U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases. CDC COVID-19 Science Briefs [Internet]. Atlanta (GA): Centers for Disease Control and Prevention (US); 2020-.

  • This publication is provided for historical reference only and the information may be out of date.

This publication is provided for historical reference only and the information may be out of date.

Cover of CDC COVID-19 Science Briefs

CDC COVID-19 Science Briefs [Internet].

Show details

Science Brief: Evidence Used to Update the List of Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19

Last Update: June 15, 2022.

For Healthcare Professionals: Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19: Information for Healthcare Professionals

For General Public: People with Certain Medical Conditions

Overview

CDC continues to learn about COVID-19 and associated underlying medical conditions that put people ages 18 years and older at higher risk of severe illness. Severe illness from COVID-19 is defined here as hospitalization, admission to the intensive care unit (ICU), intubation or mechanical ventilation, or death. Evidence used to inform the list of underlying conditions was determined by CDC reviewers based on available literature about COVID-19 at time of review. Literature includes published reports, scientific articles in press, unreviewed pre-prints, and data from CDC-led investigations.

The methods used to assess the conditions have changed during the pandemic as the amount of literature and types of studies increased. For instance, preliminary versions of this list focused on providing the latest information based on descriptive data. As the literature grew, CDC investigators categorized the literature by study design.

Since May 2021, the process has been updated to include a CDC-led review process that uses rigorous systematic review methods. To learn more about the process of CDC’s systematic reviews, see CDC systematic review process.

The Table of Evidence below only lists underlying conditions that are associated with severe COVID-19 outcomes.

Table of Evidence

Evidence used to inform the list of underlying medical conditions that increase a person’s risk of severe illness from COVID-19, in alphabetic order by study design section. Conditions were categorized as higher risk, suggestive higher risk, and mixed evidence.

Higher Risk (conclusive)

Higher risk for underlying conditions is defined as having a published meta-analysis or systematic review or completing the CDC systematic review process. The meta-analysis or systematic review demonstrates a conclusive increase in risk for at least one severe COVID-19 outcome.

ConditionEvidence of Impact on COVID-19 Severity [Reference number]
AsthmaCDC systematic review [K]
BronchiectasisCDC systematic review [A]
CancerMeta-Analysis/ Systematic Review [1-5]
Cohort Study [6-8]
Case Series [9-11]
Case Control Study [12]
Cerebrovascular diseaseMeta-Analysis [13-16]
Synthesis of Evidence [17]
Cohort Study [18-20]
Chronic kidney diseaseMeta-Analysis [16,21]
Cohort Studies [19,22-43], [44]*
Case Series [45-47]
Chronic liver disease (cirrhosis, non-alcoholic fatty liver disease, alcoholic liver disease, autoimmune hepatitis)CDC systematic review [B]
COPDCDC systematic review [L]
Cystic fibrosisCDC systematic review [M]
Diabetes mellitus, type 1Meta-Analysis [87]
Case Series [46]
Cohort Study [18,88-93]
Diabetes mellitus, type 2Meta-Analysis [94]
Systematic Review [95]*
Gestational Diabetes Systematic Review [96] *
Case Series [46]
Longitudinal Study [97]
Cohort Study [87,91,97-102]
Disabilities, including Down SyndromeCDC systematic review [C]
HIVMeta-Analysis/ Systematic Review [103]
Cohort Study [35,104-106]
Case Series [107-109]
Heart conditions (such as heart failure, coronary artery disease, or cardiomyopathies)Meta-Analysis [110-112]
Cohort Study [18,19]
Interstitial lung diseaseCDC systematic review [D]
Mental health conditions (such as mood disorders, including depression, and schizophrenia spectrum disorders)Meta-analysis/ systematic review [117,118]
Neurologic conditions (Dementia)Meta-Analysis/ Systematic Review [119-122]
Cross-Sectional Study [123]
Cohort Study [19,124]
ObesityMeta-Analysis [125-127]
Systematic Review [95]*
Cohort [27,128-136], [44,137-140]*
Physical InactivityCDC systematic review [E]
Pregnancy and Recent PregnancyMeta-Analysis/ Systematic Review [95,141]
Case Control [142,143]
Case Series [144-146]
Cohort Study [147-150]
Primary ImmunodeficienciesCDC systematic review [F]
Pulmonary hypertension and pulmonary embolismCDC systematic review [G]
Smoking, current and formerMeta-Analysis [78,111,151-158]
Solid organ or blood stem cell transplantationMeta-Analysis [134]
Case Series [159-170]
Cohort [171-174]
TuberculosisCDC systematic review [H]
Use of corticosteroids or other immunosuppressive medicationsMeta-Analysis/ Systematic Review [175]
Cohort Study [176]
Cross-Sectional [177]
Case Series [178-180]

Suggestive Higher Risk

Suggestive higher risk for underlying conditions is defined as not having a published meta-analysis or systematic review or completing the CDC systematic review process. The evidence is supported by mostly cohort, case-control, or cross-sectional studies. (Systematic reviews are available for some conditions for children with underlying conditions.)

ConditionEvidence of Impact on COVID-19 Severity [Reference number]
Children with certain underlying conditionsSystematic Review [181,182]
Cross-Sectional Study 123,183,184]
Cohort Study [124,185-192]
Case Series [193,194]
OverweightCohort Study [131]
Case Series [136]
Sickle cell diseaseCohort [193-196]
Case Series [193,196-211]
Substance use disordersCase-Control Study [212-214]
Cohort Study [215,216]

Mixed Evidence (inconclusive: no conclusions can be drawn from the evidence)

Mixed evidence is defined as an underlying medical condition or risk factor that has a published meta-analysis or systematic review or completing the CDC systematic review process. The meta-analysis or systematic review is inconclusive, either because the aggregated data on the association between an underlying condition and severe COVID-19 outcomes are inconsistent in direction or there are insufficient data (or limited) on the association between an underlying conditions and severe COVID-19 outcomes.

• Limited: The evidence consists of one study, or several small studies with no comparison group limiting the conclusions that can be drawn.

• Inconsistent: The evidence suggests no clear direction of association, meaning no firm conclusions can be drawn.

ConditionEvidence of Impact on COVID-19 Severity [Reference number]
Alpha 1 antitrypsin deficiencyLimited: CDC systematic review [I]
Bronchopulmonary dysplasiaLimited: CDC systematic review [J]
Hepatitis BInconsistent: CDC systematic review [B]
Hepatitis CLimited: CDC systematic review [B]
HypertensionInconsistent
Meta-Analysis [111,222-225]
Systematic Review [226], [95]*
Cohort Study [18,19,22,227-234]
Case Series [235]
ThalassemiaLimited: CDC systematic review [N]

Footnote: { }* indicates pregnancy–related reference.

Summary of Updates

Updates from Previous Content

As of June 15, 2022

• Asthma was moved from the category of mixed evidence to higher risk based on evidence published in December 2020 from CDC’s systematic review.

• Thalassemia was moved from the category of suggestive higher risk to mixed evidence based on evidence published in May 2021 from CDC’s systematic review.

• COPD and cystic fibrosis remain in the higher risk category based on evidence published in December 2020 from CDC’s systematic reviews.

As of February 15, 2022

Updates to the list of underlying medical conditions that put people ages 18 years and older at higher risk for severe illness from the virus that causes COVID-19 were based on evidence from published reports, scientific articles in press, unreviewed pre-prints, and internal data. Updates to the following conditions were completed based on evidence from the date range below:

• Physical inactivity, disabilities and primary immunodeficiencies were added based on evidence published before October 7, 2021.

• No conditions were removed from the previous underlying medical conditions list.

As of October 14, 2021

• Chronic lung disease (including bronchiectasis, bronchopulmonary dysplasia, interstitial lung disease, pulmonary hypertension, pulmonary embolism, tuberculosis) and chronic liver disease (including cirrhosis, non-alcoholic fatty liver disease, alcoholic liver disease, and autoimmune hepatitis) were added September 2021 based on evidence published between December 1, 2019 and August 31, 2021 using the updated review methods outlined below.

• Mental health disorders (such as mood disorders including depression, and schizophrenia spectrum disorders) were added September 2021 based on evidence published between December 1, 2019 and August 31, 2021.

• No conditions were removed from the previous underlying medical conditions list.

As of May 13, 2021

• Pregnancy related references were added in May 2021.

• Substance use disorders were based on evidence published between December 1, 2019 and January 1, 2021.

• Asthma, blood disorders, cancer, cerebrovascular disease, chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD), cystic fibrosis, diabetes, Down syndrome, heart disease, hypertension, immunosuppressant medications, use of corticosteroids or other immunosuppressive medications, solid organ or blood stem cell transplantation, neurological conditions, and obesity were based on evidence published between December 1, 2019 and December 1, 2020.

• Smoking was based on evidence published between December 1, 2019 and July 20, 2020.

