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Chapter 15
Stromal and Immune Drivers 
of Hepatocarcinogenesis

Antonio Saviano, Natascha Roehlen, Alessia Virzì, 
Armando Andres Roca Suarez, Yujin Hoshida, Joachim Lupberger, 
and Thomas F. Baumert

 Introduction

The liver is a multifunctional organ that plays a key role in metabolism and detoxi-
fication as well as in regulation of immune response and tolerance. The liver is 
physiologically exposed to many pathogens and toxic substances derived from the 
gut and has the largest population of resident macrophages (i.e., Kupffer cells, KCs) 
in the body and a high prevalence of natural killer cells (NK), natural killer T cells 
(NKT), and T cells. In normal conditions, the liver removes a large amount of 
microbes and pathogen-associated and damage-associated molecular patterns 
(PAMPs and DAMPs) and maintains an immunosuppressive environment [1].

Following chronic hepatocyte damage, immune and stromal cells modify a liver 
environment, which triggers chronic inflammation and ultimately promotes 
hepatocellular carcinoma (HCC) [2]. Indeed, independently from the etiology, 
chronic liver disease is characterized by a deregulation in the liver immune network 
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that stimulates cellular stress and death favoring liver fibrosis, hepatocyte 
proliferation, and epithelial-to-mesenchymal transition (EMT) [2]. A combination 
of EMT, genetic mutations, and epigenetic alterations that accumulate during cell 
proliferation is the most important driver of hepatocarcinogenesis [3].

Once HCC has developed, liver microenvironment greatly affects tumor progres-
sion and response to therapy [4]. This is the reason why gene expression signatures 
in liver tissues adjacent to the HCC—and the not in tumor itself—highly correlate 
with long-term survival of patients with liver fibrosis [5]. Similarly, HCC infiltration 
by non-parenchymal cells (e.g., regulatory T cells, Treg) has been associated with 
tumor progression [5–8]. New therapies targeting liver microenvironment are 
recently developed or under clinical investigation for both chronic liver disease 
(e.g., nonalcoholic steatohepatitis, NASH) and HCC.

Hence, liver microenvironment plays an essential role in both hepatocarcino-
genesis and tumor progression and it is an important therapeutic target for HCC 
prevention and treatment.

 From Chronic Inflammation to Hepatocellular Carcinoma

HCC almost universally evolves on the background of chronic liver inflammation 
and liver fibrosis [9]. Chronic hepatocyte cell injury induces activation of the 
immune system that initiates and supports chronic inflammation by generation of 
proinflammatory cytokines and chemokines and activation of hepatic stellate cells 
(HSCs), finally resulting in liver fibrosis, cirrhosis, and cancer [10] (Fig. 15.1).

During chronic infections (e.g., hepatitis B virus, HBV, or hepatitis C virus, 
HCV) as well as metabolic (e.g., NASH) or toxic diseases (e.g., alcoholic 
steatohepatitis, ASH), immune cells—first of all KCs—are activated by the release 
of PAMPs and DAMPs produced by hepatocyte apoptosis and death. Activated KCs 
present viral antigens to T cells and/or secrete cytokines and chemokines that recruit 
circulating monocytes, lymphocytes, and neutrophils [11]. Proinflammatory signals 
are mainly mediated by the accumulation of tumor necrosis factor alpha (TNF-α); 
interleukins (IL) such as IL-6, IL-1β, IL-2, IL-7, IL-15, IL-17; C-C motif chemokine 
ligand 2 (CCL2); and interferon gamma (IFN-ɣ).

Following activation by antigen-presenting cells, T cells and especially T-helper 
17 (Th17) cells and the mucosal-associated invariant T (MAIT) cells are major 
promoters of liver inflammation primarily by secretion of IL-17 [12, 13]. IL-17 
secreted by T cells as well as transforming growth factor beta 1 (TGF-β1) and 
platelet-derived growth factor subunit B (PDGF-B) secreted by KCs and monocyte- 
derived macrophages are able to activate and differentiate HSC into collagen- 
producing myofibroblasts [12, 13]. Finally, also DAMPs can directly activate HSC 
and participate in fibrosis [7, 14]. HSC-derived myofibroblasts account for abnormal 
production of collagen in the liver and are main components of the hepatic 
precancerous microenvironment [15].

