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A Mixed Model Approach for  
Intent-to-Treat Analysis in Longitudinal 
Clinical Trials with Missing Values 
Hrishikesh Chakraborty and Hong Gu 

Abstract
Missing values and dropouts are common issues in longitudinal studies in all 
areas of medicine and public health. Intent-to-treat (ITT) analysis has become 
a widely accepted method for the analysis of controlled clinical trials. In most 
controlled clinical trials, some patients do not complete their intended follow-
up according to the protocol for a variety of reasons; this problem generates 
missing values. Missing values lead to concern and confusion in identifying the 
ITT population, which makes the data analysis more complex and challenging. 
No adequate strategy exists for ITT analyses of longitudinal controlled clinical 
trial data with missing values. Several ad hoc strategies for dealing with missing 
values for an ITT analysis are common in the practice of controlled clinical trials. 
We performed a detailed investigation based on simulation studies to develop 
recommendations for this situation. We compared sizes (type I errors) and 
power between some popular ad hoc approaches and the linear mixed model 
approach under different missing value scenarios. Our results suggest that, for 
studies with a high percentage of missing values, the mixed model approach 
without any ad hoc imputation is more powerful than other options.

Contents

Introduction	 2

Methods	 2

Analysis	 4

Results 	 6

Discussion	 9

References 	 9

Acknowledgments	 Inside back cover



2 	 Chakraborty and Gu, 2009 	 RTI Press

Introduction
In most longitudinal studies in all areas of medicine 
and public health, missing values and dropout are 
common. For a variety of reasons, some patients do 
not complete their intended follow-up according 
to protocol, and they are often described as having 
“dropped out” before the conclusion of the trial. This 
situation generates missing values for the study.

Missing data have three important implications 
for longitudinal studies. First, the dataset becomes 
unbalanced over time, which complicates choosing 
the right methods of analyses. Second, because of this 
missingness, some unavoidable loss in information 
reduces the efficiency of the study. Finally, the 
missing values introduce bias that can cause 
misleading inferences.

The main problem that arises with missing data is 
that the distribution of the observed data may not 
be the same as the distribution of the complete data. 
Some missingness may be unrelated to the observed 
or unobserved responses, some may be related to 
the observed data, some related to the unobserved 
data, and some to both. Little and Rubin1 classified 
the missing value mechanisms as missing completely 
at random (MCAR), missing at random (MAR), 
and not missing at random (NMAR). MCAR is a 
condition in which missing values are randomly 
distributed across all observations. MAR is a 
condition in which missing values are not randomly 
distributed across all observations but are randomly 
distributed within one or more subsamples. Under 
MCAR and MAR, the missing data mechanisms are 
often referred to as being “ignorable”; by contrast, the 
missing data mechanism NMAR is often referred to 
as “nonignorable.”

Intent-to-treat (ITT) analysis has become a widely 
accepted method for the analysis of controlled 
clinical trials. ITT analysis, as suggested by Schwartz 
and Lellouch,2 is a pragmatic approach to avoid bias 
in estimating the effect of treatment assignment in 
randomized clinical trials. ITT analysis compares 
the study groups in terms of the treatment to which 
they were randomly allocated, regardless of protocol 
deviations and participant compliance or withdrawal. 
Missing values can lead to problems in identifying 

the ITT population, which makes the data analysis 
more complex and challenging. No adequate strategy 
exists for ITT analyses of longitudinal controlled 
clinical trial data with missing values. 

In this report, we perform a detailed investigation of 
simulation studies to develop recommendations for 
ITT analysis of longitudinal controlled clinical trial 
data with missing values. We compare estimates, sizes 
(type I errors), and power among several popular ad 
hoc approaches and the general linear mixed model 
(GLMM) approach for different proportions of 
missing values. We also try to answer a fundamental 
question faced by researchers in the presence of 
missing values: which method or which combination 
of imputation and analysis methods will provide 
the maximum benefits in terms of size and power 
of the test for different proportion of missing values 
in a longitudinal design setting? More specifically, 
does the mixed model provide more powerful tests 
without inflating the sizes in all missing scenarios in 
longitudinal design settings?