References

See CDC Systematic Review References

See All References

1.
Saini KS, Tagliamento M, Lambertini M, et al. Mortality in patients with cancer and coronavirus disease 2019: A systematic review and pooled analysis of 52 studies. Eur J Cancer. Nov 2020;139:43-50. doi:10.1016/j.ejca.2020.08.011 [PMC free article: PMC7467090] [PubMed: 32971510] [CrossRef]
2.
Zhou Y, Yang Q, Chi J, et al. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. Int J Infect Dis. Oct 2020;99:47-56. doi:10.1016/j.ijid.2020.07.029 [PMC free article: PMC7381888] [PubMed: 32721533] [CrossRef]
3.
Venkatesulu BP, Chandrasekar VT, Girdhar P, et al. A Systematic Review and Meta-Analysis of Cancer Patients Affected by a Novel Coronavirus. JNCI Cancer Spectrum. 2021;5(2)doi:10.1093/jncics/pkaa102 [PMC free article: PMC7928783] [PubMed: 33875976] [CrossRef]
4.
Salunke AA, Nandy K, Pathak SK, et al. Impact of COVID -19 in cancer patients on severity of disease and fatal outcomes: A systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020/09/01/ 2020;14(5):1431-1437. doi:https://doi.org/10.1016/j.dsx.2020.07.03710.1016/j.dsx.2020.07.037 [PMC free article: PMC7833306] [PubMed: 32755847] [CrossRef] [CrossRef]
5.
Gao Y, Liu M, Shi S, et al. Cancer is associated with the severity and mortality of patients with COVID-19: a systematic review and meta-analysis. medRxiv. 2020:2020.05.01.20087031. doi:10.1101/2020.05.01.20087031 [CrossRef]
6.
Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. Mar 2020;21(3):335-337. doi:10.1016/s1470-2045(20)30096-6 [PMC free article: PMC7159000] [PubMed: 32066541] [CrossRef]
7.
Nepogodiev D, Bhangu A, Glasbey JC, et al. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. The Lancet. 2020;396(10243):27-38. doi:10.1016/S0140-6736(20)31182-X [PMC free article: PMC7259900] [PubMed: 32479829] [CrossRef]
8.
Lee LY, Cazier JB, Angelis V, et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet. Jun 20 2020;395(10241):1919-1926. doi:10.1016/S0140-6736(20)31173-9 [PMC free article: PMC7255715] [PubMed: 32473682] [CrossRef]
9.
Robilotti EV, Babady NE, Mead PA, et al. Determinants of COVID-19 disease severity in patients with cancer. Nat Med. Aug 2020;26(8):1218-1223. doi:10.1038/s41591-020-0979-0 [PMC free article: PMC7785283] [PubMed: 32581323] [CrossRef]
10.
Zhang H, Wang L, Chen Y, et al. Outcomes of novel coronavirus disease 2019 (COVID-19) infection in 107 patients with cancer from Wuhan, China. Cancer. Sep 1 2020;126(17):4023-4031. doi:10.1002/cncr.33042 [PMC free article: PMC7361610] [PubMed: 32573776] [CrossRef]
11.
Kuderer NM, Choueiri TK, Shah DP, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. Jun 20 2020;395(10241):1907-1918. doi:10.1016/S0140-6736(20)31187-9 [PMC free article: PMC7255743] [PubMed: 32473681] [CrossRef]
12.
Wang Q, Berger NA, Xu R. Analyses of Risk, Racial Disparity, and Outcomes Among US Patients With Cancer and COVID-19 Infection. JAMA oncology. Dec 10 2020;doi:10.1001/jamaoncol.2020.6178 [PMC free article: PMC7729584] [PubMed: 33300956] [CrossRef]
13.
Pranata R, Huang I, Lim MA, Wahjoepramono EJ, July J. Impact of cerebrovascular and cardiovascular diseases on mortality and severity of COVID-19-systematic review, meta-analysis, and meta-regression. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. Aug 2020;29(8):104949. doi:10.1016/j.jstrokecerebrovasdis.2020.10494910.1016/j.jstrokecerebrovasdis.2020.104949 [PMC free article: PMC7221373] [PubMed: 32410807] [CrossRef] [CrossRef]
14.
Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (Albany NY). Apr 8 2020;12(7):6049-6057. doi:10.18632/aging.103000 [PMC free article: PMC7185114] [PubMed: 32267833] [CrossRef]
15.
Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS One. 2020;15(8):e0238215. doi:10.1371/journal.pone.0238215 [PMC free article: PMC7449476] [PubMed: 32845926] [CrossRef]
16.
Khan MMA, Khan MN, Mustagir MG, Rana J, Islam MS, Kabir MI. Effects of underlying morbidities on the occurrence of deaths in COVID-19 patients: A systematic review and meta-analysis. Journal of global health. Dec 2020;10(2):020503. doi:10.7189/jogh.10.020503 [PMC free article: PMC7567434] [PubMed: 33110586] [CrossRef]
17.
Martins-Filho PR, Tavares CSS, Santos VS. Factors associated with mortality in patients with COVID-19. A quantitative evidence synthesis of clinical and laboratory data. European journal of internal medicine. Jun 2020;76:97-99. doi:10.1016/j.ejim.2020.04.043 [PMC free article: PMC7177074] [PubMed: 32345526] [CrossRef]
18.
Chen R, Liang W, Jiang M, et al. Risk Factors of Fatal Outcome in Hospitalized Subjects With Coronavirus Disease 2019 From a Nationwide Analysis in China. Chest. Jul 2020;158(1):97-105. doi:10.1016/j.chest.2020.04.010 [PMC free article: PMC7158802] [PubMed: 32304772] [CrossRef]
19.
Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. Aug 2020;584(7821):430-436. doi:10.1038/s41586-020-2521-4 [PMC free article: PMC7611074] [PubMed: 32640463] [CrossRef]
20.
Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. Jun 2020;80(6):639-645. doi:10.1016/j.jinf.2020.03.019 [PMC free article: PMC7118526] [PubMed: 32240670] [CrossRef]
21.
Fajgenbaum DC, Khor JS, Gorzewski A, et al. Treatments Administered to the First 9152 Reported Cases of COVID-19: A Systematic Review. Infect Dis Ther. Sep 2020;9(3):435-449. doi:10.1007/s40121-020-00303-8 [PMC free article: PMC7251321] [PubMed: 32462545] [CrossRef]
22.
Gottlieb M, Sansom S, Frankenberger C, Ward E, Hota B. Clinical Course and Factors Associated With Hospitalization and Critical Illness Among COVID-19 Patients in Chicago, Illinois. Acad Emerg Med. Oct 2020;27(10):963-973. doi:10.1111/acem.14104 [PMC free article: PMC7436503] [PubMed: 32762106] [CrossRef]
23.
Fernandes DM, Oliveira CR, Guerguis S, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Clinical Syndromes and Predictors of Disease Severity in Hospitalized Children and Youth. The Journal of pediatrics. Nov 14 2020;doi:10.1016/j.jpeds.2020.11.016 [PMC free article: PMC7666535] [PubMed: 33197493] [CrossRef]
24.
Hernández-Galdamez DR, González-Block M, Romo-Dueñas DK, et al. Increased Risk of Hospitalization and Death in Patients with COVID-19 and Pre-existing Noncommunicable Diseases and Modifiable Risk Factors in Mexico. Arch Med Res. Oct 2020;51(7):683-689. doi:10.1016/j.arcmed.2020.07.003 [PMC free article: PMC7375298] [PubMed: 32747155] [CrossRef]
25.
Menezes Soares RDC, Mattos LR, Raposo LM. Risk Factors for Hospitalization and Mortality due to COVID-19 in Espirito Santo State, Brazil. American Journal of Tropical Medicine and Hygiene. 2020;103(3):1184-1190. doi:http://dx.doi.org/10.4269/ajtmh.20-0483 [PMC free article: PMC7470570] [PubMed: 32682453] [CrossRef]
26.
Oetjens MT, Luo JZ, Chang A, et al. Electronic health record analysis identifies kidney disease as the leading risk factor for hospitalization in confirmed COVID-19 patients. PloS one. 2020;15(11):e0242182. doi:https://dx.doi.org/10.1371/journal.pone.0242182 [PMC free article: PMC7660530] [PubMed: 33180868] [CrossRef]
27.
Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ (Clinical research ed). May 22 2020;369:m1966. doi:10.1136/bmj.m1966 [PMC free article: PMC7243801] [PubMed: 32444366] [CrossRef]
28.
Reilev M, Kristensen KB, Pottegard A, et al. Characteristics and predictors of hospitalization and death in the first 11 122 cases with a positive RT-PCR test for SARS-CoV-2 in Denmark: a nationwide cohort. International journal of epidemiology. 2020;doi:http://dx.doi.org/10.1093/ije/dyaa140 [PMC free article: PMC7499657] [PubMed: 32887982] [CrossRef]
29.
Suleyman G, Fadel RA, Malette KM, et al. Clinical Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. JAMA Netw Open. Jun 1 2020;3(6):e2012270. doi:10.1001/jamanetworkopen.2020.12270 [PMC free article: PMC7298606] [PubMed: 32543702] [CrossRef]
30.
Rastad H, Ejtahed HS, Mahdavi-Ghorabi A, et al. Factors associated with the poor outcomes in diabetic patients with COVID-19. Journal of Diabetes and Metabolic Disorders. 2020;doi:http://dx.doi.org/10.1007/s40200-020-00646-6 [PMC free article: PMC7546599] [PubMed: 33072634] [CrossRef]
31.
Fried MW, Crawford JM, Mospan AR, et al. Patient Characteristics and Outcomes of 11,721 Patients with COVID19 Hospitalized Across the United States. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2020;doi:http://dx.doi.org/10.1093/cid/ciaa1268 [PMC free article: PMC7499515] [PubMed: 32856034] [CrossRef]
32.
Kolhe NV, Fluck RJ, Selby NM, Taal MW. Acute kidney injury associated with COVID-19: A retrospective cohort study. PLoS Med. Oct 2020;17(10):e1003406. doi:10.1371/journal.pmed.1003406 [PMC free article: PMC7598516] [PubMed: 33125416] [CrossRef]
33.
Bowe B, Cai M, Xie Y, Gibson AK, Maddukuri G, Al-Aly Z. Acute Kidney Injury in a National Cohort of Hospitalized US Veterans with COVID-19. Clin J Am Soc Nephrol. Nov 16 2020;doi:10.2215/CJN.09610620 [PMC free article: PMC7792643] [PubMed: 33199414] [CrossRef]
34.
McKeigue PM, Weir A, Bishop J, et al. Rapid Epidemiological Analysis of Comorbidities and Treatments as risk factors for COVID-19 in Scotland (REACT-SCOT): A population-based case-control study. PLoS medicine. 2020;17(10):e1003374. doi:https://dx.doi.org/10.1371/journal.pmed.1003374 [PMC free article: PMC7575101] [PubMed: 33079969] [CrossRef]
35.
Boulle A, Davies MA, Hussey H, et al. Risk factors for COVID-19 death in a population cohort study from the Western Cape Province, South Africa. Clin Infect Dis. Aug 29 2020;doi:10.1093/cid/ciaa1198 [PMC free article: PMC7499501] [PubMed: 32860699] [CrossRef]
