117(4):717–23. doi: 10.1016/j.ophtha.2009.09.026. PMID: 20045571. Excluded for wrong study design for key question. [PubMed: 20045571] [CrossRef]
676.
Rezner W, Rezner A, Dutkiewicz S. Effectiveness of counseling provided by primary care doctors and nurses in increasing glaucoma screening rates. J Ophthalmol. 2014;2014:306795. doi: 10.1155/2014/306795. PMID: 25386358. Excluded for wrong intervention. [PMC free article: PMC4217319] [PubMed: 25386358] [CrossRef]
677.
Reznicek L, Muth D, Kampik A, et al. Evaluation of a novel scheimpflug-based non-contact tonometer in healthy subjects and patients with ocular hypertension and glaucoma. Br J Ophthalmol. 2013;97(11):1410–4. doi: 10.1136/bjophthalmol-2013-303400. PMID: 23969314. Excluded for wrong study design for key question. [PubMed: 23969314] [CrossRef]
678.
Rho S, Sung Y, Kang T, et al. Improvement of diagnostic performance regarding retinal nerve fiber layer defect using shifting of the normative database according to vessel position. Invest Ophthalmol Vis Sci. 2014;55(8):5116–24. doi: 10.1167/iovs.14-14630. PMID: 25074779. Excluded for wrong study design for key question. [PubMed: 25074779] [CrossRef]
679.
Richter GM, Zhang X, Tan O, et al. Regression analysis of optical coherence tomography disc variables for glaucoma diagnosis. J Glaucoma. 2016;25(8):634–42. doi: 10.1097/IJG.0000000000000378. PMID: 26900833. Excluded for wrong study design for key question. [PMC free article: PMC4969235] [PubMed: 26900833] [CrossRef]
680.
Rimayanti U, Latief MA, Arintawati P, et al. Width of abnormal ganglion cell complex area determined using optical coherence tomography to predict glaucoma. Jpn J Ophthalmol. 2014;58(1):47–55. doi: 10.1007/s10384-013-0281-5. PMID: 24150101. Excluded for wrong study design for key question. [PubMed: 24150101] [CrossRef]
681.
Roberti G, Centofanti M, Oddone F, et al. Comparing optic nerve head analysis between confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Curr Eye Res. 2014;39(10):1026–32. doi: 10.3109/02713683.2014.891752. PMID: 24655001. Excluded for wrong study design for key question. [PubMed: 24655001] [CrossRef]
682.
Roberts HW, Rughani K, Syam P, et al. The Peterborough scheme for community specialist optometrists in glaucoma: results of 4 years of a two-tiered community-based assessment and follow-up service. Curr Eye Res. 2015;40(7):690–6. doi: 10.3109/02713683.2014.957326. PMID: 25310852. Excluded for wrong outcome. [PubMed: 25310852] [CrossRef]
683.
Robin TA, Muller A, Rait J, et al. Performance of community-based glaucoma screening using frequency doubling technology and Heidelberg retinal tomography. Ophthalmic Epidemiol. 2005;12(3):167–78. doi: 10.1080/09286580590969716. PMID: 16036475. Excluded for wrong intervention. [PubMed: 16036475] [CrossRef]
684.
Rodriguez-Una I, Azuara-Blanco A. New technologies for glaucoma detection. Asia Pac J Ophthalmol (Phila). 2018;7(6):394–404. doi: 10.22608/apo.2018349. PMID: 30338676. Excluded for not a study. [PubMed: 30338676] [CrossRef]
685.
Rogers TW, Jaccard N, Carbonaro F, et al. Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study. Eye. 2019;33(11):1791–7. doi: 10.1038/s41433-019-0510-3. PMID: 31267086. Excluded for wrong study design for key question. [PMC free article: PMC7002599] [PubMed: 31267086] [CrossRef]
686.
Rolim De Moura C, Paranhos Jr A, Wormald R. Laser trabeculoplasty for open angle glaucoma. Cochrane Database Syst Rev. 2007 (4)doi: 10.1002/14651858.CD003919.pub2. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC9036523] [PubMed: 17943806] [CrossRef]
687.
Rolle T, Dallorto L, Bonetti B. Retinal and macular ganglion cell count estimated with optical coherence tomography RTVUE-100 as a candidate biomarker for glaucoma. Invest Ophthalmol Vis Sci. 2016;57(13):5772–9. doi: 10.1167/iovs.15-18882. PMID: 27792811. Excluded for wrong study design for key question. [PubMed: 27792811] [CrossRef]
688.
Rolle T, Dallorto L, Tavassoli M, et al. Diagnostic ability and discriminant values of OCT-angiography parameters in early glaucoma diagnosis. Ophthalmic Res. 2019;61(3):143–52. doi: 10.1159/000489457. PMID: 29953994. Excluded for wrong study design for key question. [PubMed: 29953994] [CrossRef]
689.
Rosdahl JA, Muir KW. Finding the best glaucoma questionnaire: a qualitative and quantitative evaluation of glaucoma knowledge assessments. Clin Ophthalmol. 2015;9:1845–52. doi: 10.2147/OPTH.S90332. PMID: 26491245. Excluded for wrong study design for key question. [PMC free article: PMC4599146] [PubMed: 26491245] [CrossRef]
690.
Rosentreter A, Schild AM, Jordan JF, et al. A prospective randomised trial of trabeculectomy using mitomycin C vs an ologen implant in open angle glaucoma. Eye (Lond). 2010;24(9):1449–57. doi: 10.1038/eye.2010.106. PMID: 20733558. Excluded for wrong intervention. [PubMed: 20733558] [CrossRef]
691.
Rossetti L, Digiuni M, Rosso A, et al. Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma. PLoS One. 2015;10(3):e0122157. doi: 10.1371/journal.pone.0122157. PMID: 25807241. Excluded for wrong study design for key question. [PMC free article: PMC4373771] [PubMed: 25807241] [CrossRef]
692.
Rossi GC, Pasinetti GM, Raimondi M, et al. Efficacy and ocular surface tolerability of preservative-free tafluprost 0.0015%: a 6-month, single-blind, observational study on naive ocular hypertension or glaucoma patients. Expert Opin Drug Saf. 2012;11(4):519–25. doi: 10.1517/14740338.2012.690734. PMID: 22690824. Excluded for wrong study design for key question. [PubMed: 22690824] [CrossRef]
693.
Rouhiainen HJ, Terasvirta ME, Tuovinen EJ. Peripheral anterior synechiae formation after trabeculoplasty. Arch Ophthalmol. 1988;106(2):189–91. doi: 10.1001/archopht.1988.01060130199025. PMID: 3341973. Excluded for wrong comparator. [PubMed: 3341973] [CrossRef]
694.
Rouland JF, Traverso CE, Stalmans I, et al. Efficacy and safety of preservative-free latanoprost eyedrops, compared with BAK-preserved latanoprost in patients with ocular hypertension or glaucoma. Br J Ophthalmol. 2013;97(2):196–200. doi: 10.1136/bjophthalmol-2012-302121. PMID: 23203707. Excluded for wrong comparator. [PubMed: 23203707] [CrossRef]
695.
Rouse B, Cipriani A, Shi Q, et al. Network meta-analysis for clinical practice guidelines: a case study on first-line medical therapies for primary open-angle glaucoma. Ann Intern Med. 2016;164(10):674–82. doi: 10.7326/M15-2367. PMID: 27088551. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC5154244] [PubMed: 27088551] [CrossRef]
696.
Russo V, Barone A, Cosma A, et al. Selective laser trabeculoplasty versus argon laser trabeculoplasty in patients with uncontrolled open-angle glaucoma. Eur J Ophthalmol. 2009;19(3):429–34. doi: 10.1177/112067210901900317. PMID: 19396790. Excluded for wrong comparator. [PubMed: 19396790] [CrossRef]
697.
Russo V, Scott IU, Stella A, et al. Nonpenetrating deep sclerectomy with reticulated hyaluronic acid implant versus punch trabeculectomy: a prospective clinical trial. Eur J Ophthalmol. 2008;18(5):751–7. doi: 10.1177/112067210801800515. PMID: 18850554. Excluded for wrong intervention. [PubMed: 18850554] [CrossRef]
698.
Sabherwal S, John D, Dubey S, et al. Cost-effectiveness of glaucoma screening in cataract camps versus opportunistic and passive screening in urban India: a study protocol. F1000Res. 2019;8:53. doi: 10.12688/f1000research.17582.3. PMID: 31131093. Excluded for results not usable or not fully reported. [PMC free article: PMC6518442] [PubMed: 31131093] [CrossRef]
699.
Saeedi OJ, Elze T, D’Acunto L, et al. Agreement and predictors of discordance of 6 visual field progression algorithms. Ophthalmology. 2019;126(6):822–8. doi: 10.1016/j.ophtha.2019.01.029. PMID: 30731101. Excluded for wrong study design for key question. [PMC free article: PMC7260059] [PubMed: 30731101] [CrossRef]
700.
Saha M, Bandyopadhyay S, Das D, et al. Comparative analysis of macular and peripapillary retinal nerve fiber layer thickness in normal, glaucoma suspect and glaucomatous eyes by optical coherence tomography. Nepal J Ophthalmol. 2016;8(16):110–8. doi: 10.3126/nepjoph.v8i2.16991. PMID: 28478464. Excluded for wrong study design for key question. [PubMed: 28478464] [CrossRef]
701.
Saito H, Tsutsumi T, Araie M, et al. Sensitivity and specificity of the Heidelberg Retina Tomograph II Version 3.0 in a population-based study: the Tajimi Study. Ophthalmology. 2009;116(10):1854–61. doi: 10.1016/j.ophtha.2009.03.048. PMID: 19660814. Excluded for wrong intervention. [PubMed: 19660814] [CrossRef]
702.
Sakata R, Shirato S, Miyata K, et al. Recovery from deepening of the upper eyelid sulcus after switching from bimatoprost to latanoprost. Jpn J Ophthalmol. 2013;57(2):179–84. Excluded for wrong study design for key question. [PubMed: 23233196]
703.
Sakata R, Shirato S, Miyata K, et al. Incidence of deepening of the upper eyelid sulcus on treatment with a tafluprost ophthalmic solution. Jpn J Ophthalmol. 2014;58(2):212–7. doi: 10.1007/s10384-013-0299-8. PMID: 24390604. Excluded for wrong study design for key question. [PubMed: 24390604] [CrossRef]
704.
Sakata R, Shirato S, Miyata K, et al. Incidence of deepening of the upper eyelid sulcus in prostaglandin-associated periorbitopathy with a latanoprost ophthalmic solution. Eye. 2014;28(12):1446–51. doi: 10.1038/eye.2014.224. PMID: 25233818. Excluded for wrong study design for key question. [PMC free article: PMC4268464] [PubMed: 25233818] [CrossRef]
705.
Salim S, Netland PA, Fung KH, et al. Assessment of the student sight savers program methods for glaucoma screening. Ophthalmic Epidemiol. 2009;16(4):238–42. doi: 10.3109/09286580902863023. PMID: 19874145. Excluded for wrong study design for key question. [PubMed: 19874145] [CrossRef]
706.
Salimi A, Nithianandan H, Al Farsi H, et al. Gonioscopy-Assisted Transluminal Trabeculotomy (GATT) in younger to middle-aged adults: one-year outcomes. Ophthalmol Glaucoma. 2020;03:03. doi: 10.1016/j.ogla.2020.08.014. PMID: 32891748. Excluded for wrong intervention. [PubMed: 32891748] [CrossRef]
707.