Methods
Many methods have been proposed and developed 
over the past two decades to deal with missing values 
and dropout issues. In a review paper, Fitzmaurice3 
summarizes methods for handling dropouts into 
four categories, namely the complete-case analysis, 
available-case methods, model-based approaches, 
and imputation methods. Except for complete-case 
analysis, the categories are all general terms that refer 
to a large collection of techniques. 

Complete-case analysis refers to the method used to 
analyze the data that include only the complete cases; 
it excludes the subjects with missing data. Complete-
case analysis, by definition, is not ITT analysis. 
By omitting all cases with missing values at any 
measurement occasion, this technique can result in a 
substantial loss of information, which has a negative 
impact on precision and power. Complete-case 
analysis is a valid method only when the dropouts are 
missing completely at random (MCAR). 

Available-case methods refer to a collection 
of methods that can incorporate the repeated 
measurements of unequal length in the analysis. 
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Available-case methods use the available information 
to estimate means and covariances; thus, it requires 
a valid assumption about the missing mechanism. A 
simulation study by Touloumi et al.4 compared the 
bias and efficiency of six different methods in this 
category. 

The model-based approaches are the formal statistical 
methods and the most preferable methods to handle 
the nonignorable dropouts. However, model-based 
approaches have to be based on some assumptions 
that are generally not verifiable. Moreover, they are 
more difficult and time-consuming to perform than 
other approaches. For these reasons, model-based 
approaches are not widely used in clinical trial data 
analyses.

Imputation methods that fill data in missing values 
are of two main types: (1) fixed-value imputations 
and (2) multiple imputations. Both of these types 
of imputation methods have been applied to fulfill 
the goal of ITT analysis for longitudinal studies 
with dropouts. No single strategy is adequate for 
all combinations of dropouts. However, several ad 
hoc strategies for dealing with missing values are 
commonly used in clinical trials. 

Fixed-value imputation methods substitute each 
missing or dropout value with a fixed value that 
is generated by one of the ad hoc strategies. One 
widely used ad hoc approach in clinical trial 
data analyses, which is “last observation carried 
forward” (LOCF), belongs to the fixed-value class 
of imputation methods. A simulation-based size 
and power comparison of various ad hoc strategies 
under different dropout mechanisms can be found in 
Unnebrink and Windeler.5

LOCF is the most popular method for ad hoc 
imputations; it fills the missing values with the last 
available non-missing values of the same subject. 
Best-value replacement (BVR) and worst-value 
replacement (WVR) are the other two ad-hoc 
imputation methods widely used in medical research. 
In these methods, the missing values are filled in 
with the best or worst values from that subject. The 
selection of best or worst value replacement method 
depends on the scientific knowledge of the variable; 
in most situations, they are the subject’s minimum 
and maximum values.

Multiple imputation methods impute the missing 
values using a set of sampled values based on models 
for the missing data conditional on all relevant 
observed data. Thus, the multiple imputation 
methods account for the underlying uncertainty.6,7 
Little and Yau8 applied multiple imputations in 
ITT analysis for longitudinal studies under several 
different assumptions and compared results with 
those from available-case methods.

In short, available methods to impute missing values 
are appropriate to use only under some assumptions 
about the missing data mechanism, and every 
method has drawbacks. All ad hoc methods require 
the MCAR assumption; maximum likelihood-based 
methods require either MCAR or MAR assumptions. 
If the missing values are NMAR, then standard 
methods of analysis are not valid and usually a 
sensitivity analysis is recommended. 

The mixed model is the most important available-
case method. In it, covariates can be either 
time-invariant or time-varying. In addition, 
generalizations exist for non-normal data. The mixed 
model equation for the kth subject can be written as 

 Yk = Xk β + Zk dk + Vk 

with the assumptions that 

dk ~ NID(0, Δ), Vk ~ NID(0, σ2I). 

Thus, the covariance matrix is 

Var(Yk) = Σk = Zk Δ Zk' + Vk. 