The inflammatory microenvironment causes hepatocellular stress, accompanied 
by epigenetic modifications, mitochondrial alterations, DNA damage, and 
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chromosomal alterations that determine cell transformations [7]. Inflammation has 
been shown to upregulate nuclear factor kappa B (NF-κB) and signal transducer and 
activator of transcription 3 (STAT3) thereby affecting cell proliferation, survival, 
angiogenesis, and chemotaxis [16–18]. STAT3 is further induced by several other 
cytokines and growth factors that are known to be upregulated under conditions of 
chronic liver inflammation [19]. Regarding chronic HBV and HCV infection, 
upregulation of the cytokines lymphotoxin beta and TNF-α in CD4+ and CD8+ T 
cells has been shown to promote hepatocarcinogenesis [20, 21].

Collectively, persistence of infection by hepatotropic viruses or toxic condition 
may cause a chronic inflammatory state, accompanied by continual cell death and 
promotion of compensatory tissue repair mechanisms, finally resulting in liver cir-
rhosis and cell transformation. Since chronic inflammation induces impaired immune 
surveillance due to exhausted T cells, chronic inflammatory liver status not only pro-
vokes cell transformation but also attenuates physiological antitumor defense mecha-
nisms by the immune system. Thus, tumor cell attack by cytolytic T cells is weakened 
in chronic inflammatory liver tissue and HCC microenvironment [22–24].

Moreover, upregulation of immunosuppressive Treg cells has been related to 
chronic inflammation associated with attenuated immune surveillance contributing 
to risk of HCC development [25, 26]. The inducible type 1 T regulatory (Tr1) cells 
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Fig. 15.1 Chronic inflammation is a pan-etiological driver of hepatocarcinogenesis. 
Hepatocarcinogenesis can be induced by multiple etiological and environmental conditions. 
Chronic HBV and HCV infections, as well as chronic alcohol abuse and metabolic syndrome trig-
ger the activation of the innate immune system via release of Damage-Associated Molecular 
Patterns (DAMPs) and Pathogen Associated Molecular Patterns (PAMPs). The persistent dysregu-
lation of the immunological network of the liver, promoted by the secretion of pro-inflammatory 
cytokines/chemokines (e.g. IL-2, IL-6, IL-7, IL-15, IL-17, TGF-β, TNF-α, IFN-γ), leads to cells 
death, compensatory hepatocellular proliferation, activation of cancer-associated fibroblasts 
(CAFs) and hepatic stellate cells (HSCs) as well as epithelial-tomesenchymal transition (EMT). 
Moreover, sustained necro-inflammatory status attenuates immune-surveillance and anti-tumor 
immune response, by secretion of anti-inflammatory molecules (e.g. IL-10, TGF-β, PD-L1). In 
addition, the activation of HSCs contributes significantly to cell proliferation (by the release of 
IL-1β, TGF-β and LAMA5) and cirrhosis. In conclusion, cellular proliferation and EMT, further 
sustained by STAT3/NF-κB pathway activation, cirrhosis and impaired immunosurveillance activ-
ity collectively contribute to HCC development
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possess many immunosuppressive functions by secretion of the cytokines IL-10 and 
TGF-β, as well as by expression of the checkpoint inhibitors cytotoxic T-lymphocyte- 
associated protein 4 (CTLA-4) and programmed death 1 (PD1) on the cell surface 
[27–29]. Treg or KC-secreted IL-10 was reported to reduce immune surveillance by 
suppressing macrophage activation, T-cell proliferation, and IFN-ɣ production, 
hereby inhibiting antitumor response mediated by the immune system [30–32]. 
Moreover, TGF-β is known to inhibit IL-2-dependent T-cell proliferation as well as 
production of proinflammatory cytokines and performance of cytolytic functions by 
effector cells [33–35]. Suggesting its involvement in chronic inflammatory liver 
disease and contribution to hepatocarcinogenesis, levels of the immunoregulatory 
cytokine IL-10 and TGF-β have been reported to be elevated in patients with chronic 
liver disease and related to disease progression and patients’ survival [30, 36, 37].