Salvetat ML, Zeppieri M, Tosoni C, et al. Non-conventional perimetric methods in the detection of early glaucomatous functional damage. Eye (Lond). 2010;24(5):835–42. doi: 10.1038/eye.2009.216. PMID: 19696803. Excluded for wrong study design for key question. [PubMed: 19696803] [CrossRef]
708.
Sample PA, Medeiros FA, Racette L, et al. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci. 2006;47(8):3381–9. doi: 10.1167/iovs.05-1546. PMID: 16877406. Excluded for wrong study design for key question. [PubMed: 16877406] [CrossRef]
709.
Sanders R, MacEwen CJ, Haining WM. Trabeculectomy: effect of varying surgical site. Eye (Lond). 1993;7 (Pt 3):440–3. doi: 10.1038/eye.1993.88. PMID: 8224303. Excluded for wrong intervention. [PubMed: 8224303] [CrossRef]
710.
Sandhu S, Rudnisky C, Arora S, et al. Compressed 3D and 2D digital images versus standard 3D slide film for the evaluation of glaucomatous optic nerve features. Br J Ophthalmol. 2018;102(3):364–8. doi: 10.1136/bjophthalmol-2017-310447. PMID: 28835424. Excluded for wrong study design for key question. [PubMed: 28835424] [CrossRef]
711.
Saunders LJ, Russell RA, Crabb DP. Measurement precision in a series of visual fields acquired by the standard and fast versions of the Swedish interactive thresholding algorithm: analysis of large-scale data from clinics. JAMA Ophthalmol. 2015;133(1):74–80. doi: 10.1001/jamaophthalmol.2014.4237. PMID: 25340390. Excluded for wrong comparator. [PubMed: 25340390] [CrossRef]
712.
Sawada A, Yamamoto T, Takatsuka N. Randomized crossover study of latanoprost and travoprost in eyes with open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2012;250(1):123–9. doi: 10.1007/s00417-011-1762-1. PMID: 21858678. Excluded for wrong comparator. [PubMed: 21858678] [CrossRef]
713.
Scheetz J, Koklanis K, Long M, et al. Validity and reliability of eye healthcare professionals in the assessment of glaucoma - a systematic review. Int J Clin Pract. 2015;69(6):689–702. doi: 10.1111/ijcp.12600. PMID: 25652667. Excluded for wrong setting. [PubMed: 25652667] [CrossRef]
714.
Schenker H, Maloney S, Liss C, et al. Patient preference, efficacy, and compliance with timolol maleate ophthalmic gel-forming solution versus timolol maleate ophthalmic solution in patients with ocular hypertension or open-angle glaucoma. Clin Ther. 1999;21(1):138–47. doi: 10.1016/s0149-2918(00)88274-0. PMID: 10090431. Excluded for wrong comparator. [PubMed: 10090431] [CrossRef]
715.
Schultz RO, Radius RL, Hartz AJ, et al. Screening for glaucoma with stereo disc photography. J Glaucoma. 1995;4(3):177–82. PMID: 19920665. Excluded for wrong study design for key question. [PubMed: 19920665]
716.
Schulz AM, Graham EC, You Y, et al. Performance of iPad-based threshold perimetry in glaucoma and controls. Clin Exp Ophthalmol. 2018;46(4):346–55. doi: 10.1111/ceo.13082. PMID: 28976067. Excluded for wrong study design for key question. [PubMed: 28976067] [CrossRef]
717.
Schulze A, Lamparter J, Pfeiffer N, et al. Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1039–45. doi: 10.1007/s00417-010-1585-5. PMID: 21240522. Excluded for wrong study design for key question. [PubMed: 21240522] [CrossRef]
718.
Schuman JS, Horwitz B, Choplin NT, et al. A 1-year study of brimonidine twice daily in glaucoma and ocular hypertension. A controlled, randomized, multicenter clinical trial. Chronic Brimonidine Study Group. Arch Ophthalmol. 1997;115(7):847–52. doi: 10.1001/archopht.1997.01100160017002. PMID: 9230823. Excluded for wrong comparator. [PubMed: 9230823] [CrossRef]
719.
Schwartz GF, Kotak S, Mardekian J, et al. Incidence of new coding for dry eye and ocular infection in open-angle glaucoma and ocular hypertension patients treated with prostaglandin analogs: retrospective analysis of three medical/pharmacy claims databases. BMC Ophthalmol. 2011;11:14. doi: 10.1186/1471-2415-11-14. PMID: 21672240. Excluded for wrong comparator. [PMC free article: PMC3146461] [PubMed: 21672240] [CrossRef]
720.
Scoralick ALB, Gracitelli CPB, Dias DT, et al. Lack of association between provocative test-based intraocular pressure parameters and functional loss in treated glaucoma patients. Arq Bras Oftalmol. 2019;82(3):176–82. doi: 10.5935/0004-2749.20190035. PMID: 31116300. Excluded for results not usable or not fully reported. [PubMed: 31116300] [CrossRef]
721.
Scoville B, Mueller B, White BG, et al. A double-masked comparison of carteolol and timolol in ocular hypertension. Am J Ophthalmol. 1988;105(2):150–4. doi: 10.1016/0002-9394(88)90178-x. PMID: 3277436. Excluded for wrong comparator. [PubMed: 3277436] [CrossRef]
722.
Sehi M, Grewal DS, Sheets CW, et al. Diagnostic ability of fourier-domain vs time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol. 2009;148(4):597–605. doi: 10.1016/j.ajo.2009.05.030. PMID: 19589493. Excluded for wrong study design for key question. [PMC free article: PMC2784699] [PubMed: 19589493] [CrossRef]
723.
Sehi M, Ume S, Greenfield DS. Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2007;48(5):2099–104. doi: 10.1167/iovs.06-1087. PMID: 17460267. Excluded for wrong study design for key question. [PubMed: 17460267] [CrossRef]
724.
Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2017 (1) PMID: 20166085. Excluded for wrong comparator. [PMC free article: PMC5370094] [PubMed: 28122126]
725.
Seo SB, Cho HK. Deep learning classification of early normal-tension glaucoma and glaucoma suspects using Bruch’s membrane opening-minimum rim width and RNFL. Sci Rep. 2020;10(1):19042. doi: 10.1038/s41598-020-76154-7. PMID: 33149191. Excluded for wrong intervention. [PMC free article: PMC7643070] [PubMed: 33149191] [CrossRef]
726.
Sezgin Akcay BI, Guney E, Bozkurt KT, et al. The safety and efficacy of brinzolamide 1%/timolol 0.5% fixed combination versus dorzolamide 2%/timolol 0.5% in patients with open-angle glaucoma or ocular hypertension. J Ocul Pharmacol Ther. 2013;29(10):882–6. doi: 10.1089/jop.2013.0102. PMID: 24180628. Excluded for wrong intervention. [PubMed: 24180628] [CrossRef]
727.
Shaarawy T, Mermoud A. Deep sclerectomy in one eye vs deep sclerectomy with collagen implant in the contralateral eye of the same patient: long-term follow-up. Eye (Lond). 2005;19(3):298–302. doi: 10.1038/sj.eye.6701469. PMID: 15258610. Excluded for wrong intervention. [PubMed: 15258610] [CrossRef]
728.
Shaarawy TM, Sherwood MB, Grehn F. Guidelines on Design and Reporting of Glaucoma Surgical Trials; 2009. Excluded for not a study.
729.
Shah NN, Bowd C, Medeiros FA, et al. Combining structural and functional testing for detection of glaucoma. Ophthalmology. 2006;113(9):1593–602. doi: 10.1016/j.ophtha.2006.06.004. PMID: 16949444. Excluded for wrong study design for key question. [PubMed: 16949444] [CrossRef]
730.
Shahid K, Kolomeyer AM, Nayak NV, et al. Ocular telehealth screenings in an urban community. Telemed J E Health. 2012;18(2):95–100. doi: 10.1089/tmj.2011.0067. PMID: 22283358. Excluded for wrong outcome. [PubMed: 22283358] [CrossRef]
731.
Sharafeldin N, Kawaguchi A, Sundaram A, et al. Review of economic evaluations of teleophthalmology as a screening strategy for chronic eye disease in adults. Br J Ophthalmol. 2018;102(11):1485–91. doi: 10.1136/bjophthalmol-2017-311452. PMID: 29680803. Excluded for wrong outcome. [PubMed: 29680803] [CrossRef]
732.
Shariatzadeh M, Brandt MM, Cheng C, et al. Three-dimensional tubule formation assay as therapeutic screening model for ocular microvascular disorders. Eye. 2018;32(8):1380–6. doi: 10.1038/s41433-018-0089-0. PMID: 29743587. Excluded for wrong intervention. [PMC free article: PMC6085384] [PubMed: 29743587] [CrossRef]
733.
Sharpe ED, Day DG, Beischel CJ, et al. Brimonidine purite 0.15% versus dorzolamide 2% each given twice daily to reduce intraocular pressure in subjects with open angle glaucoma or ocular hypertension. Br J Ophthalmol. 2004;88(7):953–6. doi: 10.1136/bjo.2003.032979. PMID: 15205246. Excluded for wrong comparator. [PMC free article: PMC1772220] [PubMed: 15205246] [CrossRef]
734.
Sharpe ED, Reynolds AC, Skuta GL, et al. The clinical impact and incidence of periocular pigmentation associated with either latanoprost or bimatoprost therapy. Curr Eye Res. 2007;32(12):1037–43. doi: 10.1080/02713680701750625. PMID: 18085467. Excluded for wrong comparator. [PubMed: 18085467] [CrossRef]
735.
Sherwood MB, Lattimer J, Hitchings RA. Laser trabeculoplasty as supplementary treatment for primary open angle glaucoma. Br J Ophthalmol. 1987;71(3):188–91. doi: 10.1136/bjo.71.3.188. PMID: 3828273. Excluded for wrong intervention. [PMC free article: PMC1041116] [PubMed: 3828273] [CrossRef]
736.
Shibata N, Tanito M, Mitsuhashi K, et al. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci Rep. 2018;8(1):14665. doi: 10.1038/s41598-018-33013-w. PMID: 30279554. Excluded for wrong study design for key question. [PMC free article: PMC6168579] [PubMed: 30279554] [CrossRef]
737.
Shigueoka LS, Vasconcellos JPC, Schimiti RB, et al. Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma. PLoS One. 2018;13(12):e0207784. doi: 10.1371/journal.pone.0207784. PMID: 30517157. Excluded for wrong study design for key question. [PMC free article: PMC6281287] [PubMed: 30517157] [CrossRef]
738.
Shin D. Adjunctive therapy with brinzolamide 1% ophthalmic suspension (Azopt) in patients with open-angle glaucoma or ocular hypertension maintained on timolol therapy. Surv Ophthalmol. 2000;44 Suppl 2:S163–8. doi: 10.1016/s0039-6257(99)00106-x. PMID: 10665519. Excluded for wrong intervention. [PubMed: 10665519] [CrossRef]
739.
Shin DH, Iskander NG, Ahee JA, et al. Long-term filtration and visual field outcomes after primary glaucoma triple procedure with and without mitomycin-C. Ophthalmology. 2002;109(9):1607–11. doi: 10.1016/s0161-6420(02)01135-1. PMID: 12208706. Excluded for wrong intervention. [PubMed: 12208706] [CrossRef]
740.
Shin HY, Park HY, Jung Y, et al. Glaucoma diagnostic accuracy of optical coherence tomography parameters in early glaucoma with different types of optic disc damage. Ophthalmology. 2014;121(10):1990–7. doi: 10.1016/j.ophtha.2014.04.030. PMID: 24935284. Excluded for wrong study design for key question. [PubMed: 24935284] [CrossRef]
741.
