U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Kvietys PR. The Gastrointestinal Circulation. San Rafael (CA): Morgan & Claypool Life Sciences; 2010.

Cover of The Gastrointestinal Circulation

The Gastrointestinal Circulation.

Show details

References

1.
Kachlik D, Baca V. Macroscopic and microscopic intermesenteric communications. 12. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2006 July;150(1): pp. 121–124. [PubMed: 16936914]
2.
Warwick R, Williams P. Gray's anatomy of the human body. 36th ed. 1980. Edinburgh: Longman.
3.
Rosenblum JD, Boyle CM, Schwartz LB. The mesenteric circulation. Anatomy and Physiology. Surg Clin North Am. 1997; 77: pp. 289–306. [PubMed: 9146713]
4.
Wheaton LG, Sarr MG, Schlossberg L, Bulkley GB. Gross anatomy of the splanchnic vasculature. In: Measurement of Blood Flow: Applications to the Splanchnic Circulation, Granger DN, Bulkley GB, eds. pp. 9–45. 1981. Baltimore, MD: Williams & Wilkins.
5.
Casley-Smith J, Gannon BJ. Intestinal microcirculation: spatial organization and fine structure. In: Physiology of the Intestinal Circulation, Shepherd A, Granger D, eds. pp. 9–31. 1984. New York: Raven Press.
6.
Sugito M, Araki K, Ogata T. Three-dimensional organization of lymphatics in the dog stomach: a scanning electron microscopic study of corrosion casts. Arch Histol Cytol 1996 March;59(1): pp. 61–70. 10.1679/aohc.59.61. [PubMed: 8727364] [CrossRef]
7.
Perry MA, Ardell JL, Barrowman JA, Kvietys PR. Physiology of the splanchnic circulation. In: Pathophysiology of the Splanchnic Circulation, Kvietys PR, Barrowman JA, Granger DN, eds. pp. 1–56. 1987. Boca Raton, FL: CRC Press.
8.
Guth PH. In vivo microscopy of the gastric microcirculation. In: Measurement of Splanchnic Blood Flow: Applications to the Splanchnic Circulation. Granger DN, Bulkley GB, eds. pp. 107–119. 1981. Baltimore, MD: Williams & Wilkins.
9.
Gallavan RH, Jr, Chou CC, Kvietys PR, Sit SP. Regional blood flow during digestion in the conscious dog. 8. Am J Physiol 1980 February;238(2): pp. H220–H225. [PubMed: 7361917]
10.
Chou CC. Relationship between intestinal blood flow and motility. 405. Annu Rev Physiol 1982;44: pp. 29–42. 10.1146/annurev.ph.44.030182.000333. [PubMed: 7041797] [CrossRef]
11.
Chou CC, Grassmick B. Motility and blood flow distribution within the wall of the gastrointestinal tract. 1. Am J Physiol 1978 July;235(1): pp. H34–H39. [PubMed: 677326]
12.
Gannon B, Browning J, O'Brien P, Rogers P. Mucosal microvascular architecture of the fundus and body of human stomach. Gastroenterology 1984 May;86(5 Pt 1): pp. 866–875. [PubMed: 6706070]
13.
Liu H, Li YQ, Yu T, Zhao YA, Zhang JP, Zhang JN, Guo YT, Xie XJ, Zhang TG, Desmond PV. Confocal endomicroscopy for In vivo detection of microvascular architecture in normal and malignant lesions of upper gastrointestinal tract. 1. J Gastroenterol Hepatol 2008 January;23(1): pp. 56–61. [PubMed: 18028347]
14.
Listrom MB, Fenoglio-Preiser CM. Lymphatic distribution of the stomach in normal, inflammatory, hyperplastic, and neoplastic tissue. Gastroenterology 1987 September;93(3): pp. 506–514. [PubMed: 3301516]
15.
Frasher WG, Jr, Wayland H. A repeating modular organization of the microcirculation of cat mesentery. Microvasc Res 1972 January;4(1): pp. 62–76. 10.1016/0026-2862(72)90017-9. [PubMed: 5036680] [CrossRef]
16.
Kvietys PR, Wilborn WH, Granger DN. Effects of net transmucosal volume flux on lymph flow in the canine colon. Structural–functional relationship. 1. Gastroenterology 1981 December;81(6): pp. 1080–1090. [PubMed: 7286586]
17.
Benoit JN, Zawieja DC. Gastrointestinal lymphatics. In: Physiology of the Gastrointestinal Tract. 3rd ed. Johnson LR, ed. p. 1669. 1994. New York: Raven Press.
18.
Skinner SA, O'Brien PE. The microvascular structure of the normal colon in rats and humans. 14. J Surg Res 1996 March;61(2): pp. 482–490. 10.1006/jsre.1996.0151. [PubMed: 8656630] [CrossRef]
19.