36.
Parra-Bracamonte GM, Lopez-Villalobos N, Parra-Bracamonte FE. Clinical characteristics and risk factors for mortality of patients with COVID-19 in a large data set from Mexico. Annals of Epidemiology. 2020;doi:http://dx.doi.org/10.1016/j.annepidem.2020.08.005 [PMC free article: PMC7426229] [PubMed: 32798701] [CrossRef]
37.
Ng JH, Hirsch JS, Wanchoo R, et al. Outcomes of patients with end-stage kidney disease hospitalized with COVID-19. Kidney international. 2020;doi:http://dx.doi.org/10.1016/j.kint.2020.07.030 [PMC free article: PMC7428720] [PubMed: 32810523] [CrossRef]
38.
Omrani AS, Almaslamani MA, Daghfal J, et al. The first consecutive 5000 patients with Coronavirus Disease 2019 from Qatar; a nation-wide cohort study. BMC Infectious Diseases. 2020;20(1):777. doi:http://dx.doi.org/10.1186/s12879-020-05511-8 [PMC free article: PMC7570422] [PubMed: 33076848] [CrossRef]
39.
Iaccarino G, Borghi C, Carugo S, et al. Gender differences in predictors of intensive care units admission among COVID-19 patients: The results of the SARS-RAS study of the italian society of hypertension. PLoS ONE. 2020;15(10 October):e0237297. doi:http://dx.doi.org/10.1371/journal.pone.023729710.1371/journal.pone.0237297 [PMC free article: PMC7537902] [PubMed: 33022004] [CrossRef] [CrossRef]
40.
Gu T, Chu Q, Yu Z, et al. History of coronary heart disease increased the mortality rate of patients with COVID-19: a nested case-control study. BMJ open. Sep 17 2020;10(9):e038976. doi:10.1136/bmjopen-2020-038976 [PMC free article: PMC7499679] [PubMed: 32948572] [CrossRef]
41.
Myers LC, Parodi SM, Escobar GJ, Liu VX. Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California. Jama. Jun 2 2020;323(21):2195-2198. doi:10.1001/jama.2020.7202 [PMC free article: PMC7182961] [PubMed: 32329797] [CrossRef]
42.
Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. Jul 2020;98(1):209-218. doi:10.1016/j.kint.2020.05.006 [PMC free article: PMC7229463] [PubMed: 32416116] [CrossRef]
43.
Gold JAW, Wong KK, Szablewski CM, et al. Characteristics and Clinical Outcomes of Adult Patients Hospitalized with COVID-19 – Georgia, March 2020. MMWR Morb Mortal Wkly Rep. May 8 2020;69(18):545-550. doi:10.15585/mmwr.mm6918e1 [PMC free article: PMC7737948] [PubMed: 32379729] [CrossRef]
44.
Jering KS, Claggett BL, Cunningham JW, et al. Clinical Characteristics and Outcomes of Hospitalized Women Giving Birth With and Without COVID-19. JAMA Intern Med. Jan 15 2021;doi:10.1001/jamainternmed.2020.9241 [PMC free article: PMC7811188] [PubMed: 33449067] [CrossRef]
45.
Garg S, Kim L, Whitaker M, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 – COVID-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. Apr 17 2020;69(15):458-464. doi:10.15585/mmwr.mm6915e3 [PMC free article: PMC7755063] [PubMed: 32298251] [CrossRef]
46.
Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-2059. doi: JAMA10.1001/jama.2020.6775%J [PMC free article: PMC7177629] [PubMed: 32320003] [CrossRef]
47.
Lee JY, Hong SW, Hyun M, et al. Epidemiological and clinical characteristics of coronavirus disease 2019 in Daegu, South Korea. Int J Infect Dis. Sep 2020;98:462-466. doi:10.1016/j.ijid.2020.07.017 [PMC free article: PMC7371586] [PubMed: 32702415] [CrossRef]
48.
Boettler T, Marjot T, Newsome PN, et al. Impact of COVID-19 on the care of patients with liver disease: EASL-ESCMID position paper after 6 months of the pandemic. JHEP Rep. Oct 2020;2(5):100169. doi:10.1016/j.jhepr.2020.100169 [PMC free article: PMC7402276] [PubMed: 32835190] [CrossRef]
49.
Sharma A, Mehta D, Jaiswal P, et al. Liver disease and poor outcomes of COVID-19 hospitalizations-a meta-analysis. Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):283A-284A. doi:http://dx.doi.org/10.1002/hep.31579 [CrossRef]
50.
Kovalic AJ, Satapathy SK, Thuluvath PJ. Prevalence of chronic liver disease in patients with COVID-19 and their clinical outcomes: a systematic review and meta-analysis. Hepatol Int. Sep 2020;14(5):612-620. doi:10.1007/s12072-020-10078-2 [PMC free article: PMC7386238] [PubMed: 32725453] [CrossRef]
51.
Patel U, Malik P, Usman MS, et al. Age-Adjusted Risk Factors Associated with Mortality and Mechanical Ventilation Utilization Amongst COVID-19 Hospitalizations-a Systematic Review and Meta-Analysis. SN Compr Clin Med. Aug 29 2020:1-10. doi:10.1007/s42399-020-00476-w [PMC free article: PMC7456201] [PubMed: 32904541] [CrossRef]
52.
Plasencia-Urizarri TM, Aguilera-Rodriguez R, Almaguer-Mederos LE. Comorbidities and clinical severity of COVID-19: systematic review and meta-analysis. [Spanish]. Comorbilidades y gravedad clinica de la COVID-19: revision sistematica y meta-analisis. Review. Revista Habanera de Ciencias Medicas. 2020;19 (no pagination)(e3389)
53.
Zhou W, Qin X, Hu X, Lu Y, Pan J. Prognosis models for severe and critical COVID-19 based on the charlson and elixhauser comorbidity indices. International Journal of Medical Sciences. 2020;17(15):2257-2263. doi:http://dx.doi.org/10.7150/ijms.50007 [PMC free article: PMC7484649] [PubMed: 32922189] [CrossRef]
54.
Veloz MG, Del Pino P, Ruiz PC, et al. Influence of pre-existing liver disease in the course of COVID-19. in an area with low incidence of SARSCOV2 infection. Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):281A-282A. doi:http://dx.doi.org/10.1002/hep.31579 [CrossRef]
55.
Trivedi H, Goyes D, Barbosa JV, et al. The impact of hepatic steatosis on COVID-19 related outcomes. Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):303A-304A. doi:http://dx.doi.org/10.1002/hep.31579 [CrossRef]
56.
Suresh S, Siddiqui MB, Ghanimeh MA, et al. Clinical outcomes in hospitalized COVID-19 patients with chronic liver disease and cirrhosis. Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):263A. doi:http://dx.doi.org/10.1002/hep.31579 [CrossRef]
57.
Berenguer J, Ryan P, Rodriguez-Bano J, et al. Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain. Clin Microbiol Infect. Nov 2020;26(11):1525-1536. doi:10.1016/j.cmi.2020.07.024 [PMC free article: PMC7399713] [PubMed: 32758659] [CrossRef]
58.
Chen X, Jiang Q, Ma Z, et al. Clinical Characteristics of Hospitalized Patients with SARS-CoV-2 and Hepatitis B Virus Co-infection. Virol Sin. Aug 24 2020;doi:10.1007/s12250-020-00276-5 [PMC free article: PMC7444863] [PubMed: 32839868] [CrossRef]
59.
Davidov-Derevyanko Y, Ben Yakov G, Wieder A, et al. The liver in severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection. Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):304A-305A. doi:http://dx.doi.org/10.1002/hep.31579 [PubMed: 33653988] [CrossRef]
60.
Forlano R, Mullish B, Mukherjee S, et al. In-hospital mortality is associated with inflammatory response in NAFLD patients admitted for COVID-19. Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):282A-283A. doi:http://dx.doi.org/10.1002/hep.31579 [PMC free article: PMC7544083] [PubMed: 33031439] [CrossRef]
61.
Harrison SL, Fazio-Eynullayeva E, Lane DA, Underhill P, Lip GYH. Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis. PLoS Med. Sep 2020;17(9):e1003321. doi:10.1371/journal.pmed.1003321 [PMC free article: PMC7482833] [PubMed: 32911500] [CrossRef]
62.
Hashemi N, Viveiros K, Redd WD, et al. Impact of chronic liver disease on outcomes of hospitalized patients with COVID-19: A multicentre United States experience. Liver Int. Oct 2020;40(10):2515-2521. doi:10.1111/liv.14583 [PMC free article: PMC7361757] [PubMed: 32585065] [CrossRef]
63.
Huang R, Zhu L, Wang J, et al. Clinical features of COVID-19 patients with non-alcoholic fatty liver disease. Hepatol Commun. Aug 6 2020;doi:10.1002/hep4.1592 [PMC free article: PMC7436597] [PubMed: 32838108] [CrossRef]
64.
Kim D, Adeniji N, Latt N, et al. Predictors of Outcomes of COVID-19 in Patients with Chronic Liver Disease: US Multi-center Study. Clin Gastroenterol Hepatol. Sep 17 2020;doi:10.1016/j.cgh.2020.09.027 [PMC free article: PMC7497795] [PubMed: 32950749] [CrossRef]
65.
Krishnan A, Prichett L, Tao X, et al. Clinical characteristics and outcomes of COVID-19 patients with and without pre-existing chronic liver disease. Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):262A. doi:http://dx.doi.org/10.1002/hep.31579 [CrossRef]
66.
Mangia A, Verucchi G, Ciancio A, et al. Are hcv antibodies positive cirrhotic patients at lower risk of death as compared to cirrhotic of different etiologies when infected by COVID-19? Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):259A. doi:http://dx.doi.org/10.1002/hep.31579 [CrossRef]
67.
Satapathy SK, Roth NC, Kvasnovsky C, et al. Acute-on-chronic liver failure related to COVID-19 infection is associated with increased in-hospital mortality. Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):80A-81A. doi:http://dx.doi.org/10.1002/hep.31578 [CrossRef]
68.
Singh S, Khan A. Clinical Characteristics and Outcomes of Coronavirus Disease 2019 Among Patients With Preexisting Liver Disease in the United States: A Multicenter Research Network Study. Gastroenterology. Aug 2020;159(2):768-771.e3. doi:10.1053/j.gastro.2020.04.064 [PMC free article: PMC7196546] [PubMed: 32376408] [CrossRef]
69.
Liu J, Wang T, Cai Q, et al. Longitudinal changes of liver function and hepatitis B reactivation in COVID-19 patients with pre-existing chronic hepatitis B virus infection. Hepatol Res. Nov 2020;50(11):1211-1221. doi:10.1111/hepr.13553 [PMC free article: PMC7436737] [PubMed: 32761993] [CrossRef]
70.