Shingleton BJ, Chaudhry IM, O’Donoghue MW. Phacotrabeculectomy: peripheral iridectomy or no peripheral iridectomy? J Cataract Refract Surg. 2002;28(6):998–1002. doi: 10.1016/s0886-3350(01)01180-4. PMID: 12036643. Excluded for wrong intervention. [PubMed: 12036643] [CrossRef]
742.
Shoji T, Sato H, Ishida M, et al. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(2):1098–102. doi: 10.1167/iovs.10-5922. PMID: 21051712. Excluded for wrong population. [PubMed: 21051712] [CrossRef]
743.
Shrestha R, Budenz DL, Mwanza JC, et al. Comparison of vertical cup-to-disc ratio estimates using stereoscopic and monoscopic cameras. Eye. 2021;29:29. doi: 10.1038/s41433-021-01395-3. PMID: 33514892. Excluded for wrong intervention. [PMC free article: PMC8602644] [PubMed: 33514892] [CrossRef]
744.
Shuster JN, Krupin T, Kolker AE, et al. Limbus- v fornix-based conjunctival flap in trabeculectomy. A long-term randomized study. Arch Ophthalmol. 1984;102(3):361–2. doi: 10.1001/archopht.1984.01040030279018. PMID: 6703982. Excluded for wrong intervention. [PubMed: 6703982] [CrossRef]
745.
Sihota R, Midha N, Selvan H, et al. Prognosis of different glaucomas seen at a tertiary center: a 10-year overview. Indian J Ophthalmol. 2017;65(2):128–32. doi: 10.4103/ijo.IJO_875_16. PMID: 28345568. Excluded for wrong study design for key question. [PMC free article: PMC5381291] [PubMed: 28345568] [CrossRef]
746.
Sihota R, Sony P, Gupta V, et al. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci. 2006;47(5):2006–10. doi: 10.1167/iovs.05-1102. PMID: 16639009. Excluded for wrong study design for key question. [PubMed: 16639009] [CrossRef]
747.
Silva FR, Vidotti VG, Cremasco F, et al. Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using spectral domain OCT and standard automated perimetry. Arq Bras Oftalmol. 2013;76(3):170–4. PMID: 23929078. Excluded for wrong study design for key question. [PubMed: 23929078]
748.
Silverman AL, Hammel N, Khachatryan N, et al. Diagnostic accuracy of the spectralis and cirrus reference databases in differentiating between healthy and early glaucoma eyes. Ophthalmology. 2016;123(2):408–14. doi: 10.1016/j.ophtha.2015.09.047. PMID: 26526632. Excluded for wrong study design for key question. [PMC free article: PMC4724549] [PubMed: 26526632] [CrossRef]
749.
Simavli H, Poon LY, Que CJ, et al. Diagnostic capability of peripapillary retinal volume measurements in glaucoma. J Glaucoma. 2017;26(6):592–601. doi: 10.1097/IJG.0000000000000621. PMID: 28079657. Excluded for wrong study design for key question. [PMC free article: PMC5453822] [PubMed: 28079657] [CrossRef]
750.
Simavli H, Que CJ, Akduman M, et al. Diagnostic capability of peripapillary retinal thickness in glaucoma using 3D volume scans. Am J Ophthalmol. 2015;159(3):545–56.e2. doi: 10.1016/j.ajo.2014.12.004. PMID: 25498354. Excluded for wrong study design for key question. [PMC free article: PMC4423415] [PubMed: 25498354] [CrossRef]
751.
Simha A, Braganza A, Abraham L, et al. Anti-vascular endothelial growth factor for neovascular glaucoma. Cochrane Database Syst Rev. 2013 (10) PMID: 32027392. Excluded for wrong intervention. [PMC free article: PMC4261636] [PubMed: 24089293]
752.
Simmons ST, Earl ML. Three-month comparison of brimonidine and latanoprost as adjunctive therapy in glaucoma and ocular hypertension patients uncontrolled on beta-blockers: tolerance and peak intraocular pressure lowering. Ophthalmology. 2002;109(2):307–14; discussion 14-5. doi: 10.1016/s0161-6420(01)00936-8. PMID: 11825814. Excluded for wrong comparator. [PubMed: 11825814] [CrossRef]
753.
Singh K, Byrd S, Egbert PR, et al. Risk of hypotony after primary trabeculectomy with antifibrotic agents in a black west African population. J Glaucoma. 1998;7(2):82–5. PMID: 9559492. Excluded for wrong intervention. [PubMed: 9559492]
754.
Singh LK, Pooja, Garg H, et al. An enhanced deep image model for glaucoma diagnosis using feature-based detection in retinal fundus. Med Biol Eng Comput. 2021;13:13. doi: 10.1007/s11517-020-02307-5. PMID: 33439453. Excluded for wrong intervention. [PubMed: 33439453] [CrossRef]
755.
Sinha G, Gupta S, Temkar S, et al. IOP agreement between I-Care TA01 rebound tonometer and the Goldmann applanation tonometer in eyes with and without glaucoma. Int Ophthalmol. 2015;35(1):89–93. doi: 10.1007/s10792-014-0026-6. PMID: 25510295. Excluded for wrong study design for key question. [PubMed: 25510295] [CrossRef]
756.
Sinha S, Lee D, Kolomeyer NN, et al. Fixed combination netarsudil-latanoprost for the treatment of glaucoma and ocular hypertension. Expert Opin Pharmacother. 2019:1–7. doi: 10.1080/14656566.2019.1685499. PMID: 31663782. Excluded for wrong intervention. [PubMed: 31663782] [CrossRef]
757.
Skalicky SE, McAlinden C, Khatib T, et al. Activity limitation in glaucoma: objective assessment by the Cambridge Glaucoma Visual Function Test. Invest Ophthalmol Vis Sci. 2016;57(14):6158–66. doi: 10.1167/iovs.16-19458. PMID: 27835712. Excluded for wrong study design for key question. [PubMed: 27835712] [CrossRef]
758.
Smith CA, West ME, Sharpe GP, et al. Asymmetry analysis of macular optical coherence tomography angiography in patients with glaucoma and healthy subjects. Br J Ophthalmol. 2020;104(12):1724–9. doi: 10.1136/bjophthalmol-2019-315592. PMID: 32107207. Excluded for wrong study design for key question. [PubMed: 32107207] [CrossRef]
759.
Smith J. Argon laser trabeculoplasty: comparison of bichromatic and monochromatic wavelengths. Ophthalmology. 1984;91(4):355–60. PMID: 6371649. Excluded for wrong comparator. [PubMed: 6371649]
760.
Solish AM, DeLucca PT, Cassel DA, et al. Dorzolamide/timolol fixed combination versus concomitant administration of brimonidine and timolol in patients with elevated intraocular pressure: a 3-month comparison of efficacy, tolerability, and patient-reported measures. J Glaucoma. 2004;13(2):149–57. doi: 10.1097/00061198-200404000-00012. PMID: 15097262. Excluded for wrong comparator. [PubMed: 15097262] [CrossRef]
761.
Sommer A, Pollack I, Maumenee AE. Optic disc parameters and onset of glaucomatous field loss. II. Static screening criteria. Arch Ophthalmol. 1979;97(8):1449–54. doi: 10.1001/archopht.1979.01020020111003. PMID: 464867. Excluded for wrong study design for key question. [PubMed: 464867] [CrossRef]
762.
Son J, Shin JY, Kim HD, et al. Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology. 2020;127(1):85–94. doi: 10.1016/j.ophtha.2019.05.029. PMID: 31281057. Excluded for wrong population. [PubMed: 31281057] [CrossRef]
763.
Song H. Effect of latanoprost on intraocular pressure, central corneal thickness and endothelial cell density of angle-closure glaucoma [Article in Chinese]. Int J Ophthalmol. 2010;10:2385–6. Excluded for not English language.
764.
Song J, Lee PP, Epstein DL, et al. High failure rate associated with 180 degrees selective laser trabeculoplasty. J Glaucoma. 2005;14(5):400–8. PMID: 16148590. Excluded for wrong study design for key question. [PubMed: 16148590]
765.
Song YJ, Kim YW, Park KH, et al. Comparison of glaucoma patients referred by glaucoma screening versus referral from primary eye clinic. PLoS One. 2019;14(1):e0210582. doi: 10.1371/journal.pone.0210582. PMID: 30629694. Excluded for wrong study design for key question. [PMC free article: PMC6328126] [PubMed: 30629694] [CrossRef]
766.
Soorya M, Issac A, Dutta MK. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection. Int J Med Inform. 2018;110:52–70. doi: 10.1016/j.ijmedinf.2017.11.015. PMID: 29331255. Excluded for not a study. [PubMed: 29331255] [CrossRef]
767.
Spaide T, Wu Y, Yanagihara RT, et al. Using deep learning to automate goldmann applanation tonometry readings. Ophthalmology. 2020;127(11):1498–506. doi: 10.1016/j.ophtha.2020.04.033. PMID: 32344074. Excluded for wrong comparator. [PMC free article: PMC7606368] [PubMed: 32344074] [CrossRef]
768.
Sperduto RD, Hiller R, Podgor MJ, et al. Comparability of ophthalmic diagnoses by clinical and reading center examiners in the visual acuity impairment survey pilot study. Am J Epidemiol. 1986;124(6):994–1003. doi: 10.1093/oxfordjournals.aje.a114489. PMID: 3776982. Excluded for wrong outcome. [PubMed: 3776982] [CrossRef]
769.
Sponsel W. Timolol vs pilocarpine in open angle glaucoma: the observation of significant differences in visual field response in patients with clinically equivalent IOP control. Chibret International Journal of Ophthalmology. 1987;5(3):50–6. Excluded for wrong comparator.
770.
Spry PG, Hussin HM, Sparrow JM. Clinical evaluation of frequency doubling technology perimetry using the humphrey matrix 24-2 threshold strategy. Br J Ophthalmol. 2005;89(8):1031–5. PMID: 16024860. Excluded for wrong intervention. [PMC free article: PMC1772764] [PubMed: 16024860]
771.
Sreelatha OK, Ramesh SV. Teleophthalmology: improving patient outcomes? Clin Ophthalmol. 2016;10:285–95. doi: 10.2147/opth.S80487. PMID: 26929592. Excluded for not a study. [PMC free article: PMC4755429] [PubMed: 26929592] [CrossRef]
772.
Staffieri SE, Ruddle JB, Kearns LS, et al. Telemedicine model to prevent blindness from familial glaucoma. Clin Exp Ophthalmol. 2011;39(8):760–5. doi: 10.1111/j.1442-9071.2011.02556.x. PMID: 21749595. Excluded for wrong study design for key question. [PubMed: 21749595] [CrossRef]
773.
Stagg BC, Medeiros FA. A comparison of OCT parameters in identifying glaucoma damage in eyes suspected of having glaucoma. Ophthalmol Glaucoma. 2020;3(2):90–6. doi: 10.1016/j.ogla.2019.11.004. PMID: 32632407. Excluded for results not usable or not fully reported. [PMC free article: PMC7337266] [PubMed: 32632407] [CrossRef]
774.
Stoor K, Karvonen E, Ohtonen P, et al. Icare versus Goldmann in a randomised middle-aged population: the influence of central corneal thickness and refractive errors. Eur J Ophthalmol. 2020:1120672120921380. doi: 10.1177/1120672120921380. PMID: 32517497. Excluded for results not usable or not fully reported. [PubMed: 32517497] [CrossRef]
775.
Stoutenbeek R, Heeg GP, Jansonius NM. Frequency doubling perimetry screening mode compared to the full-threshold mode. Ophthalmic Physiol Opt. 2004;24(6):493–7. doi: 10.1111/j.1475-1313.2004.00223.x. PMID: 15491476. Excluded for wrong study design for key question. [PubMed: 15491476] [CrossRef]