Reynolds D, Kardon R. Methods of studying the splanchnic microvascular architecture. In: Measurement of Blood Flow: Applications to the Splanchnic Circulation, Granger D, Bulkley G, eds. pp. 71–88. 1981. Baltimore, MD: Williams & Wilkins.
20.
Araki K, Furuya Y, Kobayashi M, Matsuura K, Ogata T, Isozaki H. Comparison of mucosal microvasculature between the proximal and distal human colon. 1. J Electron Microsc (Tokyo) 1996 June;45(3): pp. 202–206. [PubMed: 8765715]
21.
Fenoglio CM, Kaye GI, Lane N. Distribution of human colonic lymphatics in normal, hyperplastic, and adenomatous tissue. Its relationship to metastasis from small carcinomas in pedunculated adenomas, with two case reports. Gastroenterology 1973 January;64(1): pp. 51–66. [PubMed: 4683855]
22.
Granger DN, Richardson PD, Kvietys PR, Mortillaro NA. Intestinal blood flow. 1. Gastroenterology 1980 April;78(4): pp. 837–863. [PubMed: 6101568]
23.
Kvietys PR, Granger DN. Regulation of colonic blood flow. Fed Proc 1982 April;41(6): pp. 2106–2110. [PubMed: 6122607]
24.
Lutz J, Biester J. [The reactions of the gastric vascular bed on venous or arterial pressure elevation and their comparison with values of the splenic and intestinal circulatory system. Veno-vasomotoric reaction and autoregulation]. 1. Pflugers Arch 1971;330(3): pp. 230–242. [PubMed: 5168422]
25.
Granger HJ, Nyhof RA. Dynamics of intestinal oxygenation: interactions between oxygen supply and uptake. 4. Am J Physiol 1982 August;243(2): pp. G91–G96. [PubMed: 7051852]
26.
Richardson PD, Granger DN, Taylor AE. Capillary filtration coefficient: the technique and its application to the small intestine. 2. Cardiovasc Res 1979 October;13(10): pp. 547–561. 10.1093/cvr/13.10.547. [PubMed: 42491] [CrossRef]
27.
Granger DN, Richardson PD, Taylor AE. Volumetric assessment of the capillary filtration coefficient in the cat small intestine. 3. Pflugers Arch 1979 July;381(1): pp. 25–33. 10.1007/BF00582328. [PubMed: 573451] [CrossRef]
28.
Granger DN, Barrowman JA. Microcirculation of the alimentary tract I. Physiology of transcapillary fluid and solute exchange. Gastroenterology 1983 April;84(4): pp. 846–868. [PubMed: 6337911]
29.
Anzueto L, Benoit JN, Granger DN. A rat model for studying the intestinal circulation. 1. Am J Physiol 1984 January;246(1 Pt 1): pp. G56–G61. [PubMed: 6696068]
30.
Nyhof RA, Rascoe TG, Granger HJ. Acute local effects of angiotensin II on the intestinal vasculature. 1. Hypertension 1984 January;6(1): pp. 13–11. [PubMed: 6693143]
31.
Perry MA, Granger DN. Regulation of capillary exchange capacity in the dog stomach. 12. Am J Physiol 1985 April;248(4 Pt 1): pp. G437–G442. [PubMed: 3985149]
32.
Jansson G, Lundgren O, Martinson J. Neurohormonal control of gastric blood flow. 1. Gastroenterology 1970 March;58(3): pp. 425–429. [PubMed: 5437997]
33.
Fasth S, Hulten L. The effect of bradykinin on the consecutive vascular sections of the small and large intestine. 81. Acta Chir Scand 1973;139(8): pp. 707–715. [PubMed: 4770645]
34.
Richardson PD, Granger DN, Kvietys PR. Effects of norepinephrine, vasopressin, isoproterenol, and histamine on blood flow, oxygen uptake, and capillary filtration coefficient in the colon of the anesthetized dog. 3. Gastroenterology 1980 June;78(6): pp. 1537–1544. [PubMed: 7372072]
35.
Perry MA, Bulkley GB, Kvietys PR, Granger DN. Regulation of oxygen uptake in resting and pentagastrin-stimulated canine stomach. 5. Am J Physiol 1982 June;242(6): pp. G565–G569. [PubMed: 7091329]
36.
Granger DN, Kvietys PR, Perry MA. Role of exchange vessels in the regulation of intestinal oxygenation. 22. Am J Physiol 1982 June;242(6): pp. G570–G574. [PubMed: 7091330]
37.
Kvietys PR, McLendon JM, Granger DN. Postprandial intestinal hyperemia: role of bile salts in the ileum. 2. Am J Physiol 1981 December;241(6): pp. G469–G477. [PubMed: 7325239]
38.