Mandour MO, Rafique KK, Koh JM, Iliadou K, Forton D, Singanayagam A. Characteristics of SARS-COV2 And liver cirrhosis-a single-centre experience in the United Kingdom. Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):261A-262A. doi:http://dx.doi.org/10.1002/hep.31579 [CrossRef]
71.
Mendizabal M, Ridruejo E, Pinero F, et al. Abnormal liver function tests on admission are associated with increased mortality in hospitalized patients with COVID-19: Preliminary results from a large Latin American Cohort. Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):79A-80A. doi:http://dx.doi.org/10.1002/hep.31578 [CrossRef]
72.
Shalimar, Elhence A, Vaishnav M, et al. Poor outcomes in patients with cirrhosis and Corona Virus Disease-19. Indian J Gastroenterol. Jun 2020;39(3):285-291. doi:10.1007/s12664-020-01074-3 [PMC free article: PMC7428422] [PubMed: 32803716] [CrossRef]
73.
Wu J, Yu J, Shi X, et al. Epidemiological and clinical characteristics of 70 cases of coronavirus disease and concomitant hepatitis B virus infection: A multicentre descriptive study. J Viral Hepat. Jan 2021;28(1):80-88. doi:10.1111/jvh.13404 [PubMed: 32929826] [CrossRef]
74.
An YW, Song S, Li WX, et al. Liver function recovery of COVID-19 patients after discharge, a follow-up study. Int J Med Sci. 2021;18(1):176-186. doi:10.7150/ijms.50691 [PMC free article: PMC7738966] [PubMed: 33390786] [CrossRef]
75.
Eisa M, Kennedy R, Teferra R, Heckroth M, Eiswerth M, McClain CJ. SARS-COV-2 infection in patients with alcohol associated hepatitis: Challenge of treatment options. Conference Abstract. Hepatology. November 2020;72 (1 SUPPL):300A. doi:http://dx.doi.org/10.1002/hep.31579 [PubMed: 33982972] [CrossRef]
76.
Moon AM, Webb GJ, Aloman C, et al. High mortality rates for SARS-CoV-2 infection in patients with pre-existing chronic liver disease and cirrhosis: Preliminary results from an international registry. J Hepatol. Sep 2020;73(3):705-708. doi:10.1016/j.jhep.2020.05.013 [PMC free article: PMC7241346] [PubMed: 32446714] [CrossRef]
77.
Singh AK, Jena A, Kumar MP, Sharma V, Sebastian S. Risk and outcomes of coronavirus disease (COVID-19) in patients with inflammatory bowel disease: a systematic review and meta-analysis. United European Gastroenterol. Nov 19 2020:2050640620972602. doi:https://dx.doi.org/10.1177/2050640620972602 [PMC free article: PMC8250629] [PubMed: 33210980] [CrossRef]
78.
Lippi G, Henry BM. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med. Jun 2020;167:105941. doi:10.1016/j.rmed.2020.105941 [PMC free article: PMC7154502] [PubMed: 32421537] [CrossRef]
79.
Dorjee K, Kim H, Bonomo E, Dolma R. Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: A comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients. PLoS One. 2020;15(12):e0243191. doi:10.1371/journal.pone.0243191 [PMC free article: PMC7721151] [PubMed: 33284825] [CrossRef]
80.
Xiao WW, Xu J, Shi L, Wang YD, Yang HY. Is chronic obstructive pulmonary disease an independent predictor for adverse outcomes in coronavirus disease 2019 patients? Eur Rev Med Pharmacol Sci. Nov 2020;24(21):11421-11427. doi:10.26355/eurrev_202011_23635 [PubMed: 33215464] [CrossRef]
81.
Izcovich A, Ragusa MA, Tortosa F, et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One. 2020;15(11):e0241955. doi:10.1371/journal.pone.0241955 [PMC free article: PMC7671522] [PubMed: 33201896] [CrossRef]
82.
Rabbani G, Shariful Islam SM, Rahman MA, et al. Pre-existing COPD is associated with an increased risk of mortality and severity in COVID-19: a rapid systematic review and meta-analysis. Expert Rev Respir Med. Dec 17 2020;doi:10.1080/17476348.2021.1866547 [PubMed: 33334189] [CrossRef]
83.
McClenaghan E, Cosgriff R, Brownlee K, et al. The global impact of SARS-CoV-2 in 181 people with cystic fibrosis. J Cyst Fibros. Nov 2020;19(6):868-871. doi:10.1016/j.jcf.2020.10.003 [PMC free article: PMC7641525] [PubMed: 33183965] [CrossRef]
84.
Moeller A, Thanikkel L, Duijts L, et al. COVID-19 in children with underlying chronic respiratory diseases: survey results from 174 centres. ERJ Open Res. Oct 2020;6(4)doi:10.1183/23120541.00409-2020 [PMC free article: PMC7682706] [PubMed: 33263054] [CrossRef]
85.
Cosgriff R, Ahern S, Bell SC, et al. A multinational report to characterise SARS-CoV-2 infection in people with cystic fibrosis. J Cyst Fibros. May 2020;19(3):355-358. doi:10.1016/j.jcf.2020.04.012 [PMC free article: PMC7183287] [PubMed: 32376098] [CrossRef]
86.
Bain R, Cosgriff R, Zampoli M, et al. Clinical characteristics of SARS-CoV-2 infection in children with cystic fibrosis: An international observational study. J Cyst Fibros. Dec 3 2020;doi:10.1016/j.jcf.2020.11.021 [PMC free article: PMC7713571] [PubMed: 33309057] [CrossRef]
87.
Fadini GP, Morieri ML, Boscari F, et al. Newly-diagnosed diabetes and admission hyperglycemia predict COVID-19 severity by aggravating respiratory deterioration. Diabetes Res Clin Pract. Oct 2020;168:108374. doi:10.1016/j.diabres.2020.108374 [PMC free article: PMC7428425] [PubMed: 32805345] [CrossRef]
88.
Barron E, Bakhai C, Kar P, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. Oct 2020;8(10):813-822. doi:10.1016/s2213-8587(20)30272-2 [PMC free article: PMC7426088] [PubMed: 32798472] [CrossRef]
89.
Gregory JM, Slaughter JC, Duffus SH, et al. COVID-19 Severity Is Tripled in the Diabetes Community: A Prospective Analysis of the Pandemic’s Impact in Type 1 and Type 2 Diabetes. Diabetes Care. Dec 2 2020;doi:10.2337/dc20-2260 [PMC free article: PMC7818316] [PubMed: 33268335] [CrossRef]
90.
Duarte-Salles T, Vizcaya D, Pistillo A, et al. Baseline characteristics, management, and outcomes of 55,270 children and adolescents diagnosed with COVID-19 and 1,952,693 with influenza in France, Germany, Spain, South Korea and the United States: an international network cohort study. medRxiv. Oct 30 2020;doi:10.1101/2020.10.29.20222083 [CrossRef]
91.
Bode B, Garrett V, Messler J, et al. Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. Journal of diabetes science and technology. Jul 2020;14(4):813-821. doi:10.1177/1932296820924469 [PMC free article: PMC7673150] [PubMed: 32389027] [CrossRef]
92.
Vangoitsenhoven R, Martens P-J, van Nes F, et al. No Evidence of Increased Hospitalization Rate for COVID-19 in Community-Dwelling Patients With Type 1 Diabetes. 2020;43(10):e118-e119. doi:10.2337/dc20-1246%J Diabetes Care10.2337/dc20-1246%J [PubMed: 32647055] [CrossRef] [CrossRef]
93.
Cardona-Hernandez R, Cherubini V, Iafusco D, Schiaffini R, Luo X, Maahs DM. Children and youth with diabetes are not at increased risk for hospitalization due to COVID-19. Pediatr Diabetes. Nov 17 2020;doi:10.1111/pedi.13158 [PMC free article: PMC7753354] [PubMed: 33205546] [CrossRef]
94.
Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J Endocrinol Invest. Jun 2020;43(6):867-869. doi:10.1007/s40618-020-01236-2 [PMC free article: PMC7103097] [PubMed: 32222956] [CrossRef]
95.
Allotey J, Stallings E, Bonet M, et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ (Clinical research ed). Sep 1 2020;370:m3320. doi:10.1136/bmj.m3320 [PMC free article: PMC7459193] [PubMed: 32873575] [CrossRef]
96.
Wei SQ, Bilodeau-Bertrand M, Liu S, Auger N. The impact of COVID-19 on pregnancy outcomes: a systematic review and meta-analysis. CMAJ. Apr 19 2021;193(16):E540-E548. doi:10.1503/cmaj.202604 [PMC free article: PMC8084555] [PubMed: 33741725] [CrossRef]
97.
Zhu L, She Z-G, Cheng X, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metabolism. 2020/06/02/ 2020;31(6):1068-1077.e3. doi:https://doi.org/10.1016/j.cmet.2020.04.02110.1016/j.cmet.2020.04.021 [PMC free article: PMC7252168] [PubMed: 32369736] [CrossRef] [CrossRef]
98.
Chen Y, Yang D, Cheng B, et al. Clinical Characteristics and Outcomes of Patients With Diabetes and COVID-19 in Association With Glucose-Lowering Medication. Diabetes Care. Jul 2020;43(7):1399-1407. doi:10.2337/dc20-0660 [PubMed: 32409498] [CrossRef]
99.
Sathish T, Kapoor N, Cao Y, Tapp RJ, Zimmet P. Proportion of newly diagnosed diabetes in COVID-19 patients: a systematic review and meta-analysis. Diabetes Obes Metab. Nov 27 2020;doi:10.1111/dom.14269 [PMC free article: PMC7753574] [PubMed: 33245182] [CrossRef]
100.
de Almeida-Pititto B, Dualib PM, Zajdenverg L, et al. Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. Diabetol Metab Syndr. 2020;12:75. doi:10.1186/s13098-020-00586-4 [PMC free article: PMC7456786] [PubMed: 32874207] [CrossRef]
101.
Kow CS, Hasan SS. Mortality risk with preadmission metformin use in patients with COVID-19 and diabetes: A meta-analysis. J Med Virol. Sep 9 2020;doi:10.1002/jmv.26498 [PubMed: 32902868] [CrossRef]
102.
Perez-Belmonte LM, Torres-Pena JD, Lopez-Carmona MD, et al. Mortality and other adverse outcomes in patients with type 2 diabetes mellitus admitted for COVID-19 in association with glucose-lowering drugs: a nationwide cohort study. BMC Med. Nov 16 2020;18(1):359. doi:10.1186/s12916-020-01832-2 [PMC free article: PMC7666969] [PubMed: 33190637] [CrossRef]
103.
Ssentongo P, Heilbrunn ES, Ssentongo AE, et al. Epidemiology and outcomes of COVID-19 in HIV-infected individuals: a systematic review and meta-analysis. Scientific Reports. 2021/03/18 2021;11(1):6283. doi:10.1038/s41598-021-85359-310.1038/s41598-021-85359-3 [PMC free article: PMC7973415] [PubMed: 33737527] [CrossRef] [CrossRef]
104.
Bhaskaran K, Rentsch CT, MacKenna B, et al. HIV infection and COVID-19 death: a population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. Lancet HIV. Dec 11 2020;doi:10.1016/s2352-3018(20)30305-2 [PMC free article: PMC7773630] [PubMed: 33316211] [CrossRef]