776.
Strouthidis NG, Chandrasekharan G, Diamond JP, et al. Teleglaucoma: ready to go? Br J Ophthalmol. 2014;98(12):1605–11. doi: 10.1136/bjophthalmol-2013-304133. PMID: 24723617. Excluded for not a study. [PMC free article: PMC4251299] [PubMed: 24723617] [CrossRef]
777.
Su D, Greenberg A, Simonson JL, et al. Efficacy of the amsler grid test in evaluating glaucomatous central visual field defects. Ophthalmology. 2016;123(4):737–43. doi: 10.1016/j.ophtha.2015.12.003. PMID: 26783097. Excluded for wrong study design for key question. [PubMed: 26783097] [CrossRef]
778.
Suh MH, Kim SK, Park KH, et al. Combination of optic disc rim area and retinal nerve fiber layer thickness for early glaucoma detection by using spectral domain OCT. Graefes Arch Clin Exp Ophthalmol. 2013;251(11):2617–25. doi: 10.1007/s00417-013-2468-3. PMID: 24065214. Excluded for wrong study design for key question. [PubMed: 24065214] [CrossRef]
779.
Suh MH, Yoo BW, Kim JY, et al. Quantitative assessment of retinal nerve fiber layer defect depth using spectral-domain optical coherence tomography. Ophthalmology. 2014;121(7):1333–40. doi: 10.1016/j.ophtha.2014.01.013. PMID: 24612980. Excluded for wrong study design for key question. [PubMed: 24612980] [CrossRef]
780.
Sullivan-Mee M, Ruegg CC, Pensyl D, et al. Diagnostic precision of retinal nerve fiber layer and macular thickness asymmetry parameters for identifying early primary open-angle glaucoma. Am J Ophthalmol. 2013;156(3):567–77.e1. doi: 10.1016/j.ajo.2013.04.037. PMID: 23810475. Excluded for wrong study design for key question. [PubMed: 23810475] [CrossRef]
781.
Sun S, Ha A, Kim YK, et al. Dual-input convolutional neural network for glaucoma diagnosis using spectral-domain optical coherence tomography. Br J Ophthalmol. 2020;12:12. doi: 10.1136/bjophthalmol-2020-316274. PMID: 32920530. Excluded for wrong outcome. [PubMed: 32920530] [CrossRef]
782.
Suo L, Zhang D, Qin X, et al. Evaluating state-of-the-art computerized pupillary assessments for glaucoma detection: a systematic review and meta-analysis. Front Neurol. 2020;11:777. doi: 10.3389/fneur.2020.00777. PMID: 32849229. Excluded for wrong intervention. [PMC free article: PMC7403439] [PubMed: 32849229] [CrossRef]
783.
Tafreshi A, Sample PA, Liebmann JM, et al. Visual function-specific perimetry to identify glaucomatous visual loss using three different definitions of visual field abnormality. Invest Ophthalmol Vis Sci. 2009;50(3):1234–40. doi: 10.1167/iovs.08-2535. PMID: 18978349. Excluded for wrong study design for key question. [PMC free article: PMC2848160] [PubMed: 18978349] [CrossRef]
784.
Takagi Y, Osaki H, Yamashita T, et al. Prospective observational post-marketing study of tafluprost 0.0015%/timolol 0.5% combination ophthalmic solution for glaucoma and ocular hypertension: short-term efficacy and safety. Ophthalmol Ther. 2016;5(2):191–206. PMID: 27492380. Excluded for wrong comparator. [PMC free article: PMC5125119] [PubMed: 27492380]
785.
Takahashi H, Chihara E. Impact of diabetic retinopathy on quantitative retinal nerve fiber layer measurement and glaucoma screening. Invest Ophthalmol Vis Sci. 2008;49(2):687–92. doi: 10.1167/iovs.07-0655. PMID: 18235015. Excluded for wrong study design for key question. [PubMed: 18235015] [CrossRef]
786.
Takmaz T, Can I. Comparison of glaucoma probability score and moorfields regression analysis to discriminate glaucomatous and healthy eyes. Eur J Ophthalmol. 2009;19(2):207–13. doi: 10.1177/112067210901900206. PMID: 19253236. Excluded for wrong study design for key question. [PubMed: 19253236] [CrossRef]
787.
Takusagawa HL, Liu L, Ma KN, et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology. 2017;124(11):1589–99. doi: 10.1016/j.ophtha.2017.06.002. PMID: 28676279. Excluded for wrong study design for key question. [PMC free article: PMC5651191] [PubMed: 28676279] [CrossRef]
788.
Tan NYQ, Tham YC, Koh V, et al. The effect of testing reliability on visual field sensitivity in normal eyes: the Singapore Chinese Eye Study. Ophthalmology. 2018;125(1):15–21. doi: 10.1016/j.ophtha.2017.08.002. PMID: 28863943. Excluded for wrong population. [PubMed: 28863943] [CrossRef]
789.
Tan O, Greenfield DS, Francis BA, et al. Estimating visual field mean deviation using optical coherence tomographic nerve fiber layer measurements in glaucoma patients. Sci Rep. 2019;9(1):18528. doi: 10.1038/s41598-019-54792-w. PMID: 31811166. Excluded for wrong study design for key question. [PMC free article: PMC6898302] [PubMed: 31811166] [CrossRef]
790.
Tang J, Liang Y, O’Neill C, et al. Cost-effectiveness and cost-utility of population-based glaucoma screening in China: a decision-analytic Markov model. Lancet Glob Health. 2019;7(7):e968–e78. doi: 10.1016/S2214-109X(19)30201-3. PMID: 31122906. Excluded for wrong study design for key question. [PubMed: 31122906] [CrossRef]
791.
Tang M, Fu Y, Fu MS, et al. The efficacy of low-energy selective laser trabeculoplasty. Ophthalmic Surg Lasers Imaging. 2011;42(1):59–63. doi: 10.3928/15428877-20101124-07. PMID: 21117578. Excluded for wrong comparator. [PubMed: 21117578] [CrossRef]
792.
Tanihara H, Inoue T, Yamamoto T, et al. One-year clinical evaluation of 0.4% ripasudil (K-115) in patients with open-angle glaucoma and ocular hypertension. Acta Ophthalmol. 2016;94(1):e26–e34. PMID: 26338317. Excluded for wrong intervention. [PubMed: 26338317]
793.
Tanihara H, Inoue T, Yamamoto T, et al. Additive intraocular pressure-lowering effects of the rho kinase inhibitor ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials. JAMA Ophthalmol. 2015;133(7):755–61. doi: 10.1001/jamaophthalmol.2015.0525. PMID: 25880207. Excluded for wrong intervention. [PubMed: 25880207] [CrossRef]
794.
Tatham AJ, Meira-Freitas D, Weinreb RN, et al. Detecting glaucoma using automated pupillography. Ophthalmology. 2014;121(6):1185–93. doi: 10.1016/j.ophtha.2013.12.015. PMID: 24485921. Excluded for wrong study design for key question. [PMC free article: PMC4047189] [PubMed: 24485921] [CrossRef]
795.
Taylor HR. Use of multiple tests improves screening for glaucoma. JAMA Ophthalmol. 2016;134(8):947–8. doi: 10.1001/jamaophthalmol.2016.1541. PMID: 27309498. Excluded for not a study. [PubMed: 27309498] [CrossRef]
796.
Terauchi R, Wada T, Ogawa S, et al. FDT perimetry for glaucoma detection in comprehensive health checkup service. J Ophthalmol. 2020;2020:4687398. doi: 10.1155/2020/4687398. PMID: 32318280. Excluded for wrong outcome. [PMC free article: PMC7152947] [PubMed: 32318280] [CrossRef]
797.
Terzic S, Jusufovic V, Vodencarevic AN, et al. Is prevention of glaucoma possible in Bosnia and Herzegovina? Medicinski Arhiv. 2016;70(2):140–1. doi: 10.5455/medarh.2016.70.140-141. PMID: 27147791. Excluded for wrong country. [PMC free article: PMC4851531] [PubMed: 27147791] [CrossRef]
798.
Thakoor KA, Koorathota SC, Hood DC, et al. Robust and interpretable convolutional neural networks to detect glaucoma in optical coherence tomography images. IEEE Trans Biomed Eng. 2020;08:08. doi: 10.1109/TBME.2020.3043215. PMID: 33290209. Excluded for wrong intervention. [PMC free article: PMC8397372] [PubMed: 33290209] [CrossRef]
799.
The Levobunolol Study Group. Levobunolol. A four-year study of efficacy and safety in glaucoma treatment. Ophthalmology. 1989;96(5):642–5. PMID: 2664628. Excluded for wrong comparator. [PubMed: 2664628]
800.
Thelen U, Christ T, Schnober D, et al. Midterm response with latanoprost therapy in german ocular hypertension patients. Curr Eye Res. 2007;32(1):51–6. doi: 10.1080/02713680601077053. PMID: 17364735. Excluded for wrong study design for key question. [PubMed: 17364735] [CrossRef]
801.
Theodossiades J, Murdoch I. What optic disc parameters are most accurately assessed using the direct ophthalmoscope? Eye (Lond). 2001;15(Pt 3):283–7. doi: 10.1038/eye.2001.95. PMID: 11450721. Excluded for wrong comparator. [PubMed: 11450721] [CrossRef]
802.
Thimmarayan SK, Rao VA, Gupta A. Mini-trabeculectomy in comparison to conventional trabeculectomy in primary open angle glaucoma. Eur J Ophthalmol. 2006;16(5):674–9. doi: 10.1177/112067210601600503. PMID: 17061217. Excluded for wrong intervention. [PubMed: 17061217] [CrossRef]
803.
Thomas S, Hodge W, Malvankar-Mehta M. The cost-effectiveness analysis of teleglaucoma screening device. PLoS One. 2015;10(9):e0137913. doi: 10.1371/journal.pone.0137913. PMID: 26382956. Excluded for wrong outcome. [PMC free article: PMC4575061] [PubMed: 26382956] [CrossRef]
804.
Thomas SM, Jeyaraman MM, Hodge WG, et al. The effectiveness of teleglaucoma versus in-patient examination for glaucoma screening: a systematic review and meta-analysis. PLoS One. 2014;9(12):e113779. doi: 10.1371/journal.pone.0113779. PMID: 25479593. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC4257598] [PubMed: 25479593] [CrossRef]
805.
Thompson AC, Jammal AA, Berchuck SI, et al. Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans. JAMA Ophthalmol. 2020;138(4):333–9. doi: 10.1001/jamaophthalmol.2019.5983. PMID: 32053142. Excluded for wrong study design for key question. [PMC free article: PMC7042899] [PubMed: 32053142] [CrossRef]
806.
Thompson AC, Jammal AA, Medeiros FA. A deep learning algorithm to quantify neuroretinal rim loss from optic disc photographs. Am J Ophthalmol. 2019;201:9–18. doi: 10.1016/j.ajo.2019.01.011. PMID: 30689990. Excluded for wrong study design for key question. [PMC free article: PMC6884088] [PubMed: 30689990] [CrossRef]
807.
Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: the technical and clinical considerations. Prog Retin Eye Res. 2019;72:100759. doi: 10.1016/j.preteyeres.2019.04.003. PMID: 31048019. Excluded for not a study. [PubMed: 31048019] [CrossRef]
808.
Toshev AP, Lamparter J, Pfeiffer N, et al. Bruch’s membrane opening-minimum rim width assessment with spectral-domain optical coherence tomography performs better than confocal scanning laser ophthalmoscopy in discriminating early glaucoma patients from control subjects. J Glaucoma. 2017;26(1):27–33. doi: 10.1097/IJG.0000000000000532. PMID: 27636592. Excluded for wrong study design for key question. [PubMed: 27636592] [CrossRef]