Kvietys PR, Barrowman JA, Harper SL, Granger DN. Relations among canine intestinal motility, blood flow, and oxygenation. 1. Am J Physiol 1986 July;251(1 Pt 1): pp. G25–G33. [PubMed: 3728674]
39.
Chou CC, Nyhof RA, Kvietys PR, Sit SP, Gallavan RH, Jr. Regulation of jejunal blood flow and oxygenation during glucose and oleic acid absorption. 1. Am J Physiol 1985 December;249(6 Pt 1): pp. G691–G701. [PubMed: 4083351]
40.
Kvietys PR, Miller T, Granger DN. Intrinsic control of colonic blood flow and oxygenation. 1. Am J Physiol 1980 June;238(6): pp. G478–G484. [PubMed: 7386631]
41.
Granger DN, Perry MA, Kvietys PR, Parks DA, Benoit JN. Metabolic, myogenic, and hormonal factors in local regulation of alimentary tract blood flow. In: Microcirculation of the Alimentary Tract. Koo A, Lam SK, Smaje LH, eds. p. 131. 1983. Singapore: World Scientific.
42.
Granger DN, Kvietys PR, Korthuis RJ, Premen AJ. Microcirculation of the intestinal mucosa. In: Handbook of Physiology, The Gastrointestinal System I. Chapter 39. pp. 1405–1474. 1989. Bethesda, MD, American Physiological Society.
43.
Shepherd AP, Granger DN. Metabolic regulation of the intestinal circulation. In: Physiology of the Intestinal Circulation. Shepherd AP, Granger DN, eds. pp. 33–47. 1984. New York: Raven Press.
44.
Granger HJ, Norris CP. Intrinsic regulation of intestinal oxygenation in the anesthetized dog. 1. Am J Physiol 1980 June;238(6): pp. H836–H843. [PubMed: 7386643]
45.
Kvietys PR, Granger DN. Physiology, pharmacology and pathology of the colonic circulation. In: Physiology of the Intestinal Circulation. Shepherd AP, Granger DN, eds. pp. 131–142. 1984. New York: Raven Press.
46.
Carlson BE, Arciero JC, Secomb TW. Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. 1. Am J Physiol Heart Circ Physiol 2008 October;295(4): pp. H1572–H1579. 10.1152/ajpheart.00262.2008. [PMC free article: PMC2593503] [PubMed: 18723769] [CrossRef]
47.
Carlson BE, Secomb TW. A theoretical model for the myogenic response based on the length-tension characteristics of vascular smooth muscle. 3. Microcirculation 2005 June;12(4): pp. 327–338. 10.1080/10739680590934745. [PubMed: 16020079] [CrossRef]
48.
Granger DN, Granger HJ. Systems analysis of intestinal hemodynamics and oxygenation. 4. Am J Physiol 1983 December;245(6): pp. G786–G796. [PubMed: 6660300]
49.
Koenigsberger M, Sauser R, Beny JL, Meister JJ. Effects of arterial wall stress on vasomotion. 4. Biophys J 2006 September 1;91(5): pp. 1663–1674. 10.1529/biophysj.106.083311. [PMC free article: PMC1544282] [PubMed: 16751242] [CrossRef]
50.
Sun D, Messina EJ, Kaley G, Koller A. Characteristics and origin of myogenic response in isolated mesenteric arterioles. 4. Am J Physiol 1992 November;263(5 Pt 2): pp. H1486–H1491. [PubMed: 1443200]
51.
Drummond HA, Grifoni SC, Jernigan NL. A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle. 5. Physiology (Bethesda) 2008 February;23: pp. 23–31. 10.1152/physiol.00034.2007. [PubMed: 18268362] [CrossRef]
52.
Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. 14. Physiol Rev 1999 April;79(2): pp. 387–423. [PubMed: 10221985]
53.
Johnson PC, Intaglietta M. Contributions of pressure and flow sensitivity to autoregulation in mesenteric arterioles. 30. Am J Physiol 1976 December;231(6): pp. 1686–1698. [PubMed: 1052803]
54.
Shepherd AP. Myogenic responses of intestinal resistance and exchange vessels. Am J Physiol 1977 November;233(5): pp. H547–H554. [PubMed: 920818]
55.
Johnson PC, Hanson KM. Capillary filtration in the small intestine of the dog. 2. Circ Res 1966 October;19(4): pp. 766–773. [PubMed: 5917849]
56.
Kvietys PR, Granger DN. Effects of solute-coupled fluid absorption on blood flow and oxygen uptake in the dog colon. Gastroenterology 1981 September;81(3): pp. 450–457. [PubMed: 7250634]
57.
Granger DN, Kvietys PR, Mailman D, Richardson PD. Intrinsic regulation of functional blood flow and water absorption in canine colon. 5. J Physiol 1980 October;307: pp. 443–451. [PMC free article: PMC1283055] [PubMed: 7205673]
58.