 Immune Cells in HCC Microenvironment

Leukocytes are one of the main drivers in chronic inflammation. They are highly 
enriched in both the precancerous state of liver cirrhosis and in malignant tissue of 
HCC.  Indeed, liver carcinoma is characterized by an immunogenic micro-
environment, consisting of high amounts of lymphocytes, including NK cells, NKT 
cells, B cells, and T cells [38]. T-cell exhaustion due to chronic inflammation hereby 
shapes an immunogenic microenvironment that is characterized by an enhanced 
immunotolerance. Thus, the endogenous antitumor function of cytotoxic 
lymphocytes can be restored by antigen-presenting cells, which are typically 
reduced in the HCC microenvironment [39]. Indeed, decreased activity of NK cells, 
one of the most important antigen-presenting cells, correlates with an increased 
incidence of HCC in patients with liver cirrhosis [40]. Moreover, infiltration and 
density of T cells in human HCCs correlate with better patient prognosis, whereas 
tumor-infiltrating B cells reduce tumor viability [41].

Macrophages perpetuate chronic inflammation following liver injury and pro-
mote fibrogenesis via HSC activation. This therefore represents a significant com-
ponent of HCC microenvironment. Of note, tumor-associated macrophages (TAMs) 
are considered to promote tumor development and favor angiogenesis and tumor 
cell migration [42, 43]. Moreover, TAMs may stimulate tumor growth by suppres-
sion of the adaptive immune system. They express high levels of cell death- ligand 1 
(PD-L1), thereby suppressing the antitumor cytotoxic T-cell responses [44]. TAMs 
provide cytokines and growth factors that enhance tumor cell proliferation and 
NF-κB-mediated protection from cancer cell apoptosis and angiogenesis [45]. 
Accordingly, TAM infiltration correlates with HCC progression and poor survival 
[46, 47].

Dendritic cells (DCs) are a heterogeneous cell population and one of the most 
powerful antigen-presenting cells which regulate the primary immune response and 
the immune homeostasis in the liver [48]. By forming a bridge between the innate 
and the adaptive immune system [49], DCs are regarded as key players in immune 
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regulation [50, 51]. An impaired DC function has frequently been suggested as an 
important factor contributing to an immunosuppressive microenvironment in 
chronic liver disease, which is favoring tumor development. Accordingly, several 
studies report lower DC numbers in both the peripheral blood and liver tissue of 
patients with HCC [52, 53]. A reduced IL-12 secretion by DCs is hereby attributed 
to an attenuated stimulation of T cells [54]. Moreover, DC inhibition and its effects 
on downstream effector cells have further been identified as immune escape mecha-
nisms of HCC [55, 56].

 Stromal Cells Participate in HCC Development 
and Progression

Liver cirrhosis is one of the main risk factors for hepatocarcinogenesis and therefore 
regarded as a precancerous liver state [57]. Thus, the lifetime risk of HCC 
development in patients with advanced liver cirrhosis is approximately 30%, and 
80–90% of HCCs evolve in cirrhotic liver tissue [58, 59]. Considering HSCs as the 
most important progenitor cells of myofibroblasts that account for enhanced 
production of the extracellular matrix in liver fibrosis and liver cirrhosis, HSC- 
derived myofibroblasts are the main components of the hepatic precancerous 
microenvironment as well as the HCC tumor environment. Indeed, differentiation 
of HSCs from pericyte-like cells to collagen-producing myofibroblasts provides 
85–95% of the myofibroblasts in liver fibrosis and liver cirrhosis, independent of the 
underlying trigger [15]. Hence, together with bone marrow (BM)-derived fibroblasts 
and portal fibroblasts (PF), HSC-derived myofibroblasts compose the stromal 
population of cancer-associated myofibroblasts (CAFs) that contribute actively to 
HCC development and progression [60]. Of note, CAFs show a markedly altered 
phenotype compared to normal fibroblasts [61, 62]. Normal fibroblasts may suppress 
tumor growth by contact inhibition [62], whereas CAFs promote an immune- 
tolerant tumor environment by interaction with monocytes and lymphocytes [63]. 
Indeed, CAFs inhibit lymphocyte tumor infiltration, increase the activity of 
immunosuppressive regulatory T cells, and induce apoptosis in monocytes [64, 65]. 
Furthermore, CAFs were reported to impair antitumor functions of T cells via 
activation of neutrophils [66]. CAFs may further promote hepatocarcinogenesis by 
downregulation of tumor-suppressive microRNAs [67, 68]. CAF activity has also 
been associated with tumor angiogenesis. CAFs have been shown to secrete vascular 
endothelial growth factor (VEGF) and angiopoietin 1 or 2 [69–71]. The cross talk 
between CAFs and cancer cells is crucial for HCC biology. The secretion of laminin 
5 (LAMA5) [72] and IL-1β [73] by CAFs has been shown to promote HCC 
migration, and on the other hand, highly metastatic HCC cells were found to be able 
to convert normal fibroblasts to CAFs, which in turn promote cancer progression by 
secretion of proinflammatory cytokines [74]. Several studies further suggest an 
association of CAFs and CSCs that are thought to promote tumor development and 
to mediate therapeutic resistance. CAFs have been reported to recruit CSCs and to 
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drive their self-renewal [75, 76]. Moreover, CAFs have been observed to increase 
expression of keratin 19 by paracrine interactions [77], a marker for hepatic stem 
cells that has been observed to be correlated with poor prognosis [78]. In summary, 
CAFs are key drivers in hepatic carcinogenesis by increasing angiogenesis, 
inflammation, and proliferation and attenuating immune surveillance [60] 
(Fig. 15.2). CAFs correlate with HCC tumor stage and progression, tumor recurrence 
after surgery, as well as overall prognosis [79–81].