The model can be constructed using the “usual” 
linear model method E(Yk) = Xk β, where: 

Yk 	= vector of all available measurements from the 
kth subject, through all periods of observation

Xk 	= fixed effects design matrix for the kth subject 
corresponding to the available measurements 
in Yk

β	 = fixed-effect parameters matrix for all subjects

Zk 	= random effects design matrix for the kth subject

dk 	= random coefficients for the kth subject; dk 
contains increments to population intercepts 
and slopes

Vk 	= vector of random measurement errors for the 
kth subject. 
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The fixed-effect design matrix Xk and fixed-effect 
parameters β in the mixed model are similar to the 
design matrix and the regression parameters in 
a typical multiple regression, analysis of variance 
(ANOVA), or analysis of covariance (ANCOVA) 
model, where E(Yk) = Xk β. Thus, an element of β 
may represent the “slope” of a regression surface with 
respect to a covariate, to a treatment effect, or to a 
similar quantity. 

The random-effects design matrix Zk and the 
subject-specific random effects dk represent random 
deviations from E(Yk) = Xk β that are associated with 
the kth subject. Vk is a vector of random deviations, 
or “measurement errors” E(Yk|dk)= Xk β + Zk dk, 
the expected value for the kth subject. Vk is similar 
to the vector of random errors, usually denoted by εk 
or ek , in a multiple regression, ANOVA, or ANCOVA 
model. 

The mixed model can accommodate different 
numbers of measurements, i.e., different lengths 
of Yk, for different subjects. Thus, investigators can 
base inference on all available measurements. The 
mixed model has four principal strengths: (1) it can 
accommodate missing data points often encountered 
in longitudinal datasets; (2) it does not need to have 
same number of observations per subject; (3) time 
can be continuous, rather than a fixed set of points; 
and (4) specification of the covariance structure 
among repeated measures can be flexible. These 
features thus provide a natural way to deal with 
missing values or dropouts. 

This paper focuses on three commonly used ad 
hoc methods—namely, the LOCF, BVR, and WVR 
approaches—and mixed model, one of the more 
widely used available-case analysis methods in 
longitudinal studies with missing values. We 
compared the effects when data are imputed by the 
commonly used ad hoc imputations (i.e., LOCF, BVR 
and WVR). We use the mixed model approach to 
analyze the resulting data, based on all the available 
measurements. We then calculated empirical size and 
power using simulation techniques.

Analysis
Analyzing missing data requires making assumptions 
about the missing values as being either ignorable 
or nonignorable. For simplicity, we assume that all 
the missing values are ignorable in our simulation. 
Our simulation is based on a design that compares 
differences in lumber spine bone mineral density 
(BMD) values between two groups in a multicenter 
randomized clinical trial. We adopted this approach 
because the original drug trial design compared 
postmenopausal, non-osteoporotic women who 
received Drug A as treatment with similar women 
who received a placebo. For confidentiality reasons, 
we are not specifying the drug name or the 
manufacturer. 

To determine the number of subjects required, we 
assumed that the variance-covariance matrices would 
be the same for both the drug A and the placebo 
groups of subjects. We also assumed that each subject 
was scheduled to make five visits over a 15-month 
period. Further, we assumed (a) that the baseline 
mean value of bone loss is 0.715 gHA/cm2 for both 
treatment and placebo groups and (b) that at the end 
of the five visits, the placebo group’s mean value for 
bone loss will have been the same (0.715) and the 
treatment group’s mean value for bone loss will have 
increased to 0.745. In other words, we assumed that 
the difference in mean lumber spine BMD loss will 
be 0.030 at the end of five visits. We estimated that 
138 subjects in each group would allow us to detect a 
lumber spine BMD difference of 0.03 with 90 percent 
power at 5 percent significance level for a one-sided 
test. 