Kuo L, Chilian WM, Davis MJ. Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. 13. Am J Physiol 1991 December;261(6 Pt 2): pp. H1706–H1715. [PubMed: 1750529]
59.
Johnson PC. Myogenic and venous–arteriolar responses in the intestinal circulation. In: Physiology of the Intestinal Circulation. Shepherd AP, Granger DN, eds. pp. 49–60. 1984. New York: Raven Press.
60.
Granger DN, Mortillaro NA, Perry MA, Kvietys PR. Autoregulation of intestinal capillary filtration rate. 1. Am J Physiol 1982 December;243(6): pp. G475–G483. [PubMed: 7149030]
61.
Crissinger KD, Granger DN. Gastrointestinal blood flow. In: Textbook of Gastroenterology. Yamada T, ed. 4th edition, pp. 498–520, 2003. Philadelphia: William & Wilkins.
62.
Nowicki PT, Granger DN. Gastrointestinal blood flow. In: Textbook of Gastroenterology. Yamada T, ed. 5th edition. pp. 540–556, 2008. Wiley-Blackwell. 10.1002/9781444303254.ch22. [CrossRef]
63.
Kvietys PR, Perry MA, Granger DN. Intestinal capillary exchange capacity and oxygen delivery-to-demand ratio. Am J Physiol 1983 November;245(5 Pt 1): pp. G635–G640. [PubMed: 6638187]
64.
Kiel JW, Riedel GL, Shepherd AP. Effects of hemodilution on gastric and intestinal oxygenation. 5. Am J Physiol 1989 January;256(1 Pt 2): pp. H171–H178. [PubMed: 2912180]
65.
Holm-Rutili L, Perry MA, Granger DN. Autoregulation of gastric blood flow and oxygen uptake. 2. Am J Physiol 1981 August;241(2): pp. G143–G149. [PubMed: 7270691]
66.
Kvietys PR, Granger DN. Relation between intestinal blood flow and oxygen uptake. Am J Physiol 1982 March;242(3): pp. G202–G208. [PubMed: 7065183]
67.
Bulkley GB, Kvietys PR, Perry MA, Granger DN. Effects of cardiac tamponade on colonic hemodynamics and oxygen uptake. 5. Am J Physiol 1983 June;244(6): pp. G604–G612. [PubMed: 6859268]
68.
Bowen JC, Garg DK, Salvato PD, Jacobson ED. Differential oxygen utilization in the stomach during vasopressin and tourniquet ischemia. 4. J Surg Res 1978 July;25(1): pp. 15–20. 10.1016/0022-4804(78)90151-8. [PubMed: 687384] [CrossRef]
69.
Kvietys PR, Granger DN. Vasoactive agents and splanchnic oxygen uptake. Am J Physiol 1982 July;243(1): pp. G1–G9. [PubMed: 7046475]
70.
Shepherd AP. Intestinal O2 consumption and 86Rb extraction during arterial hypoxia. Am J Physiol 1978 March;234(3): pp. E248–E251. [PubMed: 629339]
71.
Shepherd AP. Intestinal capillary blood flow during metabolic hyperemia. Am J Physiol 1979 December;237(6): pp. E548–E554. [PubMed: 517652]
72.
Shepherd AP, Riedel GL. Differences in reactive hyperemia between the intestinal mucosa and muscularis. 11. Am J Physiol 1984 December;247(6 Pt 1): pp. G617–G622. [PubMed: 6391202]
73.
Xu Y, Henning RH, Sandovici M, van der Want JJ, van Gilst WH, Buikema H. Enhanced myogenic constriction of mesenteric artery in heart failure relates to decreased smooth muscle cell caveolae numbers and altered AT1- and epidermal growth factor-receptor function. 2. Eur J Heart Fail 2009 March;11(3): pp. 246–255. 10.1093/eurjhf/hfn027. [PMC free article: PMC2645056] [PubMed: 19147448] [CrossRef]
74.
Johnson PC, Hanson KM. Effect of arterial pressure on arterial and venous resistance of intestine. J Appl Physiol 1962 May;17: pp. 503–508. [PubMed: 14452085]
75.
Hanson KM, Johnson PC. Evidence for local arteriovenous reflex in intestine. J Appl Physiol 1962 May;17: pp. 509–513. [PubMed: 13904459]
76.
Norris CP, Barnes GE, Smith EE, Granger HJ. Autoregulation of superior mesenteric flow in fasted and fed dogs. 1. Am J Physiol 1979 August;237(2): pp. H174–H177. [PubMed: 464109]
77.
Hanson KM, Johnson PC. Pressure–flow relationships in isolated dog colon. 1. Am J Physiol 1967 March;212(3): pp. 574–578. [PubMed: 6020530]
78.