105.
Hadi YB, Naqvi SFZ, Kupec JT, Sarwari AR. Characteristics and outcomes of COVID-19 in patients with HIV: a multicentre research network study. Aids. Nov 1 2020;34(13):F3-f8. doi:10.1097/qad.0000000000002666 [PMC free article: PMC8407436] [PubMed: 32796217] [CrossRef]
106.
Miyashita H, Kuno T. Prognosis of coronavirus disease 2019 (COVID-19) in patients with HIV infection in New York City. HIV Med. Jan 2021;22(1):e1-e2. doi:10.1111/hiv.12920 [PMC free article: PMC7461410] [PubMed: 32829525] [CrossRef]
107.
Härter G, Spinner CD, Roider J, et al. COVID-19 in people living with human immunodeficiency virus: a case series of 33 patients. Infection. Oct 2020;48(5):681-686. doi:10.1007/s15010-020-01438-z [PMC free article: PMC7211976] [PubMed: 32394344] [CrossRef]
108.
Altuntas Aydin O, Kumbasar Karaosmanoglu H, Kart Yasar K. HIV/SARS-CoV-2 coinfected patients in Istanbul, Turkey. J Med Virol. Nov 2020;92(11):2288-2290. doi:10.1002/jmv.25955 [PubMed: 32347975] [CrossRef]
109.
Ho HE, Peluso MJ, Margus C, et al. Clinical outcomes and immunologic characteristics of Covid-19 in people with HIV. J Infect Dis. Jun 30 2020;doi:10.1093/infdis/jiaa380 [PMC free article: PMC7337732] [PubMed: 32601704] [CrossRef]
110.
Del Sole F, Farcomeni A, Loffredo L, et al. Features of severe COVID-19: A systematic review and meta-analysis. Eur J Clin Invest. Oct 2020;50(10):e13378. doi:10.1111/eci.13378 [PMC free article: PMC7435565] [PubMed: 32860457] [CrossRef]
111.
Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect. Aug 2020;81(2):e16-e25. doi:10.1016/j.jinf.2020.04.021 [PMC free article: PMC7177098] [PubMed: 32335169] [CrossRef]
112.
Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. May 2020;94:91-95. doi:10.1016/j.ijid.2020.03.017 [PMC free article: PMC7194638] [PubMed: 32173574] [CrossRef]
113.
Aveyard P, Gao M, Lindson N, et al. Association between pre-existing respiratory disease and its treatment, and severe COVID-19: a population cohort study. The Lancet Respiratory Medicine. 2021/08/01/ 2021;9(8):909-923. doi:https://doi.org/10.1016/S2213-2600(21)00095-310.1016/S2213-2600(21)00095-3 [PMC free article: PMC8016404] [PubMed: 33812494] [CrossRef] [CrossRef]
114.
Beltramo G, Cottenet J, Mariet A-S, et al. Chronic respiratory diseases are predictors of severe outcome in COVID-19 hospitalised patients: a nationwide study. European Respiratory Journal. 2021:2004474. doi:10.1183/13993003.04474-2020 [PMC free article: PMC8135927] [PubMed: 34016619] [CrossRef]
115.
Drake TM, Docherty AB, Harrison EM, et al. Outcome of Hospitalization for COVID-19 in Patients with Interstitial Lung Disease. An International Multicenter Study. American journal of respiratory and critical care medicine. 15 Dec 2020;202(12):1656-1665. [PMC free article: PMC7737581] [PubMed: 33007173]
116.
Estiri H, Strasser ZH, Klann JG, Naseri P, Wagholikar KB, Murphy SN. Predicting COVID-19 mortality with electronic medical records. NPJ Digit Med. Feb 4 2021;4(1):15. doi:10.1038/s41746-021-00383-x [PMC free article: PMC7862405] [PubMed: 33542473] [CrossRef]
117.
Fond G, Nemani K, Etchecopar-Etchart D, et al. Association Between Mental Health Disorders and Mortality Among Patients With COVID-19 in 7 Countries: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2021;doi:10.1001/jamapsychiatry.2021.2274 [PMC free article: PMC8317055] [PubMed: 34313711] [CrossRef]
118.
Ceban F, Nogo D, Carvalho IP, et al. Association Between Mood Disorders and Risk of COVID-19 Infection, Hospitalization, and Death: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2021;doi:10.1001/jamapsychiatry.2021.1818 [PMC free article: PMC8319830] [PubMed: 34319365] [CrossRef]
119.
Herman C, Mayer K, Sarwal A. Scoping review of prevalence of neurologic comorbidities in patients hospitalized for COVID-19. Neurology. Jul 14 2020;95(2):77-84. doi:10.1212/wnl.0000000000009673 [PubMed: 32345728] [CrossRef]
120.
Zuin M, Guasti P, Roncon L, Cervellati C, Zuliani G. Dementia and the risk of death in elderly patients with COVID-19 infection: Systematic review and meta-analysis. International Journal of Geriatric Psychiatry. 2021;36(5):697-703. doi:https://doi.org/10.1002/gps.5468 [PMC free article: PMC8518611] [PubMed: 34043846] [CrossRef]
121.
Liu N, Sun J, Wang X, Zhao M, Huang Q, Li H. The Impact of Dementia on the Clinical Outcome of COVID-19: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease. 2020;78:1775-1782. doi:10.3233/JAD-201016 [PubMed: 33285638] [CrossRef]
122.
Saragih ID, Saragih IS, Batubara SO, Lin C-J. Dementia as a mortality predictor among older adults with COVID-19: A systematic review and meta-analysis of observational study. Geriatric Nursing. 2021/09/01/ 2021;42(5):1230-1239. doi:https://doi.org/10.1016/j.gerinurse.2021.03.00710.1016/j.gerinurse.2021.03.007 [PMC free article: PMC7955923] [PubMed: 33824009] [CrossRef] [CrossRef]
123.
Shekerdemian LS, Mahmood NR, Wolfe KK, et al. Characteristics and Outcomes of Children With Coronavirus Disease 2019 (COVID-19) Infection Admitted to US and Canadian Pediatric Intensive Care Units. JAMA Pediatrics. 2020;174(9):868-873. doi:10.1001/jamapediatrics.2020.1948 [PMC free article: PMC7489842] [PubMed: 32392288] [CrossRef]
124.
Parri N, Lenge M, Buonsenso D, Coronavirus Infection in Pediatric Emergency Departments Research G. Children with Covid-19 in Pediatric Emergency Departments in Italy. N Engl J Med. Jul 9 2020;383(2):187-190. doi:10.1056/NEJMc2007617 [PMC free article: PMC7206930] [PubMed: 32356945] [CrossRef]
125.
Yang J, Hu J, Zhu C. Obesity aggravates COVID-19: A systematic review and meta-analysis. J Med Virol. Jun 30 2020;doi:10.1002/jmv.26237 [PMC free article: PMC7361606] [PubMed: 32603481] [CrossRef]
126.
Tsankov BK, Allaire JM, Irvine MA, et al. Severe COVID-19 Infection and Pediatric Comorbidities: A Systematic Review and Meta-Analysis. Int J Infect Dis. Nov 20 2020;103:246-256. doi:10.1016/j.ijid.2020.11.163 [PMC free article: PMC7679116] [PubMed: 33227520] [CrossRef]
127.
Foldi M, Farkas N, Kiss S, et al. Obesity is a risk factor for developing critical condition in COVID-19 patients: A systematic review and meta-analysis. Obes Rev. Oct 2020;21(10):e13095. doi:10.1111/obr.13095 [PMC free article: PMC7404429] [PubMed: 32686331] [CrossRef]
128.
Lighter J, Phillips M, Hochman S, et al. Obesity in Patients Younger Than 60 Years Is a Risk Factor for COVID-19 Hospital Admission. Clin Infect Dis. Jul 28 2020;71(15):896-897. doi:10.1093/cid/ciaa415 [PMC free article: PMC7184372] [PubMed: 32271368] [CrossRef]
129.
Tartof SY, Qian L, Hong V, et al. Obesity and Mortality Among Patients Diagnosed With COVID-19: Results From an Integrated Health Care Organization. Annals of internal medicine. Nov 17 2020;173(10):773-781. doi:10.7326/m20-3742 [PMC free article: PMC7429998] [PubMed: 32783686] [CrossRef]
130.
Hur K, Price CPE, Gray EL, et al. Factors Associated With Intubation and Prolonged Intubation in Hospitalized Patients With COVID-19. Otolaryngology–head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. Jul 2020;163(1):170-178. doi:10.1177/0194599820929640 [PMC free article: PMC7240317] [PubMed: 32423368] [CrossRef]
131.
Hamer M, Gale CR, Kivimaki M, Batty GD. Overweight, obesity, and risk of hospitalization for COVID-19: A community-based cohort study of adults in the United Kingdom. Proc Natl Acad Sci U S A. Sep 1 2020;117(35):21011-21013. doi:10.1073/pnas.2011086117 [PMC free article: PMC7474583] [PubMed: 32788355] [CrossRef]
132.
Simonnet A, Chetboun M, Poissy J, et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity (Silver Spring). Jul 2020;28(7):1195-1199. doi:10.1002/oby.22831 [PMC free article: PMC7262326] [PubMed: 32271993] [CrossRef]
133.
Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. Jul 2020;108:154262. doi:10.1016/j.metabol.2020.154262 [PMC free article: PMC7228874] [PubMed: 32422233] [CrossRef]
134.
Aziz F, Mandelbrot D, Singh T, et al. Early Report on Published Outcomes in Kidney Transplant Recipients Compared to Nontransplant Patients Infected With Coronavirus Disease 2019. Transplantation proceedings. Nov 2020;52(9):2659-2662. doi:10.1016/j.transproceed.2020.07.002 [PMC free article: PMC7357494] [PubMed: 32753243] [CrossRef]
135.
Ko JY, Danielson ML, Town M, et al. Risk Factors for Coronavirus Disease 2019 (COVID-19)–Associated Hospitalization: COVID-19–Associated Hospitalization Surveillance Network and Behavioral Risk Factor Surveillance System. Clinical Infectious Diseases. 2020; [PMC free article: PMC7543371] [PubMed: 32945846]
136.
Nakeshbandi M, Maini R, Daniel P, et al. The impact of obesity on COVID-19 complications: a retrospective cohort study. Int J Obes (Lond). Sep 2020;44(9):1832-1837. doi:10.1038/s41366-020-0648-x [PMC free article: PMC7382318] [PubMed: 32712623] [CrossRef]
137.
Di Martino D, Chiaffarino F, Patane L, et al. Assessing risk factors for severe forms of COVID-19 in a pregnant population: A clinical series from Lombardy, Italy. Int J Gynaecol Obstet. Feb 2021;152(2):275-277. doi:10.1002/ijgo.13435 [PMC free article: PMC9087617] [PubMed: 33098568] [CrossRef]
138.
Khoury R, Bernstein PS, Debolt C, et al. Characteristics and Outcomes of 241 Births to Women With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection at Five New York City Medical Centers. Obstet Gynecol. Aug 2020;136(2):273-282. doi:10.1097/AOG.0000000000004025 [PubMed: 32555034] [CrossRef]
139.