Our study goal is to simulate a real clinical trial 
scenario in which missing data occur. For these 
purposes, data are missing because women in both the 
treatment and the placebo groups randomly missed 
some visits at which data would otherwise have been 
collected. The pattern of the missing data is created in 
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the simulation following the key assumptions listed 
below:

1.	 Women are enrolled into five study centers.

2. 	Each center randomly assigns subjects to the 
treatment and placebo arms in a 1:1 ratio. 

3. 	On average, each study center enrolls 55 patients, 
with a range of variation between 25 and 75 
patients. 

4. 	Each randomized patient has five visits over a 
15-month period. 

5. 	Twenty percent of the subjects drop out of the trial 
after the first visit. 

6. 	Of the remaining four visits, between 5 percent 
and 50 percent are missed by the women 
remaining in the study. 

We assigned missing visits randomly to each subject. 
We then simulated data from a multivariate normal 
distribution in which the variances of lumber spine 
BMD value is 0.005 for both groups for all visits 
and the lumber spine BMD values are positively 
correlated within each patient with a correlation 
coefficient of 0.7.

Initially, each simulated dataset contained 276 
subjects—138 for the placebo group and 138 for the 
treatment group—with five visits by each subject. We 
generated dropouts, namely, the random 20 percent 
of women who dropped out after the first visit. We 
then generated missing data as the percentages of 
missed visits, ranging from 0 percent (i.e., no missed 
visits) to 50 percent (half of the visits were missed); 
we did this in 5-percentage-point increments (0 
percent, 5 percent, …, 45 percent, 50 percent) for the 
subjects who had not dropped out of the trial after the 
first visit. 

For size calculations, the mean difference between 
two treatments is 0. For power calculations, we 
repeated the analysis for 11 different mean differences 
at the end of five visits: 0.005, 0.010, 0.015, 0.020, 
0.025, 0.030, 0.035, 0.040, 0.045, 0.050, and 0.055. 

Therefore, initially we have 11 x 12 datasets (N = 132) 
with different combinations of mean differences and 
missing percentages. For example, dataset 1 has only 
20 percent dropouts, with a mean difference of 0.03; 
dataset 2 has 10 percent missed visits in addition to 
20 percent dropouts, with a mean difference of a 0.03; 
and so on. For each dataset we used three different ad 
hoc methods (LOCF, BVR, and WVR) to impute the 
missing values. For our analyses, for each patient we 
defined the smallest value as the worst value and the 
largest as the best value. Thus, from each of the 132 
datasets we generated four different datasets: one that 
kept the missing values as missing and three others 
that had missing values imputed by LOCF, BVR, or 
WVR. In all, we generated a total of 528 different 
simulated datasets for all combinations. 

We used a mixed model with an unstructured 
covariance matrix to compare the mean differences 
in lumbar spine BMD at the fifth visit between the 
drug and the placebo groups, for the original datasets 
with missing values and for all the other versions 
of imputed datasets. The fixed-effect design matrix 
includes drug groups (drug A and placebo), centers 
(1 to 5), and visits (1 to 5). The random-effects design 
matrix includes a random intercept and a slope for 
subjects. 

We repeated this simulation process 5,000 times and 
recorded the test results with p values for all four 
analysis methods during each simulation run. We 
used SAS 9.29 to simulate and analyze the data. 
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Results 
In general, as Figures 1 though 4 indicate, if the 
study is designed appropriately, a small percentage 
of missing values does not affect the estimates of size 
or power. For higher percentages of missing values, 
different imputation techniques yield various sizes 
and powers. The simulation results show that the 
mean BMD estimates do not differ by method. 

Figure 1 compares sizes (i.e., type I errors) generated 
by four different methods for handling missing 
values for different percentages of missing values 
(20 percent dropouts plus 0 to 50 percent random 
missing). We observed no major size fluctuation in 
size attributable to different analysis methods for 
relatively low percentages of missing values (up to 
30 percent). Conversely, for higher percentages of 
missing values, from about 35 percent to 50 percent, 
the size estimates become more unstable.
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Figure 1: Comparisons of size (type I errors) of a mixed 
model by different percentages of missing data for 
different methods of handling missing data, assuming 
a mean difference of 0 in lumbar bone mineral density 
between groups