Kiel JW, Riedel GL, Shepherd AP. Local control of canine gastric mucosal blood flow. 2. Gastroenterology 1987 November;93(5): pp. 1041–1053. [PubMed: 3653631]
79.
Lundgren O, Svanvik J. Mucosal hemodynamics in the small intestine of the cat during reduced perfusion pressure. 8. Acta Physiol Scand 1973 August;88(4): pp. 551–563. 10.1111/j.1748-1716.1973.tb05484.x. [PubMed: 4587803] [CrossRef]
80.
Shepherd AP. Intestinal blood flow autoregulation during foodstuff absorption. Am J Physiol 1980 August;239(2): pp. H156–H162. [PubMed: 7406053]
81.
Kiel JW, Riedel GL, Shepherd AP. Autoregulation of canine gastric mucosal blood flow. 4. Gastroenterology 1987 July;93(1): pp. 12–20. [PubMed: 2953642]
82.
Shepherd AP. Local control of intestinal oxygenation and blood flow. Annu Rev Physiol 1982;44: pp. 13–27. 10.1146/annurev.ph.44.030182.000305. [PubMed: 7041790] [CrossRef]
83.
Bohlen HG. Intestinal mucosal oxygenation influences absorptive hyperemia. 89. Am J Physiol 1980 October;239(4): pp. H489–H493. [PubMed: 7425141]
84.
Bohlen HG. Intestinal tissue pO2 and microvascular responses during glucose exposure. 91. Am J Physiol 1980 February;238(2): pp. H164–H171. [PubMed: 7361909]
85.
Lang DJ, Johnson PC. Elevated ambient oxygen does not affect autoregulation in cat mesentery. 2. Am J Physiol 1988 July;255(1 Pt 2): pp. H131–H137. [PubMed: 3394815]
86.
Jacobson ED, Pawlik WW. Adenosine regulation of mesenteric vasodilation. 3. Gastroenterology 1994 October;107(4): pp. 1168–1180. [PubMed: 7926466]
87.
Sawmiller DR, Chou CC. Role of adenosine in postprandial and reactive hyperemia in canine jejunum. 1. Am J Physiol 1992 October;263(4 Pt 1): pp. G487–G493. [PubMed: 1415708]
88.
Sawmiller DR, Chou CC. Jejunal adenosine increases during food-induced jejunal hyperemia. 3. Am J Physiol 1990 March;258(3 Pt 1): pp. G370–G376. [PubMed: 2316652]
89.
Granger HJ, Norris CP. Role of adenosine in local control of intestinal circulation in the dog. 2. Circ Res 1980 June;46(6): pp. 764–770. [PubMed: 7379242]
90.
Sawmiller DR, Chou CC. Adenosine plays a role in food-induced jejunal hyperemia. 4. Am J Physiol 1988 August;255(2 Pt 1): pp. G168–G174. [PubMed: 3407776]
91.
Lautt WW. Autoregulation of superior mesenteric artery is blocked by adenosine antagonism. Can J Physiol Pharmacol 1986 October;64(10): pp. 1291–1295. [PubMed: 3801982]
92.
Pawlik WW, Hottenstein OD, Palen TE, Pawlik T, Jacobson ED. Adenosine modulates reactive hyperemia in rat gut. 2. J Physiol Pharmacol 1993 June;44(2): pp. 119–137. [PubMed: 8358049]
93.
Shepherd AP, Riedel GL, Maxwell LC, Kiel JW. Selective vasodilators redistribute intestinal blood flow and depress oxygen uptake. 2. Am J Physiol 1984 October;247(4 Pt 1): pp. G377–G384. [PubMed: 6388349]
94.
Granger DN, Valleau JD, Parker RE, Lane RS, Taylor AE. Effects of adenosine on intestinal hemodynamics, oxygen delivery, and capillary fluid exchange. 2. Am J Physiol 1978 December;235(6): pp. H707–H719. [PubMed: 736159]
95.
Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2003 January;284(1): pp. R1–12. [PubMed: 12482742]
96.
Moncada S, Higgs EA. Nitric oxide and the vascular endothelium. 1. Handb Exp Pharmacol 2006;(176 Pt 1): pp. 213–254. 10.1007/3-540-32967-6_7. [PubMed: 16999221] [CrossRef]
97.
Pique JM, Esplugues JV, Whittle BJ. Endogenous nitric oxide as a mediator of gastric mucosal vasodilatation during acid secretion. 8. Gastroenterology 1992 January;102(1): pp. 168–174. [PubMed: 1727750]
98.
Bohlen HG, Lash JM. Intestinal absorption of sodium and nitric oxide-dependent vasodilation interact to dominate resting vascular resistance. 3. Circ Res 1996 February;78(2): pp. 231–237. [PubMed: 8575066]
99.
Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. 2. Physiol Rev 2009 April;89(2): pp. 481–534. 10.1152/physrev.00042.2007. [PubMed: 19342613] [CrossRef]
100.
Bohlen HG, Nase GP. Dependence of intestinal arteriolar regulation on flow-mediated nitric oxide formation. 5. Am J Physiol Heart Circ Physiol 2000 November;279(5): pp. H2249–H2258. [PubMed: 11045960]
101.
Pohl U, Busse R. Hypoxia stimulates release of endothelium-derived relaxant factor. 11. Am J Physiol 1989 June;256(6 Pt 2): pp. H1595–H1600. [PubMed: 2660596]
102.
Macedo MP, Lautt WW. Autoregulatory capacity in the superior mesenteric artery is attenuated by nitric oxide. 62. Am J Physiol 1996 September;271(3 Pt 1): pp. G400–G404. [PubMed: 8843761]
103.
Bohlen HG. Mechanism of increased vessel wall nitric oxide concentrations during intestinal absorption. 26. Am J Physiol 1998 August;275(2 Pt 2): pp. H542–H550. [PubMed: 9683443]
104.
Steenbergen JM, Bohlen HG. Sodium hyperosmolarity of intestinal lymph causes arteriolar vasodilation in part mediated by EDRF. 2. Am J Physiol 1993 July;265(1 Pt 2): pp. H323–H328. [PubMed: 8342649]
105.
Zani BG, Bohlen HG. Sodium channels are required during In vivo sodium chloride hyperosmolarity to stimulate increase in intestinal endothelial nitric oxide production. 2. Am J Physiol Heart Circ Physiol 2005 January;288(1): pp. H89–H95. [PubMed: 15331363]
106.
Walder CE, Thiemermann C, Vane JR. Endothelium-derived relaxing factor participates in the increased blood flow in response to pentagastrin in the rat stomach mucosa. 3. Proc Biol Sci 1990 September 22;241(1302): pp. 195–200. 10.1098/rspb.1990.0085. [PubMed: 1979444] [CrossRef]
107.
Kuebler WM, Uhlig U, Goldmann T, Schael G, Kerem A, Exner K, Martin C, Vollmer E, Uhlig S. Stretch activates nitric oxide production in pulmonary vascular endothelial cells in situ. 1. Am J Respir Crit Care Med 2003 December 1;168(11): pp. 1391–1398. 10.1164/rccm.200304-562OC. [PubMed: 12947026] [CrossRef]
108.
Sun D, Huang A, Recchia FA, Cui Y, Messina EJ, Koller A, Kaley G. Nitric oxide-mediated arteriolar dilation after endothelial deformation. 1. Am J Physiol Heart Circ Physiol 2001 February;280(2): pp. H714–H721. [PubMed: 11158970]
109.
Awolesi MA, Sessa WC, Sumpio BE. Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. 2. J Clin Invest 1995 September;96(3): pp. 1449–1454. 10.1172/JCI118181. [PMC free article: PMC185768] [PubMed: 7544806] [CrossRef]
110.
Segal SS. Cell-to-cell communication coordinates blood flow control. Hypertension 1994 June;23(6 Pt 2): pp. 1113–1120. [PubMed: 8206602]
111.
Busse R, Fleming I. Vascular endothelium and blood flow. Handb Exp Pharmacol 2006;(176 Pt 2): pp. 43–78. 10.1007/3-540-36028-X_2. [PubMed: 16999224] [CrossRef]
112.
Henrion D, Iglarz M, Levy BI. Chronic endothelin-1 improves nitric oxide-dependent flow-induced dilation in resistance arteries from normotensive and hypertensive rats. 7. Arterioscler Thromb Vasc Biol 1999 September;19(9): pp. 2148–2153. [PubMed: 10479657]
113.
Pohl U, Herlan K, Huang A, Bassenge E. EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. 1. Am J Physiol 1991 December;261(6 Pt 2): pp. H2016–H2023. [PubMed: 1721502]
114.
Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. 1. Annu Rev Biomed Eng 2007;9: pp. 121–167. [PubMed: 17373886]
115.
Osawa M, Masuda M, Kusano K, Fujiwara K. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? 1. J Cell Biol 2002 August 19;158(4): pp. 773–785. 10.1083/jcb.200205049. [PMC free article: PMC2174013] [PubMed: 12177047] [CrossRef]
116.
Fleming I, Fisslthaler B, Dixit M, Busse R. Role of PECAM-1 in the shear–stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. 18. J Cell Sci 2005 September 15;118(Pt 18): pp. 4103–4111. 10.1242/jcs.02541. [PubMed: 16118242] [CrossRef]
117.