809.
Tressler CS, Cyrlin MN, Rosenshein JS, et al. Subconjunctival versus intrascleral mitomycin-C in trabeculectomy. Ophthalmic Surg Lasers. 1996;27(8):661–6. PMID: 8858631. Excluded for wrong intervention. [PubMed: 8858631]
810.
Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58(13):5713–22. doi: 10.1167/iovs.17-22865. PMID: 29114838. Excluded for wrong study design for key question. [PubMed: 29114838] [CrossRef]
811.
Tsai JC, Chang HW. Comparison of the effects of brimonidine 0.2% and timolol 0.5% on retinal nerve fiber layer thickness in ocular hypertensive patients: a prospective, unmasked study. J Ocul Pharmacol Ther. 2005;21(6):475–82. doi: 10.1089/jop.2005.21.475. PMID: 16386089. Excluded for wrong comparator. [PubMed: 16386089] [CrossRef]
812.
Tsikata E, Lee R, Shieh E, et al. Comprehensive three-dimensional analysis of the neuroretinal rim in glaucoma using high-density spectral-domain optical coherence tomography volume scans. Invest Ophthalmol Vis Sci. 2016;57(13):5498–508. doi: 10.1167/iovs.16-19802. PMID: 27768203. Excluded for wrong study design for key question. [PMC free article: PMC5072541] [PubMed: 27768203] [CrossRef]
813.
Tsumura T, Yoshikawa K, Suzumura H, et al. Bimatoprost ophthalmic solution 0.03% lowered intraocular pressure of normal-tension glaucoma with minimal adverse events. Clin Ophthalmol. 2012;6(1):1547–52. PMID: 23055677. Excluded for wrong study design for key question. [PMC free article: PMC3460718] [PubMed: 23055677]
814.
Tufan AK, Onur IU, Yigit FU, et al. Selective laser trabeculoplasty vs. fixed combinations with timolol in practice: a replacement study in primary open angle glaucoma. Turk J Ophthalmol. 2017;47(4):198–204. doi: 10.4274/tjo.87300. PMID: 28845323. Excluded for wrong comparator. [PMC free article: PMC5563547] [PubMed: 28845323] [CrossRef]
815.
Tuulonen A, Koponen J, Alanko HI, et al. Laser trabeculoplasty versus medication treatment as primary therapy for glaucoma. Acta Ophthalmol (Copenh). 1989;67(3):275–80. doi: 10.1111/j.1755-3768.1989.tb01871.x. PMID: 2669435. Excluded for wrong intervention. [PubMed: 2669435] [CrossRef]
816.
Tuulonen A, Ohinmaa T, Alanko HI, et al. The application of teleophthalmology in examining patients with glaucoma: a pilot study. J Glaucoma. 1999;8(6):367–73. PMID: 10604295. Excluded for wrong outcome. [PubMed: 10604295]
817.
Uysal Y, Bayer A, Erdurman C, et al. Sensitivity and specificity of Heidelberg retinal tomography II parameters in detecting early and moderate glaucomatous damage: effect of disc size. Clin Exp Ophthalmol. 2007;35(2):113–8. doi: 10.1111/j.1442-9071.2006.01393.x. PMID: 17362450. Excluded for wrong intervention. [PubMed: 17362450] [CrossRef]
818.
Vainio-Jylha E, Vuori ML. The favorable effect of topical betaxolol and timolol on glaucomatous visual fields: a 2-year follow-up study. Graefes Arch Clin Exp Ophthalmol. 1999;237(2):100–4. doi: 10.1007/s004170050202. PMID: 9987624. Excluded for wrong comparator. [PubMed: 9987624] [CrossRef]
819.
van Nispen R, van der Aa H, Timmermans F, et al. Reducing avoidable visual impairment in elderly home healthcare patients by basic ophthalmologic screening. Acta Ophthalmol. 2019;97(4):401–8. doi: 10.1111/aos.13956. PMID: 30369070. Excluded for results not usable or not fully reported. [PMC free article: PMC6587994] [PubMed: 30369070] [CrossRef]
820.
Varma R, Steinmann WC, Scott IU. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology. 1992;99(2):215–21. doi: 10.1016/s0161-6420(92)31990-6. PMID: 1553210. Excluded for wrong outcome. [PubMed: 1553210] [CrossRef]
821.
Vass C, Hirn C, Sycha T, et al. Medical interventions for primary open angle glaucoma and ocular hypertension. Cochrane Database Syst Rev. 2007 (4)doi: 10.1002/14651858.CD003167.pub3. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PMC free article: PMC6768994] [PubMed: 17943780] [CrossRef]
822.
Vasseneix C, Bruce BB, Bidot S, et al. Nonmydriatic fundus photography in patients with acute vision loss. Telemed J E Health. 2019;25(10):911–6. doi: 10.1089/tmj.2018.0209. PMID: 30575447. Excluded for wrong population. [PMC free article: PMC6784488] [PubMed: 30575447] [CrossRef]
823.
Vazquez LE, Mwanza JC, Triolo G, et al. Separation and thickness measurements of superficial and deep slabs of the retinal nerve fiber layer in healthy and glaucomatous eyes. Ophthalmol Glaucoma. 2020;3(1):66–75. doi: 10.1016/j.ogla.2019.11.004. PMID: 32632406. Excluded for wrong study design for key question. [PMC free article: PMC7337289] [PubMed: 32632406] [CrossRef]
824.
Verma S, Arora S, Kassam F, et al. Northern Alberta remote teleglaucoma program: clinical outcomes and patient disposition. Can J Ophthalmol. 2014;49(2):135–40. doi: 10.1016/j.jcjo.2013.11.005. PMID: 24767217. Excluded for wrong outcome. [PubMed: 24767217] [CrossRef]
825.
Verticchio Vercellin AC, Jassim F, Poon LY, et al. Diagnostic capability of three-dimensional macular parameters for glaucoma using optical coherence tomography volume scans. Invest Ophthalmol Vis Sci. 2018;59(12):4998–5010. doi: 10.1167/iovs.18-23813. PMID: 30326067. Excluded for wrong study design for key question. [PMC free article: PMC6188465] [PubMed: 30326067] [CrossRef]
826.
Vidotti VG, Costa VP, Silva FR, et al. Sensitivity and specificity of machine learning classifiers and spectral domain OCT for the diagnosis of glaucoma. Eur J Ophthalmol. 2012:0. doi: 10.5301/ejo.5000183. PMID: 22729440. Excluded for wrong study design for key question. [PubMed: 22729440] [CrossRef]
827.
Vishwanathan R, Chung M, Johnson EJ. A systematic review on zinc for the prevention and treatment of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013;54(6):3985–98. doi: 10.1167/iovs.12-11552. PMID: 23652490. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 23652490] [CrossRef]
828.
Vitale S, Smith TD, Quigley T, et al. Screening performance of functional and structural measurements of neural damage in open-angle glaucoma: a case-control study from the Baltimore Eye Survey. J Glaucoma. 2000;9(5):346–56. doi: 10.1097/00061198-200010000-00002. PMID: 11039735. Excluded for wrong study design for key question. [PubMed: 11039735] [CrossRef]
829.
Vogel R, Crick RP, Mills KB, et al. Effect of timolol versus pilocarpine on visual field progression in patients with primary open-angle glaucoma. Ophthalmology. 1992;99(10):1505–11. doi: 10.1016/s0161-6420(92)31773-7. PMID: 1454315. Excluded for wrong comparator. [PubMed: 1454315] [CrossRef]
830.
Vold SD, Voskanyan L, Tetz M, et al. Newly diagnosed primary open-angle glaucoma randomized to 2 trabecular bypass stents or prostaglandin: outcomes through 36 months. Ophthalmol Ther. 2016;5(2):161–72. PMID: 27619225. Excluded for wrong comparator. [PMC free article: PMC5125126] [PubMed: 27619225]
831.
Wachtl J, Toteberg-Harms M, Frimmel S, et al. Correlation between dynamic contour tonometry, uncorrected and corrected goldmann applanation tonometry, and atage of glaucoma. JAMA Ophthalmol. 2017;135(6):601–8. doi: 10.1001/jamaophthalmol.2017.1012. PMID: 28494071. Excluded for wrong study design for key question. [PMC free article: PMC5540028] [PubMed: 28494071] [CrossRef]
832.
Waldock A, Snape J, Graham CM. Effects of glaucoma medications on the cardiorespiratory and intraocular pressure status of newly diagnosed glaucoma patients. Br J Ophthalmol. 2000;84(7):710–3. doi: 10.1136/bjo.84.7.710. PMID: 10873979. Excluded for wrong comparator. [PMC free article: PMC1723530] [PubMed: 10873979] [CrossRef]
833.
Wan KH, Lam AKN, Leung CK. Optical coherence tomography angiography compared with optical coherence tomography macular measurements for detection of glaucoma. JAMA Ophthalmol. 2018;136(8):866–74. doi: 10.1001/jamaophthalmol.2018.1627. PMID: 29852029. Excluded for wrong study design for key question. [PMC free article: PMC6142951] [PubMed: 29852029] [CrossRef]
834.
Wang F, Tielsch JM, Ford DE, et al. Evaluation of screening schemes for eye disease in a primary care setting. Ophthalmic Epidemiol. 1998;5(2):69–82. PMID: 9672907. Excluded for wrong study design for key question. [PubMed: 9672907]
835.
Wang H, Tao Y, Sun XL, et al. Comparison of Heidelberg retina tomography, optical coherence tomography and Humphrey visual field in early glaucoma diagnosis. J Int Med Res. 2013;41(5):1594–605. doi: 10.1177/0300060513489474. PMID: 24003055. Excluded for wrong study design for key question. [PubMed: 24003055] [CrossRef]
836.
Wang J, Wang Z, Li F, et al. Joint retina segmentation and classification for early glaucoma diagnosis. Biomed Opt Express. 2019;10(5):2639–56. doi: 10.1364/BOE.10.002639. PMID: 31149385. Excluded for wrong study design for key question. [PMC free article: PMC6524599] [PubMed: 31149385] [CrossRef]
837.
Wang M, Lu AT, Varma R, et al. Combining information from 3 anatomic regions in the diagnosis of glaucoma with time-domain optical coherence tomography. J Glaucoma. 2014;23(3):129–35. doi: 10.1097/IJG.0b013e318264b941. PMID: 22828002. Excluded for wrong study design for key question. [PMC free article: PMC3535579] [PubMed: 22828002] [CrossRef]
838.
Wang X, Chen H, Ran AR, et al. Towards multi-center glaucoma OCT image screening with semi-supervised joint structure and function multi-task learning. Med Image Anal. 2020;63:101695. doi: 10.1016/j.media.2020.101695. PMID: 32442866. Excluded for wrong population. [PubMed: 32442866] [CrossRef]
839.
Wang X, Li S, Fu J, et al. Comparative study of retinal nerve fibre layer measurement by RTVue OCT and GDx VCC. Br J Ophthalmol. 2011;95(4):509–13. doi: 10.1136/bjo.2009.163493. PMID: 20657017. Excluded for wrong study design for key question. [PubMed: 20657017] [CrossRef]
840.
Watson PG, Allen ED, Graham CM, et al. Argon laser trabeculoplasty or trabeculectomy a prospective randomised block study. Trans Ophthalmol Soc U K. 1985;104 (Pt 1):55–61. PMID: 3855337. Excluded for wrong comparator. [PubMed: 3855337]
841.
Watson PG, Barnett MF, Parker V, et al. A 7 year prospective comparative study of three topical beta blockers in the management of primary open angle glaucoma. Br J Ophthalmol. 2001;85(8):962–8. doi: 10.1136/bjo.85.8.962. PMID: 11466256. Excluded for wrong comparator. [PMC free article: PMC1724066] [PubMed: 11466256] [CrossRef]