Lymphatic vessels function as a tissue drainage and immunological control sys-
tem. They are highly enriched in the liver, carrying approximately 25–50% of the 
thoracic duct’s lymph flow [82]. For a long time, lymphatic vessels were considered 
to affect carcinogenesis only by providing the structural pathway for metastatic 
spread of tumor cells. However, recent observations indicate a functional role of the 
lymphatic endothelium also in the hepatocytes’ immunogenic microenvironment, 
which is affecting the development of chronic liver disease and hepatocarcinogen-
esis [83]. Thus, lymphatic endothelial cells (LECs) guide immune cell migration by 
lining the inner surface of lymphatic capillaries and regulate the expression of 
adhesion molecules and cytokines [84, 85]. Moreover, by secretion of immunosup-
pressive cytokines (i.e., TGF-β) and the overexpression of co-inhibitory checkpoint 
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Fig. 15.2 Cancer-associated fibroblasts (CAFs) characterize the stromal tumor microenviron-
ment and promote hepatocarcinogenesis, tumor progression and treatment resistance. Tumor 
microenvironment in HCC is predominantly characterized by cancer-associated fibroblasts 
(CAFs) that contribute actively to tumor development, progression and metastatic spread. 
Interacting with the immune cells and secreting angiogenic factors, these cells reduce immune 
surveillance and drive tumor angiogenesis. Moreover, CAFs promote cancer cell proliferation 
by paracrine interactions as well as production of prooncogenic cytokines (e.g. TGF-β). CAFs 
are also reported to recruit cancer stem cells, hereby affecting tumor maintenance, heterogeneity 
and treatment resistance. Finally, CAFs are responsible for the alteration of liver extracellular 
matrix by production and secretion of Laminin 5 and Integrin β1 that further promote HCC cell 
invasion and migration
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proteins (i.e., PD-L1), LECs suppress a maturation and proliferation of circulating 
immune cells [84–86]. LECs further mediate CD4+ and CD8+ T-cell tolerance by 
expression of self-antigens in the presence of inhibitory ligands [87].

Lymphangiogenesis is increased in liver fibrosis and cirrhosis and positively cor-
relate with portal venous pressure and disease severity [88–90]. The enhanced inter-
stitial flow and increased number of LECs is accompanied by increased cytokine 
production and immune cell recruitment to the inflammatory environment present 
in almost all chronic liver diseases [91]. The primarily immunosuppressive func-
tions of LECs hereby contribute to an immunotolerant microenvironment favoring 
HCC development [83, 92]. Moreover, expression of chemokines by LECs may 
facilitate lymphogenic metastatic tumor spread [84]. Vascular endothelial growth 
factor C (VEGF-C) is an important stimulator of LEC growth and lymphangiogen-
esis. VEGF-C is enhanced in liver cirrhosis and HCC, and its expression in HCCs 
correlates with metastasis and poor patients’ outcome [93, 94].