Bagi Z, Frangos JA, Yeh JC, White CR, Kaley G, Koller A. PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress. 24. Arterioscler Thromb Vasc Biol 2005 August;25(8): pp. 1590–1595. 10.1161/01.ATV.0000170136.71970.5f. [PubMed: 15890968] [CrossRef]
118.
Vanner S, Surprenant A. Neural reflexes controlling intestinal microcirculation. 1. Am J Physiol 1996 August;271(2 Pt 1): pp. G223–G230. [PubMed: 8770037]
119.
Gibbins IL, Jobling P, Morris JL. Functional organization of peripheral vasomotor pathways. 7. Acta Physiol Scand 2003 March;177(3): pp. 237–245. 10.1046/j.1365-201X.2003.01079.x. [PubMed: 12608994] [CrossRef]
120.
Sjoblom-Widfeldt N. Neuro-muscular transmission in blood vessels: phasic and tonic components. An in-vitro study of mesenteric arteries of the rat. 5. Acta Physiol Scand Suppl 1990;587: pp. 1–52. [PubMed: 1970212]
121.
Greenway CV, Scott GD, Zink J. Sites of autoregulatory escape of blood flow in the mesenteric vascular bed. 5. J Physiol 1976 July;259(1): pp. 1–12. [PMC free article: PMC1309011] [PubMed: 957204]
122.
Folkow B, Lewis DH, Lundgren O, Mellander S, Wallentin I. The effect of graded vasoconstrictor fibre stimulation on the intestinal resistance and capacitance vessels. 2. Acta Physiol Scand 1964 August;61: pp. 445–457. [PubMed: 14209260]
123.
Hebert MT, Marshall JM. Direct observations of responses of mesenteric microcirculation of the rat to circulating noradrenaline. 3. J Physiol 1985 November;368: pp. 393–407. [PMC free article: PMC1192603] [PubMed: 4078744]
124.
Shepherd AP, Riedel GL. Intramural distribution of intestinal blood flow during sympathetic stimulation. 3. Am J Physiol 1988 November;255(5 Pt 2): pp. H1091–H1095. [PubMed: 2973248]
125.
Kiel JW, Shepherd AP. Gastric oxygen uptake during autoregulatory escape from sympathetic stimulation. 3. Am J Physiol 1989 October;257(4 Pt 1): pp. G633–G636. [PubMed: 2801944]
126.
Crissinger KD, Kvietys PR, Granger DN. Autoregulatory escape from norepinephrine infusion: roles of adenosine and histamine. 3. Am J Physiol 1988 April;254(4 Pt 1): pp. G560–G565. [PubMed: 2451433]
127.
Rothe C. Control of capacitance vessels. In: Physiology of the Intestinal Circulation, Shepherd A, Granger D, eds. pp. 73–81. 1984. New York: Raven Press.
128.
Vanner S. Corelease of neuropeptides from capsaicin-sensitive afferents dilates submucosal arterioles in guinea pig ileum. Am J Physiol 1994 October;267(4 Pt 1): pp. G650–G655. [PubMed: 7524349]
129.
Chen RY, Li DS, Guth PH. Role of calcitonin gene-related peptide in capsaicin-induced gastric submucosal arteriolar dilation. 1. Am J Physiol 1992 May;262(5 Pt 2): pp. H1350–H1355. [PubMed: 1590437]
130.
De FD, Wattchow DA, Costa M, Brookes SJ. Immunohistochemical characterization of the innervation of human colonic mesenteric and submucosal blood vessels. 2. Neurogastroenterol Motil 2008 November;20(11): pp. 1212–1226. 10.1111/j.1365-2982.2008.01150.x. [PubMed: 18643894] [CrossRef]
131.
Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 1991 June;43(2): pp. 143–201. [PubMed: 1852779]
132.
Chan SL, Fiscus RR. Vasorelaxations induced by calcitonin gene-related peptide, vasoactive intestinal peptide, and acetylcholine in aortic rings of endothelial and inducible nitric oxide synthase-knockout mice. 3. J Cardiovasc Pharmacol 2003 March;41(3): pp. 434–443. [PubMed: 12605022]
133.
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. 7. Nature 1997 October 23;389(6653): pp. 816–824. [PubMed: 9349813]
134.
Scotland RS, Chauhan S, Davis C, De FC, Hunt S, Kabir J, Kotsonis P, Oh U, Ahluwalia A. Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction. 2. Circ Res 2004 November 12;95(10): pp. 1027–1034. 10.1161/01.RES.0000148633.93110.24. [PubMed: 15499026] [CrossRef]
135.
Xie H, Ray PE, Short BL. Role of sensory C fibers in hypoxia/reoxygenation-impaired myogenic constriction of cerebral arteries. 1. Neurol Res 2009 June 30. [PMC free article: PMC2877164] [PubMed: 19570322]
136.