842.
Weih LM, Nanjan M, McCarty CA, et al. Prevalence and predictors of open-angle glaucoma: results from the visual impairment project. Ophthalmology. 2001;108(11):1966–72. doi: 10.1016/s0161-6420(01)00799-0. PMID: 11713063. Excluded for wrong population. [PubMed: 11713063] [CrossRef]
843.
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–11. doi: 10.1001/jama.2014.3192. PMID: 24825645. Excluded for not a study. [PMC free article: PMC4523637] [PubMed: 24825645] [CrossRef]
844.
Weinreb RN, Bacharach J, Fechtner RD, et al. 24-hour intraocular pressure control with fixed-dose combination brinzolamide 1%/brimonidine 0.2%: a multicenter, randomized trial. Ophthalmology. 2019;126(8):1095–104. doi: 10.1016/j.ophtha.2018.10.040. PMID: 30403988. Excluded for wrong intervention. [PubMed: 30403988] [CrossRef]
845.
Weinreb RN, Garway-Heath D, Leung C, et al. Diagnosis of primary open angle glaucoma: WGA consensus series-10: Kugler Publications; 2017. Excluded for wrong population.
846.
Weinreb RN, Liebmann JM, Cioffi GA, et al. Oral memantine for the treatment of glaucoma: design and results of 2 randomized, placebo-controlled, phase 3 studies. Ophthalmology. 2018;125(12):1874–85. doi: 10.1016/j.ophtha.2018.06.017. PMID: 30082073. Excluded for wrong intervention. [PubMed: 30082073] [CrossRef]
847.
West ME, Sharpe GP, Hutchison DM, et al. Value of 10-2 visual field testing in glaucoma patients with early 24-2 visual field loss. Ophthalmology. 2021;128(4):545–53. doi: 10.1016/j.ophtha.2020.08.033. PMID: 32898515. Excluded for wrong study design for key question. [PubMed: 32898515] [CrossRef]
848.
Whitson JT, Realini T, Nguyen QH, et al. Six-month results from a phase III randomized trial of fixed-combination brinzolamide 1% + brimonidine 0.2% versus brinzolamide or brimonidine monotherapy in glaucoma or ocular hypertension. Clin Ophthalmol. 2013;7:1053–60. doi: 10.2147/OPTH.S46881. PMID: 23766627. Excluded for wrong comparator. [PMC free article: PMC3678899] [PubMed: 23766627] [CrossRef]
849.
Wilkins M, Indar A, Wormald R. Intra-operative mitomycin C for glaucoma surgery. Cochrane Database Syst Rev. 2005 (4). Excluded for wrong intervention. [PMC free article: PMC8406713] [PubMed: 16235305]
850.
Wilson MR, Coleman AL, Yu F, et al. Functional status and well-being in patients with glaucoma as measured by the Medical Outcomes Study Short Form-36 questionnaire. Ophthalmology. 1998;105(11):2112–6. doi: 10.1016/s0161-6420(98)91135-6. PMID: 9818614. Excluded for wrong study design for key question. [PubMed: 9818614] [CrossRef]
851.
Wolfs RC, Ramrattan RS, Hofman A, et al. Cup-to-disc ratio: ophthalmoscopy versus automated measurement in a general population: the Rotterdam Study. Ophthalmology. 1999;106(8):1597–601. doi: 10.1016/s0161-6420(99)90458-x. PMID: 10442909. Excluded for results not usable or not fully reported. [PubMed: 10442909] [CrossRef]
852.
Wollstein G, Garway-Heath DF, Fontana L, et al. Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology. 2000;107(12):2272–7. doi: 10.1016/s0161-6420(00)00363-8. PMID: 11097609. Excluded for wrong study design for key question. [PubMed: 11097609] [CrossRef]
853.
Wollstein G, Ishikawa H, Wang J, et al. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol. 2005;139(1):39–43. doi: 10.1016/j.ajo.2004.08.036. PMID: 15652826. Excluded for wrong study design for key question. [PubMed: 15652826] [CrossRef]
854.
Wong MO, Lee JW, Choy BN, et al. Systematic review and meta-analysis on the efficacy of selective laser trabeculoplasty in open-angle glaucoma. Surv Ophthalmol. 2015;60(1):36–50. doi: 10.1016/j.survophthal.2014.06.006. PMID: 25113610. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [PubMed: 25113610] [CrossRef]
855.
Wong MOM, Lai IS, Chan PP, et al. Efficacy and safety of selective laser trabeculoplasty and pattern scanning laser trabeculoplasty: a randomised clinical trial. Br J Ophthalmol. 2021;105(4):514–20. doi: 10.1136/bjophthalmol-2020-316178. PMID: 32606078. Excluded for wrong comparator. [PubMed: 32606078] [CrossRef]
856.
Wood CM, Bosanquet RC. Limitations of direct ophthalmoscopy in screening for glaucoma. Br Med J (Clin Res Ed). 1987;294(6587):1587–8. doi: 10.1136/bmj.294.6587.1587-a. PMID: 3113540. Excluded for wrong study design for key question. [PMC free article: PMC1246731] [PubMed: 3113540] [CrossRef]
857.
Wormald R, Wilkins MR, Bunce C. Post-operative 5-fluorouracil for glaucoma surgery. Cochrane Database Syst Rev. 2000 (2). Excluded for wrong intervention. [PubMed: 10796751]
858.
Wright DM, Konstantakopoulou E, Montesano G, et al. Visual field outcomes from the multicenter, randomized controlled laser in glaucoma and ocular hypertension trial. Ophthalmology. 2020;127(10):1313–21. doi: 10.1016/j.ophtha.2020.03.029. PMID: 32402553. Excluded for wrong outcome. [PubMed: 32402553] [CrossRef]
859.
Wu H, de Boer JF, Chen TC. Diagnostic capability of spectral-domain optical coherence tomography for glaucoma. Am J Ophthalmol. 2012;153(5):815–26.e2. doi: 10.1016/j.ajo.2011.09.032. PMID: 22265147. Excluded for wrong study design for key question. [PMC free article: PMC3517739] [PubMed: 22265147] [CrossRef]
860.
Wu XS, Xu L, Jonas JB, et al. Agreement between spectral domain optical coherence tomography and retinal nerve fiber layer photography in Chinese. J Glaucoma. 2012;21(4):228–33. doi: 10.1097/IJG.0b013e3182070cc6. PMID: 21654514. Excluded for wrong study design for key question. [PubMed: 21654514] [CrossRef]
861.
Wu Z, Medeiros FA, Weinreb RN, et al. Specificity of various cluster criteria used for the detection of glaucomatous visual field abnormalities. Br J Ophthalmol. 2020;104(6):822–6. doi: 10.1136/bjophthalmol-2019-314593. PMID: 31530565. Excluded for wrong study design for key question. [PubMed: 31530565] [CrossRef]
862.
Wu Z, Vianna JR, Reis ASC, et al. Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage. Br J Ophthalmol. 2020;104(7):980–4. doi: 10.1136/bjophthalmol-2019-314611. PMID: 31662310. Excluded for wrong study design for key question. [PubMed: 31662310] [CrossRef]
863.
Xiao D, Vignarajan J, Chen T, et al. Content design and system implementation of a teleophthalmology system for eye disease diagnosis and treatment and its preliminary practice in Guangdong, China. Telemed J E Health. 2017;23(12):964–75. doi: 10.1089/tmj.2016.0266. PMID: 28586267. Excluded for not a study. [PubMed: 28586267] [CrossRef]
864.
Xing Y, Jiang FG, Li T. Fixed combination of latanoprost and timolol vs the individual components for primary open angle glaucoma and ocular hypertension: a systematic review and meta-analysis. Int J Ophthalmol. 2014;7(5):879–90. doi: 10.3980/j.issn.2222-3959.2014.05.26. PMID: 25349811. Excluded for wrong comparator. [PMC free article: PMC4206899] [PubMed: 25349811] [CrossRef]
865.
Xu L, Asaoka R, Murata H, et al. Improving visual field trend analysis with OCT and deeply regularized latent-space linear regression. Ophthalmol Glaucoma. 2021;4(1):78–88. doi: 10.1016/j.ogla.2020.08.002. PMID: 32791238. Excluded for wrong intervention. [PubMed: 32791238] [CrossRef]
866.
Xu L, Wang X, Wu M. Topical medication instillation techniques for glaucoma. Cochrane Database Syst Rev. 2017;2:CD010520. doi: 10.1002/14651858.CD010520.pub2. PMID: 28218404. Excluded for wrong outcome. [PMC free article: PMC5419432] [PubMed: 28218404] [CrossRef]
867.
Xu Y, Xu D, Lin S, et al. Sliding window and regression based cup detection in digital fundus images for glaucoma diagnosis. Med Image Comput Comput Assist Interv. 2011;14(Pt 3):1–8. PMID: 22003677. Excluded for results not usable or not fully reported. [PubMed: 22003677]
868.
Yabana T, Shiga Y, Kawasaki R, et al. Evaluating retinal vessel diameter with optical coherence tomography in normal-tension glaucoma patients. Jpn J Ophthalmol. 2017;61(5):378–87. doi: 10.1007/s10384-017-0523-z. PMID: 28667424. Excluded for wrong study design for key question. [PubMed: 28667424] [CrossRef]
869.
Yaghoubi M, Moradi-Lakeh M, Mokhtari-Payam M, et al. Confocal scan laser ophthalmoscope for diagnosing glaucoma: a systematic review and meta-analysis. Asia Pac J Ophthalmol (Phila). 2015;4(1):32–9. doi: 10.1097/APO.0000000000000085. PMID: 26068611. Excluded for wrong study design for key question. [PubMed: 26068611] [CrossRef]
870.
Yamada N, Chen PP, Mills RP, et al. Screening for glaucoma with frequency-doubling technology and damato campimetry. Arch Ophthalmol. 1999;117(11):1479–84. doi: 10.1001/archopht.117.11.1479. PMID: 10565516. Excluded for wrong intervention. [PubMed: 10565516] [CrossRef]
871.
Yamamoto T, Ikegami T, Ishikawa Y, et al. Randomized, controlled, phase 3 trials of carteolol/latanoprost fixed combination in primary open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2016;171:35–46. doi: 10.1016/j.ajo.2016.08.022. PMID: 27565224. Excluded for wrong intervention. [PubMed: 27565224] [CrossRef]
872.
Yamamoto T, Kitazawa Y, Noma A, et al. The effects of the beta-adrenergic-blocking agents, timolol and carteolol, on plasma lipids and lipoproteins in Japanese glaucoma patients. J Glaucoma. 1996;5(4):252–7. PMID: 8795770. Excluded for wrong comparator. [PubMed: 8795770]
873.
Yamazaki Y, Hayamizu F, Tanaka C. Effects of long-term methylcobalamin treatment on the progression of visual field defects in normal-tension glaucoma. Curr Ther Res Clin Exp. 2000;61(7):443–51. Excluded for wrong intervention.
874.
Yang H, Luo H, Hardin C, et al. Optical coherence tomography structural abnormality detection in glaucoma using topographically correspondent rim and retinal nerve fiber layer criteria. Am J Ophthalmol. 2020;213:203–16. doi: 10.1016/j.ajo.2019.12.020. PMID: 31899204. Excluded for wrong study design for key question. [PMC free article: PMC7214190] [PubMed: 31899204] [CrossRef]
875.
Yang HK, Kim YJ, Sung JY, et al. Efficacy for differentiating nonglaucomatous versus glaucomatous optic neuropathy using deep learning systems. Am J Ophthalmol. 2020;216:140–6. doi: 10.1016/j.ajo.2020.03.035. PMID: 32247778. Excluded for wrong study design for key question. [PubMed: 32247778] [CrossRef]