Metz TD, Clifton RG, Hughes BL, et al. Disease Severity and Perinatal Outcomes of Pregnant Patients With Coronavirus Disease 2019 (COVID-19). Obstet Gynecol. Apr 1 2021;137(4):571-580. doi:10.1097/AOG.0000000000004339 [PMC free article: PMC7984765] [PubMed: 33560778] [CrossRef]
140.
Galang RR, Newton SM, Woodworth KR, et al. Risk factors for illness severity among pregnant women with confirmed SARS-CoV-2 infection – Surveillance for Emerging Threats to Mothers and Babies Network, 20 state, local, and territorial health departments, March 29, 2020 -January 8, 2021. medRxiv. 2021:2021.02.27.21252169. doi:10.1101/2021.02.27.21252169 [PMC free article: PMC8194562] [PubMed: 34021332] [CrossRef]
141.
Yang Z, Wang M, Zhu Z, Liu Y. Coronavirus disease 2019 (COVID-19) and pregnancy: a systematic review. J Matern Fetal Neonatal Med. Apr 30 2020:1-4. doi:10.1080/14767058.2020.1759541 [PubMed: 32354293] [CrossRef]
142.
Collin J, Bystrom E, Carnahan A, Ahrne M. Public Health Agency of Sweden’s Brief Report: Pregnant and postpartum women with severe acute respiratory syndrome coronavirus 2 infection in intensive care in Sweden. Acta Obstet Gynecol Scand. Jul 2020;99(7):819-822. doi:10.1111/aogs.13901 [PMC free article: PMC7273089] [PubMed: 32386441] [CrossRef]
143.
Li N, Han L, Peng M, et al. Maternal and Neonatal Outcomes of Pregnant Women With Coronavirus Disease 2019 (COVID-19) Pneumonia: A Case-Control Study. Clin Infect Dis. Nov 19 2020;71(16):2035-2041. doi:10.1093/cid/ciaa352 [PMC free article: PMC7184430] [PubMed: 32249918] [CrossRef]
144.
Chen L, Li Q, Zheng D, et al. Clinical Characteristics of Pregnant Women with Covid-19 in Wuhan, China. N Engl J Med. Jun 18 2020;382(25):e100. doi:10.1056/NEJMc2009226 [PMC free article: PMC7182016] [PubMed: 32302077] [CrossRef]
145.
Breslin N, Baptiste C, Gyamfi-Bannerman C, et al. Coronavirus disease 2019 infection among asymptomatic and symptomatic pregnant women: two weeks of confirmed presentations to an affiliated pair of New York City hospitals. Am J Obstet Gynecol MFM. May 2020;2(2):100118. doi:10.1016/j.ajogmf.2020.100118 [PMC free article: PMC7144599] [PubMed: 32292903] [CrossRef]
146.
Lokken EM, Walker CL, Delaney S, et al. Clinical Characteristics of 46 Pregnant Women with a SARS-CoV-2 Infection in Washington State. American journal of obstetrics and gynecology. 2020;18doi:http://dx.doi.org/10.1016/j.ajog.2020.05.03110.1016/j.ajog.2020.05.031 [PMC free article: PMC7234933] [PubMed: 32439389] [CrossRef] [CrossRef]
147.
Pierce-Williams RAM, Burd J, Felder L, et al. Clinical course of severe and critical coronavirus disease 2019 in hospitalized pregnancies: a United States cohort study. Am J Obstet Gynecol MFM. Aug 2020;2(3):100134. doi:10.1016/j.ajogmf.2020.100134 [PMC free article: PMC7205698] [PubMed: 32391519] [CrossRef]
148.
Savasi VM, Parisi F, Patane L, et al. Clinical Findings and Disease Severity in Hospitalized Pregnant Women With Coronavirus Disease 2019 (COVID-19). Obstet Gynecol. Aug 2020;136(2):252-258. doi:10.1097/AOG.0000000000003979 [PubMed: 32433453] [CrossRef]
149.
Ellington S, Strid P, Tong VT, et al. Characteristics of Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status – United States, January 22-June 7, 2020. MMWR Morb Mortal Wkly Rep. Jun 26 2020;69(25):769-775. doi:10.15585/mmwr.mm6925a1 [PMC free article: PMC7316319] [PubMed: 32584795] [CrossRef]
150.
Zambrano LD, Ellington S, Strid P, et al. Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status – United States, January 22-October 3, 2020. MMWR Morb Mortal Wkly Rep. Nov 6 2020;69(44):1641-1647. doi:10.15585/mmwr.mm6944e3 [PMC free article: PMC7643892] [PubMed: 33151921] [CrossRef]
151.
Patanavanich R, Glantz SA. Smoking Is Associated With COVID-19 Progression: A Meta-analysis. Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco. Aug 24 2020;22(9):1653-1656. doi:10.1093/ntr/ntaa082 [PMC free article: PMC7239135] [PubMed: 32399563] [CrossRef]
152.
Guo FR. Active smoking is associated with severity of coronavirus disease 2019 (COVID-19): An update of a meta-analysis. Tobacco induced diseases. 2020;18:37. doi:10.18332/tid/121915 [PMC free article: PMC7202479] [PubMed: 32382258] [CrossRef]
153.
Zhao Q, Meng M, Kumar R, et al. The impact of COPD and smoking history on the severity of COVID-19: A systemic review and meta-analysis. J Med Virol. Oct 2020;92(10):1915-1921. doi:10.1002/jmv.25889 [PMC free article: PMC7262275] [PubMed: 32293753] [CrossRef]
154.
Lippi G, Henry BM. Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). European journal of internal medicine. May 2020;75:107-108. doi:10.1016/j.ejim.2020.03.014 [PMC free article: PMC7118593] [PubMed: 32192856] [CrossRef]
155.
Alqahtani JS, Oyelade T, Aldhahir AM, et al. Prevalence, Severity and Mortality associated with COPD and Smoking in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis. PLoS One. 2020;15(5):e0233147. doi:10.1371/journal.pone.0233147 [PMC free article: PMC7213702] [PubMed: 32392262] [CrossRef]
156.
Li J, He X, Yuan Y, et al. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. American journal of infection control. Jun 12 2020;doi:10.1016/j.ajic.2020.06.008 [PMC free article: PMC7292004] [PubMed: 32540370] [CrossRef]
157.
Farsalinos K, Barbouni A, Poulas K, Polosa R, Caponnetto P, Niaura R. Current smoking, former smoking, and adverse outcome among hospitalized COVID-19 patients: a systematic review and meta-analysis. Therapeutic advances in chronic disease. 2020;11:2040622320935765. doi:10.1177/2040622320935765 [PMC free article: PMC7318805] [PubMed: 32637059] [CrossRef]
158.
Sanchez-Ramirez DC, Mackey D. Underlying respiratory diseases, specifically COPD, and smoking are associated with severe COVID-19 outcomes: A systematic review and meta-analysis. Respir Med. Sep 2020;171:106096. doi:10.1016/j.rmed.2020.106096 [PMC free article: PMC7391124] [PubMed: 32763754] [CrossRef]
159.
Akalin E, Azzi Y, Bartash R, et al. Covid-19 and Kidney Transplantation. N Engl J Med. Jun 18 2020;382(25):2475-2477. doi:10.1056/NEJMc2011117 [PMC free article: PMC7200055] [PubMed: 32329975] [CrossRef]
160.
Ketcham SW, Adie SK, Malliett A, et al. Coronavirus Disease-2019 in Heart Transplant Recipients in Southeastern Michigan: A Case Series. J Card Fail. Jun 2020;26(6):457-461. doi:10.1016/j.cardfail.2020.05.008 [PMC free article: PMC7224667] [PubMed: 32417380] [CrossRef]
161.
Latif F, Farr MA, Clerkin KJ, et al. Characteristics and Outcomes of Recipients of Heart Transplant With Coronavirus Disease 2019. JAMA Cardiol. May 13 2020;doi:10.1001/jamacardio.2020.2159 [PMC free article: PMC7221850] [PubMed: 32402056] [CrossRef]
162.
Zhu L, Xu X, Ma K, et al. Successful recovery of COVID-19 pneumonia in a renal transplant recipient with long-term immunosuppression. Am J Transplant. Jul 2020;20(7):1859-1863. doi:10.1111/ajt.15869 [PMC free article: PMC7228349] [PubMed: 32181990] [CrossRef]
163.
Fernández-Ruiz M, Andrés A, Loinaz C, et al. COVID-19 in solid organ transplant recipients: A single-center case series from Spain. Am J Transplant. Jul 2020;20(7):1849-1858. doi:10.1111/ajt.15929 [PMC free article: PMC9800471] [PubMed: 32301155] [CrossRef]
164.
Travi G, Rossotti R, Merli M, et al. Clinical outcome in solid organ transplant recipients with COVID-19: A single-center experience. Am J Transplant. Sep 2020;20(9):2628-2629. doi:10.1111/ajt.16069 [PMC free article: PMC7280581] [PubMed: 32436646] [CrossRef]
165.
Tschopp J, L’Huillier AG, Mombelli M, et al. First experience of SARS-CoV-2 infections in solid organ transplant recipients in the Swiss Transplant Cohort Study. Am J Transplant. Oct 2020;20(10):2876-2882. doi:10.1111/ajt.16062 [PMC free article: PMC7272999] [PubMed: 32412159] [CrossRef]
166.
Yi SG, Rogers AW, Saharia A, et al. Early Experience With COVID-19 and Solid Organ Transplantation at a US High-volume Transplant Center. Transplantation. 2020;104(11):2208-2214. [PMC free article: PMC7302089] [PubMed: 32496357]
167.
Fung M, Chiu CY, DeVoe C, et al. Clinical outcomes and serologic response in solid organ transplant recipients with COVID-19: A case series from the United States. Am J Transplant. 2020;20(11):3225-3233. [PMC free article: PMC7300859] [PubMed: 32476258]
168.
Hoek RAS, Manintveld OC, Betjes MGH, et al. COVID-19 in solid organ transplant recipients: a single-center experience. Transpl Int. 2020;33(9):1099-1105. [PMC free article: PMC7283727] [PubMed: 32460390]
169.
Iacovoni A, Boffini M, Pidello S, et al. A case series of novel coronavirus infection in heart transplantation from 2 centers in the pandemic area in the North of Italy. J Heart Lung Transplant. 2020;39(10):1081-1088. [PMC free article: PMC7318961] [PubMed: 32709482]
170.
Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ transplant recipients: Initial report from the US epicenter. Am J Transplant. 2020;20(7):1800-1808. [PMC free article: PMC7264777] [PubMed: 32330343]
171.
Kates OS, Haydel BM, Florman SS, et al. COVID-19 in solid organ transplant: A multi-center cohort study. Clin Infect Dis. Aug 7 2020;doi:10.1093/cid/ciaa1097 [CrossRef]
172.
Sharma A, Bhatt NS, St Martin A, et al. Clinical characteristics and outcomes of COVID-19 in haematopoietic stem-cell transplantation recipients: an observational cohort study. The Lancet Haematology. 2021/03/01/ 2021;8(3):e185-e193. doi:https://doi.org/10.1016/S2352-3026(20)30429-410.1016/S2352-3026(20)30429-4 [PMC free article: PMC7816949] [PubMed: 33482113] [CrossRef] [CrossRef]
173.