 Epithelial-to-Mesenchymal Transition in HCC

Epithelial-to-mesenchymal transition (EMT) describes a reversible process, by 
which epithelial cell types gradually develop mesenchymal characteristics leading 
to higher motility and invasive properties that are essential in embryogenic 
development and wound healing but also implicated in hepatic fibrogenesis and 
carcinogenesis [95, 96]. Thus, while epithelial cells are characterized by polarity 
and stable morphology, mesenchymal cells lack polarity, show a loose arrangement, 
and exhibit the capacity of migration [97]. EMT can be divided in three different 
biological subtypes [98]. While type 1 EMT determines embryonal development 
and organogenesis, types 2 and 3 EMT affect liver disease progression and can be 
activated by several proinflammatory cytokines and growth factors present in the 
inflammatory state of the liver [99].

Type 2 EMT occurs in response to cell injury as a mechanism of tissue repair and 
may cause fibrosis due to generation of collagen-producing fibroblasts. TGF-β, a 
cytokine increased under condition of chronic inflammation, has been shown to be 
one of the strongest activators of type 2 EMT that can affect hepatocytes, cholangio-
cytes, and hepatic stellate cells (HSC) [100]. Quiescent HSCs, the most frequent 
progenitor cells of collagen-producing fibroblasts [15], are actually regarded as 
transitional cells that have undergone partial EMT from epithelial cells and may 
complete transition upon inflammatory signals [101]. Hence, EMT is regarded as 
one of the most important promoters of liver fibrogenesis in response to chronic 
inflammation [101].

Type 3 EMT may occur due to genetic and epigenetic changes during malignant 
transformation of epithelial cells and is implicated in HCC growth and progression 
[3]. Cells generated by type 3 EMT differ significantly from types 1 and 2 EMT 
cells and develop properties of invasion and migration as well as escape from apop-
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tosis. Weakened or loss of E-cadherin expression, characteristic for development of 
the mesenchymal unpolarized phenotype, could be revealed in 58% of human HCC 
patients and correlated with the presence of metastases and patients’ survival [102]. 
Besides proinflammatory cytokines and growth factors, several studies further indi-
cate induction of type 3 EMT by core proteins of HCV itself [103]. Given not only 
the correlation of EMT with tumor stage but also response to therapy [104], thera-
peutic targeting of molecular key players in EMT is highly clinically relevant.

 Clinical Perspectives

Considering the implication of stromal and immunogenic cell compounds in HCC 
development and progression, medical treatments targeting these factors represent 
promising tools for future medical treatment of advanced HCC.  Presently, 
sorafenib, an oral multikinase inhibitor targeting vascular endothelial growth fac-
tor receptor (VEGFR-2/VEGFR-3) and platelet-derived growth factor receptor 
(PDGFR), produced by the stromal HCC microenvironment already represents the 
standard of care treatment for patients with advanced HCC [105]. Lenvatinib, 
another tyrosine kinase inhibitor with multiple targets, has recently been revealed 
to be noninferior compared to sorafenib according to the REFLECT trial and has 
lately been approved by the FDA as first-line treatment for unresectable HCC 
[106]. Moreover, recently therapeutic strategies targeting the immunogenic tumor 
microenvironment have been demonstrated to be effective as systemic therapy for 
several cancer types. Consequently, drugs targeting exhausted lymphocytes 
expressing PD1 and infiltrating the tumor are able to activate T-cell-driven immune 
response against cancer cells and were approved for melanoma and non-small cell 
lung cancer treatment [107, 108]. Preliminary results from open-label trials of 
these drugs in HCC treatment are encouraging. Indeed, nivolumab and pembroli-
zumab, anti-PD1 monoclonal antibodies, have been demonstrated to be more 
effective than placebo in patients with advanced unresectable HCC previously 
treated with sorafenib [109, 110]. For that reason, these compounds were recently 
approved by FDA as a second- line treatment for advanced HCC. Moreover, cur-
rently several randomized controlled trials investigate the effects of other drugs 
targeting the HCC immunogenic and stromal microenvironment. Thus, aiming to 
activate tumor-targeting cytotoxic T lymphocytes, a growing number of studies 
recently worked on ex vivo tumor- antigen- loaded dendritic cells as an approach of 
cancer immunotherapy by DC vaccination [111–113]. Several other studies are 
focused on immunotherapy targeting TAMs, aiming to decrease TAM population 
present in the HCC by elimination, blocking recruitment, or functional reprogram-
ming of TAM polarization [43]. The results of current ongoing clinical studies are 
expected in the next few years and may revolutionize future HCC medical 
treatment.
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