876.
Yang HK, Park KH, Kim TW, et al. Deepening of eyelid superior sulcus during topical travoprost treatment. Jpn J Ophthalmol. 2009;53(2):176–9. doi: 10.1007/s10384-008-0623-x. PMID: 19333704. Excluded for wrong study design for key question. [PubMed: 19333704] [CrossRef]
877.
Yang Z, Tatham AJ, Weinreb RN, et al. Diagnostic ability of macular ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography. PLoS One. 2015;10(5):e0125957. doi: 10.1371/journal.pone.0125957. PMID: 25978420. Excluded for wrong study design for key question. [PMC free article: PMC4433247] [PubMed: 25978420] [CrossRef]
878.
Yang Z, Tatham AJ, Zangwill LM, et al. Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. Am J Ophthalmol. 2015;159(1):193–201. doi: 10.1016/j.ajo.2014.10.019. PMID: 25448991. Excluded for wrong study design for key question. [PMC free article: PMC4293127] [PubMed: 25448991] [CrossRef]
879.
Yildirim N, Sahin A, Gultekin S. The effect of latanoprost, bimatoprost, and travoprost on circadian variation of intraocular pressure in patients with open-angle glaucoma. J Glaucoma. 2008;17(1):36–9. doi: 10.1097/IJG.0b013e318133fb70. PMID: 18303382. Excluded for wrong comparator. [PubMed: 18303382] [CrossRef]
880.
Yip VCH, Wong HT, Yong VKY, et al. Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J Glaucoma. 2019;28(1):80–7. doi: 10.1097/IJG.0000000000001125. PMID: 30461553. Excluded for wrong study design for key question. [PubMed: 30461553] [CrossRef]
881.
Yong MH, Che Hamzah J. Selective laser trabeculoplasty vs. topical medications for step-up treatment in primary open angle glaucoma: comparing clinical effectiveness, quality of life and cost-effectiveness. Med J Malaysia. 2020;75(4):342–8. PMID: 32723992. Excluded for wrong population. [PubMed: 32723992]
882.
Yoo E, Yoo C, Lee BR, et al. Diagnostic ability of retinal vessel diameter measurements in open-angle glaucoma. Invest Ophthalmol Vis Sci. 2015;56(13):7915–22. doi: 10.1167/iovs.15-18087. PMID: 26670828. Excluded for wrong study design for key question. [PubMed: 26670828] [CrossRef]
883.
Yoshida T, Iwase A, Hirasawa H, et al. Discriminating between glaucoma and normal eyes using optical coherence tomography and the ‘Random Forests’ classifier. PLoS One. 2014;9(8):e106117. doi: 10.1371/journal.pone.0106117. PMID: 25167053. Excluded for wrong study design for key question. [PMC free article: PMC4148397] [PubMed: 25167053] [CrossRef]
884.
Yoshikawa K, Kozaki J, Maeda H. Efficacy and safety of brinzolamide/timolol fixed combination compared with timolol in Japanese patients with open-angle glaucoma or ocular hypertension. Clin Ophthalmol. 2014;8:389–99. doi: 10.2147/OPTH.S58293. PMID: 24550667. Excluded for wrong comparator. [PMC free article: PMC3926459] [PubMed: 24550667] [CrossRef]
885.
Yow AP, Tan B, Chua J, et al. Automated circumpapillary retinal nerve fiber layer segmentation in high-resolution swept-source OCT. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1832–5. doi: 10.1109/EMBC44109.2020.9175828. PMID: 33018356. Excluded for wrong study design for key question. [PubMed: 33018356] [CrossRef]
886.
Yuksel N, Altintas O, Ozkan B, et al. Discriminating ability of optical coherence tomography data in staging glaucomatous damage. Can J Ophthalmol. 2009;44(3):297–307. doi: 10.3129/i09-020. PMID: 19491986. Excluded for wrong study design for key question. [PubMed: 19491986] [CrossRef]
887.
Yuksel N, Gok M, Altintas O, et al. Diurnal intraocular pressure efficacy of the timolol-brimonidine fixed combination and the timolol-dorzolamide fixed combination as a first choice therapy in patients with pseudoexfoliation glaucoma. Curr Eye Res. 2011;36(9):804–8. doi: 10.3109/02713683.2011.584651. PMID: 21851166. Excluded for wrong comparator. [PubMed: 21851166] [CrossRef]
888.
Zacharia PT, Deppermann SR, Schuman JS. Ocular hypotony after trabeculectomy with mitomycin C. Am J Ophthalmol. 1993;116(3):314–26. doi: 10.1016/s0002-9394(14)71349-2. PMID: 8357056. Excluded for wrong intervention. [PubMed: 8357056] [CrossRef]
889.
Zakova M, Lestak J, Fus M, et al. Optical coherence tomography angiography and the visual field in hypertensive and normotensive glaucoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020;15:15. doi: 10.5507/bp.2020.044. PMID: 33057315. Excluded for wrong population. [PubMed: 33057315] [CrossRef]
890.
Zangwill LM, Weinreb RN, Beiser JA, et al. Baseline topographic optic disc measurements are associated with the development of primary open angle glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to the OHTS. Iovs. 2005;46. Excluded for results not usable or not fully reported. [PubMed: 16157798]
891.
Zapata MA, Royo-Fibla D, Font O, et al. Artificial intelligence to identify retinal fundus images, quality validation, laterality evaluation, macular degeneration, and suspected glaucoma. Clin Ophthalmol. 2020;14:419–29. doi: 10.2147/OPTH.S235751. PMID: 32103888. Excluded for wrong outcome. [PMC free article: PMC7025650] [PubMed: 32103888] [CrossRef]
892.
Zeppieri M, Brusini P, Parisi L, et al. Pulsar perimetry in the diagnosis of early glaucoma. Am J Ophthalmol. 2010;149(1):102–12. doi: 10.1016/j.ajo.2009.07.020. PMID: 19800607. Excluded for wrong intervention. [PubMed: 19800607] [CrossRef]
893.
Zhang AY, Lu L, Ali M, et al. Disc-Damage Likelihood Scale (DDLS) as a clinical indicator of the presence of a Relative Afferent Pupillary Defect (RAPD). J Glaucoma. 2016;25(10):e910–e6. PMID: 27136083. Excluded for results not usable or not fully reported. [PubMed: 27136083]
894.
Zhang L, Weizer JS, Musch DC. Perioperative medications for preventing temporarily increased intraocular pressure after laser trabeculoplasty. Cochrane Database Syst Rev. 2017;2:CD010746. doi: 10.1002/14651858.CD010746.pub2. PMID: 28231380. Excluded for wrong outcome. [PMC free article: PMC5477062] [PubMed: 28231380] [CrossRef]
895.
Zhang WY, Li Wan Po A, Dua HS, et al. Meta-analysis of randomised controlled trials comparing latanoprost with timolol in the treatment of patients with open angle glaucoma or ocular hypertension. Br J Ophthalmol. 2001;85(8):983–90. doi: 10.1136/bjo.85.8.983. Excluded for wrong comparator. [PMC free article: PMC1724079] [PubMed: 11466259] [CrossRef]
896.
Zhang X, Loewen N, Tan O, et al. Predicting development of glaucomatous visual field conversion using baseline fourier-domain optical coherence tomography. Am J Ophthalmol. 2016;163:29–37. doi: 10.1016/j.ajo.2015.11.029. PMID: 26627918. Excluded for wrong outcome. [PMC free article: PMC4769942] [PubMed: 26627918] [CrossRef]
897.
Zhao D, Guallar E, Bowie JV, et al. Improving follow-up and reducing barriers for eye screenings in communities: The SToP Glaucoma Study. Am J Ophthalmol. 2018;188:19–28. doi: 10.1016/j.ajo.2018.01.008. PMID: 29355481. Excluded for wrong study design for key question. [PubMed: 29355481] [CrossRef]
898.
Zhao D, Guallar E, Gajwani P, et al. Optimizing glaucoma screening in high-risk population: design and 1-year findings of the screening to prevent (SToP) glaucoma study. Am J Ophthalmol. 2017;180:18–28. doi: 10.1016/j.ajo.2017.05.017. PMID: 28549849. Excluded for wrong study design for key question. [PubMed: 28549849] [CrossRef]
899.
Zhao R, Chen X, Liu X, et al. Direct cup-to-disc ratio estimation for glaucoma acreening via semi-supervised learning. IEEE J Biomed Health Inform. 2020;24(4):1104–13. doi: 10.1109/JBHI.2019.2934477. PMID: 31403451. Excluded for wrong study design for key question. [PubMed: 31403451] [CrossRef]
900.
Zhao R, Chen X, Xiyao L, et al. Direct cup-to-disc ratio estimation for glaucoma screening via semi-supervised learning. IEEE J Biomed Health Inform. 2020;24(4):1104–13. doi: 10.1109/JBHI.2019.2934477. PMID: 31403451. Excluded for wrong study design for key question. [PubMed: 31403451] [CrossRef]
901.
Zhao R, Li S. Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning. Med Image Anal. 2019;60:101593. doi: 10.1016/j.media.2019.101593. PMID: 31731092. Excluded for results not usable or not fully reported. [PubMed: 31731092] [CrossRef]
902.
Zheng C, Xie X, Huang L, et al. Detecting glaucoma based on spectral domain optical coherence tomography imaging of peripapillary retinal nerve fiber layer: a comparison study between hand-crafted features and deep learning model. Graefes Arch Clin Exp Ophthalmol. 2020;258(3):577–85. doi: 10.1007/s00417-019-04543-4. PMID: 31811363. Excluded for wrong study design for key question. [PubMed: 31811363] [CrossRef]
903.
Zheng Y, Wong TY, Lamoureux E, et al. Diagnostic ability of Heidelberg Retina Tomography in detecting glaucoma in a population setting: the Singapore Malay Eye Study. Ophthalmology. 2010;117(2):290–7. doi: 10.1016/j.ophtha.2009.07.018. PMID: 20006907. Excluded for wrong intervention. [PubMed: 20006907] [CrossRef]
904.
Zheng YJ, Pan YZ, Li XY, et al. A new diagnostic model of primary open angle glaucoma based on FD-OCT parameters. Int J Ophthalmol. 2018;11(6):951–7. doi: 10.18240/ijo.2018.06.09. PMID: 29977806. Excluded for wrong study design for key question. [PMC free article: PMC6010378] [PubMed: 29977806] [CrossRef]
905.
Zhong Y, Zhou X, Cheng Y, et al. Relation between blue-on-yellow perimetry and optical coherence tomography in normal tension glaucoma. Can J Ophthalmol. 2010;45(5):494–500. doi: 10.3129/i10-053. PMID: 20648075. Excluded for wrong study design for key question. [PubMed: 20648075] [CrossRef]
906.
Zhou R, Sun Y, Chen H, et al. Laser trabeculoplasty for open-angle glaucoma: a systematic review and network meta-analysis. Am J Ophthalmol. 2020;01:01. doi: 10.1016/j.ajo.2020.07.046. PMID: 32888900. Excluded for systematic review or meta-analysis used as a source document only to identify individual studies. [CrossRef]
907.
Zimmerman TJ, Stewart WC. Intraocular pressure, safety, and quality of life in glaucoma patients switching to latanoprost from monotherapy treatments. J Ocul Pharmacol Ther. 2003;19(5):405–15. doi: 10.1089/108076803322472971. PMID: 14583133. Excluded for wrong comparator. [PubMed: 14583133] [CrossRef]