Ljungman P, de la Camara R, Mikulska M, et al. COVID-19 and stem cell transplantation; results from an EBMT and GETH multicenter prospective survey. Leukemia. 2021/10/01 2021;35(10):2885-2894. doi:10.1038/s41375-021-01302-510.1038/s41375-021-01302-5 [PMC free article: PMC8171362] [PubMed: 34079042] [CrossRef] [CrossRef]
174.
Jering KS, McGrath MM, Mc Causland FR, Claggett B, Cunningham JW, Solomon SD. Excess mortality in solid organ transplant recipients hospitalized with COVID-19: A large-scale comparison of SOT recipients hospitalized with or without COVID-19. Clin Transplant. Jan 2022;36(1):e14492. doi:10.1111/ctr.14492 [PMC free article: PMC8646895] [PubMed: 34558116] [CrossRef]
175.
Yekedüz E, Utkan G, Ürün Y. A systematic review and meta-analysis: the effect of active cancer treatment on severity of COVID-19. European Journal of Cancer. 2020/12/01/ 2020;141:92-104. doi:https://doi.org/10.1016/j.ejca.2020.09.02810.1016/j.ejca.2020.09.028 [PMC free article: PMC7538140] [PubMed: 33130550] [CrossRef] [CrossRef]
176.
Brenner EJ, Ungaro RC, Gearry RB, et al. Corticosteroids, But Not TNF Antagonists, Are Associated With Adverse COVID-19 Outcomes in Patients With Inflammatory Bowel Diseases: Results From an International Registry. Gastroenterology. Aug 2020;159(2):481-491.e3. doi:10.1053/j.gastro.2020.05.032 [PMC free article: PMC7233252] [PubMed: 32425234] [CrossRef]
177.
Michelena X, Borrell H, López-Corbeto M, et al. Incidence of COVID-19 in a cohort of adult and paediatric patients with rheumatic diseases treated with targeted biologic and synthetic disease-modifying anti-rheumatic drugs. Seminars in arthritis and rheumatism. Aug 2020;50(4):564-570. doi:10.1016/j.semarthrit.2020.05.001 [PMC free article: PMC7229730] [PubMed: 32425260] [CrossRef]
178.
Di Giorgio A, Nicastro E, Speziani C, et al. Health status of patients with autoimmune liver disease during SARS-CoV-2 outbreak in northern Italy. J Hepatol. Sep 2020;73(3):702-705. doi:10.1016/j.jhep.2020.05.008 [PMC free article: PMC7217097] [PubMed: 32413378] [CrossRef]
179.
Marlais M, Wlodkowski T, Vivarelli M, et al. The severity of COVID-19 in children on immunosuppressive medication. The Lancet Child & adolescent health. Jul 2020;4(7):e17-e18. doi:10.1016/s2352-4642(20)30145-0 [PMC free article: PMC7220160] [PubMed: 32411815] [CrossRef]
180.
Montero-Escribano P, Matías-Guiu J, Gómez-Iglesias P, Porta-Etessam J, Pytel V, Matias-Guiu JA. Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: A case series of 60 patients from Madrid, Spain. Multiple sclerosis and related disorders. Jul 2020;42:102185. doi:10.1016/j.msard.2020.102185 [PMC free article: PMC7204643] [PubMed: 32408147] [CrossRef]
181.
Alsaied T, Aboulhosn JA, Cotts TB, et al. Coronavirus Disease 2019 (COVID-19) Pandemic Implications in Pediatric and Adult Congenital Heart Disease. J Am Heart Assoc. Jun 16 2020;9(12):e017224. doi:10.1161/jaha.120.017224 [PMC free article: PMC7429046] [PubMed: 32441586] [CrossRef]
182.
Sanna G, Serrau G, Bassareo PP, Neroni P, Fanos V, Marcialis MA. Children’s heart and COVID-19: Up-to-date evidence in the form of a systematic review. Eur J Pediatr. Jul 2020;179(7):1079-1087. doi:10.1007/s00431-020-03699-0 [PMC free article: PMC7261213] [PubMed: 32474800] [CrossRef]
183.
Sabatino J, Ferrero P, Chessa M, et al. COVID-19 and Congenital Heart Disease: Results from a Nationwide Survey. J Clin Med. Jun 8 2020;9(6)doi:10.3390/jcm9061774 [PMC free article: PMC7355526] [PubMed: 32521643] [CrossRef]
184.
Bellino S, Punzo O, Rota MC, et al. COVID-19 Disease Severity Risk Factors for Pediatric Patients in Italy. Pediatrics. 2020;146(4):e2020009399. doi:10.1542/peds.2020-009399 [PubMed: 32665373] [CrossRef]
185.
DeBiasi RL, Song X, Delaney M, et al. Severe Coronavirus Disease-2019 in Children and Young Adults in the Washington, DC, Metropolitan Region. The Journal of pediatrics. Aug 2020;223:199-203.e1. doi:10.1016/j.jpeds.2020.05.007 [PMC free article: PMC7217783] [PubMed: 32405091] [CrossRef]
186.
Chao JY, Derespina KR, Herold BC, et al. Clinical Characteristics and Outcomes of Hospitalized and Critically Ill Children and Adolescents with Coronavirus Disease 2019 at a Tertiary Care Medical Center in New York City. The Journal of pediatrics. Aug 2020;223:14-19 e2. doi:10.1016/j.jpeds.2020.05.006 [PMC free article: PMC7212947] [PubMed: 32407719] [CrossRef]
187.
Kim DW, Byeon KH, Kim J, Cho KD, Lee N. The Correlation of Comorbidities on the Mortality in Patients with COVID-19: an Observational Study Based on the Korean National Health Insurance Big Data. Journal of Korean medical science. 2020;35(26):e243. doi:http://dx.doi.org/10.3346/jkms.2020.35.e243 [PMC free article: PMC7338208] [PubMed: 32627443] [CrossRef]
188.
Gonzalez-Dambrauskas S, Vasquez-Hoyos P, Camporesi A, et al. Pediatric Critical Care and COVID-19. Pediatrics. Sep 2020;146(3)doi:10.1542/peds.2020-1766 [PubMed: 32518171] [CrossRef]
189.
Gotzinger F, Santiago-Garcia B, Noguera-Julian A, et al. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. The Lancet Child & adolescent health. Sep 2020;4(9):653-661. doi:10.1016/S2352-4642(20)30177-2 [PMC free article: PMC7316447] [PubMed: 32593339] [CrossRef]
190.
Zachariah P, Johnson CL, Halabi KC, et al. Epidemiology, Clinical Features, and Disease Severity in Patients With Coronavirus Disease 2019 (COVID-19) in a Children’s Hospital in New York City, New York. JAMA Pediatr. Oct 1 2020;174(10):e202430. doi:10.1001/jamapediatrics.2020.2430 [PMC free article: PMC7270880] [PubMed: 32492092] [CrossRef]
191.
Verma S, Lumba R, Dapul HM, et al. Characteristics of Hospitalized Children With SARS-CoV-2 in the New York City Metropolitan Area. Hosp Pediatr. Jan 2021;11(1):71-78. doi:10.1542/hpeds.2020-001917 [PubMed: 33033078] [CrossRef]
192.
Leon-Abarca JA. Obesity and immunodeficiencies are the main pre-existing conditions associated with mild to moderate COVID-19 in children. Pediatr Obes. Dec 2020;15(12):e12713. doi:10.1111/ijpo.12713 [PMC free article: PMC7435515] [PubMed: 32789994] [CrossRef]
193.
Oualha M, Bendavid M, Berteloot L, et al. Severe and fatal forms of COVID-19 in children. Archives de pediatrie : organe officiel de la Societe francaise de pediatrie. Jul 2020;27(5):235-238. doi:10.1016/j.arcped.2020.05.01010.1016/j.arcped.2020.05.010 [PMC free article: PMC7269941] [PubMed: 32518045] [CrossRef] [CrossRef]
194.
Heilbronner C, Berteloot L, Tremolieres P, et al. Patients with sickle cell disease and suspected COVID-19 in a paediatric intensive care unit. British journal of haematology. Jul 2020;190(1):e21-e24. doi:10.1111/bjh.16802 [PMC free article: PMC7276717] [PubMed: 32420608] [CrossRef]
195.
Arlet JB, de Luna G, Khimoud D, et al. Prognosis of patients with sickle cell disease and COVID-19: a French experience. The Lancet Haematology. Sep 2020;7(9):e632-e634. doi:10.1016/s2352-3026(20)30204-0 [PMC free article: PMC7302791] [PubMed: 32563282] [CrossRef]
196.
Odièvre MH, de Marcellus C, Ducou Le Pointe H, et al. Dramatic improvement after tocilizumab of severe COVID-19 in a child with sickle cell disease and acute chest syndrome. American journal of hematology. Aug 2020;95(8):E192-e194. doi:10.1002/ajh.25855 [PMC free article: PMC7267654] [PubMed: 32358817] [CrossRef]
197.
McCloskey KA, Meenan J, Hall R, Tsitsikas DA. COVID-19 infection and sickle cell disease: a UK centre experience. British journal of haematology. Jul 2020;190(2):e57-e58. doi:10.1111/bjh.16779 [PubMed: 32369606] [CrossRef]
198.
Nur E, Gaartman AE, van Tuijn CFJ, Tang MW, Biemond BJ. Vaso-occlusive crisis and acute chest syndrome in sickle cell disease due to 2019 novel coronavirus disease (COVID-19). American journal of hematology. Jun 2020;95(6):725-726. doi:10.1002/ajh.25821 [PMC free article: PMC7262303] [PubMed: 32267016] [CrossRef]
199.
Hussain FA, Njoku FU, Saraf SL, Molokie RE, Gordeuk VR, Han J. COVID-19 infection in patients with sickle cell disease. British journal of haematology. Jun 2020;189(5):851-852. doi:10.1111/bjh.16734 [PMC free article: PMC7264585] [PubMed: 32314798] [CrossRef]
200.
Panepinto JA, Brandow A, Mucalo L, et al. Coronavirus Disease among Persons with Sickle Cell Disease, United States, March 20-May 21, 2020. Emerging infectious diseases. Oct 2020;26(10):2473-2476. doi:10.3201/eid2610.202792 [PMC free article: PMC7510702] [PubMed: 32639228] [CrossRef]
201.
Al-Hebshi A, Zolaly M, Alshengeti A, et al. A Saudi family with sickle cell disease presented with acute crises and COVID-19 infection. Pediatric blood & cancer. Sep 2020;67(9):e28547. doi:10.1002/pbc.28547 [PMC free article: PMC7404503] [PubMed: 32648991] [CrossRef]
202.
Allison D, Campbell-Lee S, Crane J, et al. Red blood cell exchange to avoid intubating a COVID-19 positive patient with sickle cell disease? Journal of clinical apheresis. Aug 2020;35(4):378-381. doi:10.1002/jca.21809 [PMC free article: PMC7361739] [PubMed: 32629539] [CrossRef]
203.
Appiah-Kubi A, Acharya S, Fein Levy C, et al. Varying presentations and favourable outcomes of COVID-19 infection in children and young adults with sickle cell disease: an additional case series with comparisons to published cases. British journal of haematology. Aug 2020;190(4):e221-e224. doi:10.1111/bjh.17013 [PMC free article: PMC7405127] [PubMed: 32652551] [CrossRef]
204.
Azerad MA, Bayoudh F, Weber T, et al. Sickle cell disease and COVID-19: Atypical presentations and favorable outcomes. EJHaem. Aug 4 2020;doi:10.1002/jha2.74 [PMC free article: PMC7436527] [PubMed: 32838401] [CrossRef]