MM 	 = 	mixed models
LOCF = 	last observation carried forward
Best 	 = 	best value replacement for that subject
Worst = 	worst value replacement for that subject
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Figure 2: Power comparisons of a mixed model by 
missing percentages for different methods of handling 
missing data, assuming a fixed mean difference in 
lumbar bone mineral density of 0.03 between groups 
and a 20% dropout rate

MM 	 = 	mixed models
LOCF	= 	 last observation carried forward
Best 	 = 	best value replacement for that subject
Worst = 	worst value replacement for that subject

Figure 2 compares power by four different methods 
for 0.03 mean differences between two groups for 
ranges of missing percentages (20 percent dropouts 
plus 0 to 50 percent random missing). We observed 
that the power of the trial decreases as the percentage 
of missing values increases. However, the decrease 
of power is flat in the no-imputation method, as 
compared to the other three methods. For example, 
if the missing percentage is 20 percent dropouts plus 
40 percent random missing values, then the power 
for the no-imputation method is 70 percent and the 
power of the other method is close to 50 percent. 

Figure 3 presents a comparison of powers for four 
different methods and a range of mean differences 
between two groups from 0.005 to 0.055; missing 
percentages include 20 percent dropouts, 20 percent 
dropouts plus 10 percent random missing, 20 percent 
dropouts plus 30 percent random missing, and 
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20 percent dropouts plus 50 percent random missing. 
Figure 4 also compares power for all four different 
methods and a range of mean differences from 0.005 
to 0.055 and missing percentages of 20 percent 
dropouts plus 0 to 50 percent random missing. In 
both figures, we observed that if the differences 
between two groups are very small (say, for example, 

0.005), there is no difference between methods 
irrespective of the percentage of missing values. 
We do not have adequate samples to detect small 
differences because we calculated our sample size to 
detect a difference of 0.3. On the other hand, if the 
differences between two groups are greater than 0.03, 
then we have enough power to detect the differences. 

Figure 3: Power comparisons of a mixed model by mean differences in lumbar spine bone mineral density 
for different missing percentages across methods of handling missing data, assuming a 20% dropout rate

MM = mixed models; LOCF = last observation carried forward
Best = best value replacement for that subject; Worst = worst value replacement for that subject
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Figure 4: Power comparisons by mean differences in lumbar bone mineral density for different methods 
of handling missing data across missing percentages, assuming a 20% dropout rate

MM = mixed models; LOCF = last observation carried forward
Best = best value replacement for that subject; Worst = worst value replacement for that subject
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Discussion
Our simulations demonstrated that analysis with 
mixed models without any ad hoc imputation 
provides more powerful tests than does mixed 
model analysis with LOCF, BVR, or WVR ad hoc 
imputations in all missing scenarios. As the missing 
percentages rise, the power of the test decreases for 
all four types of analysis. Nevertheless, the rate of 
power decrease is slower for the analysis with mixed 
models without any ad hoc imputation than for the 
mixed model analysis when missing values are filled 
in by using LOCF, BVR, or WVR. If studies have 
missing values, then (as is well known) they will 
lose power. For any percentage of missing values, 
investigators will not get the power they designed 
during the planning phase unless they account for the 
missing values by appropriately increasing the sample 
sizes. However, in real life, predicting the number of 
missing values at the beginning of the study is very 

difficult. Thus, to preserve the power of the study, 
investigators should seek to strike a balance between 
cost and power in increasing their sample sizes. 

During any study, investigators should also take other 
measures to minimize missing values by correcting 
the strategy for dealing with missing values in a 
blind review stage before final analysis. We propose 
that when investigators anticipate a good deal of 
missing values, they use a mixed model without 
ad hoc imputation as a method of analysis. When 
investigators expect only a few missing values, 
meaning that estimates are not expected to differ 
significantly by imputation methods, investigators 
can select any method to impute the missing values.

In summary, mixed model analysis without any ad 
hoc imputation always provides equal or more power 
than does analysis using mixed models with missing 
values imputed by LOCF, BVR, or WVR ad hoc 
imputation methods.
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