Appendix A6. U.S. Preventive Services Task Force Quality Criteria

Systematic Reviews

Criteria:

  • Comprehensiveness of sources considered/search strategy used
  • Standard appraisal of included studies
  • Validity of conclusions
  • Recency and relevance (especially important for systematic reviews)

Definition of ratings based on above criteria:

  • Good: Recent, relevant review with comprehensive sources and search strategies; explicit and relevant selection criteria; standard appraisal of included studies; and valid conclusions.
  • Fair: Recent, relevant review that is not clearly biased but lacks comprehensive sources and search strategies.
  • Poor: Outdated, irrelevant, or biased review without systematic search for studies, explicit selection criteria, or standard appraisal of studies.

RCTs and Cohort Studies

Criteria:

  • Initial assembly of comparable groups:
    • For RCTs: adequate randomization, including first concealment and whether potential confounders were distributed equally among groups
    • For cohort studies: consideration of potential confounders, with either restriction or measurement for adjustment in the analysis; consideration of inception cohorts
  • Maintenance of comparable groups (includes attrition, cross-overs, adherence, contamination)
  • Important differential loss to followup or overall high loss to followup
  • Measurements: equal, reliable, and valid (includes masking of outcome assessment)
  • Clear definition of interventions
  • All important outcomes considered
  • Analysis: adjustment for potential confounders for cohort studies or intention-to-treat analysis for RCTs

Definition of ratings based on above criteria:

  • Good: Meets all criteria: comparable groups are assembled initially and maintained throughout the study (followup greater than or equal to 80%); reliable and valid measurement instruments are used and applied equally to all groups; interventions are spelled out clearly; all important outcomes are considered; and appropriate attention to confounders in analysis. In addition, intention-to-treat analysis is used for RCTs.
  • Fair: Studies are graded “fair” if any or all of the following problems occur, without the fatal flaws noted in the “poor” category below: generally comparable groups are assembled initially, but some question remains whether some (although not major) differences occurred with followup; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are accounted for. Intention-to-treat analysis is used for RCTs.
  • Poor: Studies are graded “poor” if any of the following fatal flaws exists: groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. Intention-to-treat analysis is lacking for RCTs.

Diagnostic Accuracy Studies

Criteria:

  • Screening test relevant, available for primary care, and adequately described
  • Credible reference standard, performed regardless of test results
  • Reference standard interpreted independently of screening test
  • Indeterminate results handled in a reasonable manner
  • Spectrum of patients included in study
  • Sample size
  • Reliable screening test

Definition of ratings based on above criteria:

  • Good: Evaluates relevant available screening test; uses a credible reference standard; interprets reference standard independently of screening test; assesses reliability of test; has few or handles indeterminate results in a reasonable manner; includes large number (greater than 100) of broad-spectrum patients with and without disease.
  • Fair: Evaluates relevant available screening test; uses reasonable although not best standard; interprets reference standard independent of screening test; has moderate sample size (50 to 100 subjects) and a “medium” spectrum of patients.
  • Poor: Has a fatal flaw, such as: uses inappropriate reference standard; improperly administers screening test; biased ascertainment of reference standard; has very small sample size or very narrow selected spectrum of patients.

Internet Citation: Appendix VI. Criteria for Assessing Internal Validity of Individual Studies. U.S. Preventive Services Task Force. July 2017. https://www.uspreventiveservicestaskforce.org/uspstf/procedure-manual/procedure-manual-appendix-vi-criteria-assessing-internal-validity-individual-studies

Appendix A7. Expert Reviewers of the Draft Report

April Maa, MD, Emory University School of Medicine, Emory Eye Center; Atlanta VA Medical Center

Nancy Weintraub, MD, David Geffen School of Medicine at University of California at Los Angeles

Jennifer Evans, PhD, MSc, London School of Hygiene and Tropical Medicine

Centers for Disease Control and Prevention representatives

One undisclosed reviewer

Note: Reviewers provided comments on a prior version of the draft report and may or may not agree with the report findings.

Views

  • PubReader
  • Print View
  • Cite this Page
  • PDF version of this title (4.0M)

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...