205.
Chakravorty S, Padmore-Payne G, Ike F, et al. COVID-19 in patients with sickle cell disease – a case series from a UK Tertiary Hospital. Haematologica. Jun 11 2020;105(11)doi:10.3324/haematol.2020.254250 [PMC free article: PMC7604654] [PubMed: 33131264] [CrossRef]
206.
De Luna G, Habibi A, Deux JF, et al. Rapid and severe Covid-19 pneumonia with severe acute chest syndrome in a sickle cell patient successfully treated with tocilizumab. American journal of hematology. Jul 2020;95(7):876-878. doi:10.1002/ajh.25833 [PMC free article: PMC7262334] [PubMed: 32282956] [CrossRef]
207.
Ershler WB, Holbrook ME. Sickle cell anemia and COVID-19: Use of voxelotor to avoid transfusion. Transfusion. Dec 2020;60(12):3066-3067. doi:10.1111/trf.16068 [PMC free article: PMC7461458] [PubMed: 32815179] [CrossRef]
208.
Jacob S, Dworkin A, Romanos-Sirakis E. A pediatric patient with sickle cell disease presenting with severe anemia and splenic sequestration in the setting of COVID-19. Pediatric blood & cancer. Dec 2020;67(12):e28511. doi:10.1002/pbc.28511 [PMC free article: PMC7435567] [PubMed: 32776396] [CrossRef]
209.
Justino CC, Campanharo FF, Augusto MN, Morais SC, Figueiredo MS. COVID-19 as a trigger of acute chest syndrome in a pregnant woman with sickle cell anemia. Hematology, transfusion and cell therapy. Jul-Sep 2020;42(3):212-214. doi:10.1016/j.htct.2020.06.003 [PMC free article: PMC7301062] [PubMed: 32646838] [CrossRef]
210.
Morrone KA, Strumph K, Liszewski MJ, et al. Acute chest syndrome in the setting of SARS-COV-2 infections-A case series at an urban medical center in the Bronx. Pediatric blood & cancer. Nov 2020;67(11):e28579. doi:10.1002/pbc.28579 [PubMed: 32893954] [CrossRef]
211.
Balanchivadze N, Kudirka AA, Askar S, et al. Impact of COVID-19 Infection on 24 Patients with Sickle Cell Disease. One Center Urban Experience, Detroit, MI, USA. Hemoglobin. Jul 2020;44(4):284-289. doi:10.1080/03630269.2020.1797775 [PubMed: 32722950] [CrossRef]
212.
Allen B, El Shahawy O, Rogers ES, Hochman S, Khan MR, Krawczyk N. Association of substance use disorders and drug overdose with adverse COVID-19 outcomes in New York City: January-October 2020. Journal of public health (Oxford, England). Dec 26 2020;doi:10.1093/pubmed/fdaa241 [PMC free article: PMC7799011] [PubMed: 33367823] [CrossRef]
213.
Ji W, Huh K, Kang M, et al. Effect of Underlying Comorbidities on the Infection and Severity of COVID-19 in Korea: a Nationwide Case-Control Study. J Korean Med Sci. Jun 29 2020;35(25):e237. doi:10.3346/jkms.2020.35.e237 [PMC free article: PMC7324262] [PubMed: 32597048] [CrossRef]
214.
Wang QQ, Kaelber DC, Xu R, Volkow ND. COVID-19 risk and outcomes in patients with substance use disorders: analyses from electronic health records in the United States. Molecular psychiatry. Sep 14 2020:1-10. doi:10.1038/s41380-020-00880-7 [PMC free article: PMC7488216] [PubMed: 32929211] [CrossRef]
215.
Lee SW, Yang JM, Moon SY, et al. Association between mental illness and COVID-19 susceptibility and clinical outcomes in South Korea: a nationwide cohort study. The lancet Psychiatry. Dec 2020;7(12):1025-1031. doi:10.1016/s2215-0366(20)30421-1 [PMC free article: PMC7498216] [PubMed: 32950066] [CrossRef]
216.
Baillargeon J, Polychronopoulou E, Kuo YF, Raji MA. The Impact of Substance Use Disorder on COVID-19 Outcomes. Psychiatr Serv. Nov 3 2020:appips202000534. doi:10.1176/appi.ps.202000534 [PMC free article: PMC8089118] [PubMed: 33138712] [CrossRef]
217.
Motta I, Migone De Amicis M, Pinto VM, et al. SARS-CoV-2 infection in beta thalassemia: Preliminary data from the Italian experience. American journal of hematology. Aug 2020;95(8):E198-e199. doi:10.1002/ajh.25840 [PMC free article: PMC7264660] [PubMed: 32311145] [CrossRef]
218.
Pinto VM, Derchi GE, Bacigalupo L, Pontali E, Forni GL. COVID-19 in a Patient with beta-Thalassemia Major and Severe Pulmonary Arterial Hypertension. Hemoglobin. May 2020;44(3):218-220. doi:10.1080/03630269.2020.1779082 [PubMed: 32552139] [CrossRef]
219.
Sasi S, Yassin MA, Nair AP, Al Maslamani MS. A Case of COVID-19 in a Patient with Asymptomatic Hemoglobin D Thalassemia and Glucose-6-Phosphate Dehydrogenase Deficiency. Am J Case Rep. Jul 22 2020;21:e925788. doi:10.12659/AJCR.925788 [PMC free article: PMC7394553] [PubMed: 32697769] [CrossRef]
220.
Sarbay H, Atay A, Malbora B. COVID-19 Infection in a Child With Thalassemia Major After Hematopoietic Stem Cell Transplant. J Pediatr Hematol Oncol. Jan 2021;43(1):33-34. doi:10.1097/MPH.0000000000001895 [PubMed: 32740278] [CrossRef]
221.
Karimi M, Haghpanah S, Azarkeivan A, et al. Prevalence and mortality in β-thalassaemias due to outbreak of novel coronavirus disease (COVID-19): the nationwide Iranian experience. British journal of haematology. Aug 2020;190(3):e137-e140. doi:10.1111/bjh.16911 [PMC free article: PMC7300954] [PubMed: 32484906] [CrossRef]
222.
Matsushita K, Ding N, Kou M, et al. The Relationship of COVID-19 Severity with Cardiovascular Disease and Its Traditional Risk Factors: A Systematic Review and Meta-Analysis. Global heart. Sep 22 2020;15(1):64. doi:10.5334/gh.814 [PMC free article: PMC7546112] [PubMed: 33150129] [CrossRef]
223.
Wu T, Zuo Z, Kang S, et al. Multi-organ Dysfunction in Patients with COVID-19: A Systematic Review and Meta-analysis. Aging and disease. Jul 2020;11(4):874-894. doi:10.14336/ad.2020.0520 [PMC free article: PMC7390520] [PubMed: 32765952] [CrossRef]
224.
Guo X, Zhu Y, Hong Y. Decreased Mortality of COVID-19 With Renin-Angiotensin-Aldosterone System Inhibitors Therapy in Patients With Hypertension: A Meta-Analysis. Hypertension. Aug 2020;76(2):e13-e14. doi:10.1161/HYPERTENSIONAHA.120.15572 [PubMed: 32458694] [CrossRef]
225.
Zhang J, Wu J, Sun X, et al. Association of hypertension with the severity and fatality of SARS-CoV-2 infection: A meta-analysis. Epidemiol Infect. May 28 2020;148:e106. doi:10.1017/S095026882000117X [PMC free article: PMC7270484] [PubMed: 32460927] [CrossRef]
226.
Pranata R, Lim MA, Huang I, Raharjo SB, Lukito AA. Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: A systematic review, meta-analysis and meta-regression. Journal of the renin-angiotensin-aldosterone system : JRAAS. Apr-Jun 2020;21(2):1470320320926899. doi:10.1177/1470320320926899 [PMC free article: PMC7231906] [PubMed: 32408793] [CrossRef]
227.
Javanmardi F, Keshavarzi A, Akbari A, Emami A, Pirbonyeh N. Prevalence of underlying diseases in died cases of COVID-19: A systematic review and meta-analysis. PLoS One. 2020;15(10):e0241265. doi:10.1371/journal.pone.0241265 [PMC free article: PMC7584167] [PubMed: 33095835] [CrossRef]
228.
Ioannou GN, Locke E, Green P, et al. Risk Factors for Hospitalization, Mechanical Ventilation, or Death Among 10 131 US Veterans With SARS-CoV-2 Infection. JAMA Network Open. 2020;3(9):e2022310-e2022310. doi: JAMA Network Open10.1001/jamanetworkopen.2020.22310%J [PMC free article: PMC7512055] [PubMed: 32965502] [CrossRef]
229.
Iaccarino G, Grassi G, Borghi C, et al. Age and Multimorbidity Predict Death Among COVID-19 Patients: Results of the SARS-RAS Study of the Italian Society of Hypertension. Hypertension. 08 2020;76(2):366-372. doi:https://dx.doi.org/10.1161/HYPERTENSIONAHA.120.1532410.1161/HYPERTENSIONAHA.120.15324 [PubMed: 32564693] [CrossRef] [CrossRef]
230.
Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. The European respiratory journal. May 2020;55(5)doi:10.1183/13993003.00547-2020 [PMC free article: PMC7098485] [PubMed: 32217650] [CrossRef]
231.
Kim L, Garg S, O’Halloran A, et al. Risk Factors for Intensive Care Unit Admission and In-hospital Mortality among Hospitalized Adults Identified through the U.S. Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). Clin Infect Dis. Jul 16 2020;doi:10.1093/cid/ciaa1012 [PMC free article: PMC7454425] [PubMed: 32674114] [CrossRef]
232.
Ran J, Song Y, Zhuang Z, et al. Blood pressure control and adverse outcomes of COVID-19 infection in patients with concomitant hypertension in Wuhan, China. Hypertens Res. Nov 2020;43(11):1267-1276. doi:10.1038/s41440-020-00541-w [PMC free article: PMC7450040] [PubMed: 32855527] [CrossRef]
233.
Yanover C, Mizrahi B, Kalkstein N, et al. What Factors Increase the Risk of Complications in SARS-CoV-2-Infected Patients? A Cohort Study in a Nationwide Israeli Health Organization. JMIR public health and surveillance. Aug 25 2020;6(3):e20872. doi:10.2196/20872 [PMC free article: PMC7451109] [PubMed: 32750009] [CrossRef]
234.
Killerby ME, Link-Gelles R, Haight SC, et al. Characteristics Associated with Hospitalization Among Patients with COVID-19 – Metropolitan Atlanta, Georgia, March-April 2020. MMWR Morb Mortal Wkly Rep. Jun 26 2020;69(25):790-794. doi:10.15585/mmwr.mm6925e1 [PMC free article: PMC7316317] [PubMed: 32584797] [CrossRef]
235.
Chen R, Yang J, Gao X, et al. Influence of blood pressure control and application of renin-angiotensin-aldosterone system inhibitors on the outcomes in COVID-19 patients with hypertension. J Clin Hypertens (Greenwich). Nov 2020;22(11):1974-1983. doi:10.1111/jch.14038 [PMC free article: PMC7537535] [PubMed: 33006442] [CrossRef]
Unless a copyright is indicated, information on CDC's sites, blogs, and applications is in the public domain and may be copied and distributed without permission.
Bookshelf ID: NBK570436PMID: 34009770

Views

  • PubReader
  • Print View
  • Cite this Page
  • PDF version of this page (1.0M)

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...