Hottenstein OD, Pawlik WW, Remak G, Jacobson ED. Capsaicin-sensitive nerves modulate reactive hyperemia in rat gut. 4. Proc Soc Exp Biol Med 1992 March;199(3): pp. 311–320. [PubMed: 1347170]
137.
Domoki F, Santha P, Bari F, Jancso G. Perineural capsaicin treatment attenuates reactive hyperaemia in the rat skin. 1. Neurosci Lett 2003 May 1;341(2): pp. 127–130. 10.1016/S0304-3940(03)00191-5. [PubMed: 12686382] [CrossRef]
138.
Remak G, Hottenstein OD, Jacobson ED. Sensory nerves mediate neurogenic escape in rat gut. Am J Physiol 1990 March;258(3 Pt 2): pp. H778–H786. [PubMed: 2316694]
139.
Leung FW. Modulation of autoregulatory escape by capsaicin-sensitive afferent nerves in rat stomach. Am J Physiol 1992 February;262(2 Pt 2): pp. H562–H567. [PubMed: 1539716]
140.
Vanner S, Surprenant A. Cholinergic and noncholinergic submucosal neurons dilate arterioles in guinea pig colon. 4. Am J Physiol 1991 July;261(1 Pt 1): pp. G136–G144. [PubMed: 1713416]
141.
Joh T, Granger DN, Benoit JN. Endogenous vasoconstrictor tone in intestine of normal and portal hypertensive rats. 1. Am J Physiol 1993 January;264(1 Pt 2): pp. H171–H177. [PubMed: 8430843]
142.
McNeill JR. Redundant nature of the vasopressin and renin–angiotensin systems in the control of mesenteric resistance vessels of the conscious fasted cat. Can J Physiol Pharmacol 1983 July;61(7): pp. 770–773. [PubMed: 6193852]
143.
Shepherd AP, Pawlik W, Mailman D, Burks TF, Jacobson ED. Effects of vasoconstrictors on intestinal vascular resistance and oxygen extraction. 1. Am J Physiol 1976 February;230(2): pp. 298–305. [PubMed: 1259008]
144.
Shepherd AP, Mailman D, Burks TF, Granger HJ. Effects of norepinephrine and sympathetic stimulation on extraction of oxygen and 86Rb in perfused canine small bowel. 5. Circ Res 1973 August;33(2): pp. 166–174. [PubMed: 4727368]
145.
Pawlik W, Shepherd AP, Jacobson ED. Effect of vasoactive agents on intestinal oxygen consumption and blood flow in dogs. 4. J Clin Invest 1975 August;56(2): pp. 484–490. 10.1172/JCI108115. [PMC free article: PMC436609] [PubMed: 1150881] [CrossRef]
146.
Pawlik WW, Shepherd AP, Mailman D, Shanbour LL, Jacobson ED. Effects of dopamine and epinephrine on intestinal blood flow and oxygen uptake. 1. Adv Exp Med Biol 1976;75: pp. 511–516. [PubMed: 1015433]
147.
Folkow B, Lundgren O, Wallentin I. Studies on the relationship between flow resistance, capillary filtration coefficient and regional blood volume in the intestine of the cat. 4. Acta Physiol Scand 1963 March;57: pp. 270–283. 10.1111/j.1748-1716.1963.tb02591.x. [PubMed: 13958550] [CrossRef]
148.
Granger DN, Kvietys PR. The splanchnic circulation: intrinsic regulation. 89. Annu Rev Physiol 1981;43: pp. 409–418. 10.1146/annurev.ph.43.030181.002205. [PubMed: 7011192] [CrossRef]
149.
Gallavan RH, Jr, Chou CC. Possible mechanisms for the initiation and maintenance of postprandial intestinal hyperemia. 3. Am J Physiol 1985 September;249(3 Pt 1): pp. G301–G308. [PubMed: 3898869]
150.
Jeays AD, Lawford PV, Gillott R, Spencer PA, Bardhan KD, Hose DR. A framework for the modeling of gut blood flow regulation and postprandial hyperaemia. 1. World J Gastroenterol 2007 March 7;13(9): pp. 1393–1398. [PMC free article: PMC4146924] [PubMed: 17457971]
151.
Madsen JL, Sondergaard SB, Moller S. Meal-induced changes in splanchnic blood flow and oxygen uptake in middle-aged healthy humans. 3. Scand J Gastroenterol 2006 January;41(1): pp. 87–92. 10.1080/00365520510023882. [PubMed: 16373281] [CrossRef]
152.
Vatner SF, Patrick TA, Higgins CB, Franklin D. Regional circulatory adjustments to eating and digestion in conscious unrestrained primates. 20. J Appl Physiol 1974 May;36(5): pp. 524–529. [PubMed: 4207835]
153.
Vatner SF, Franklin D, Van Citters RL. Mesenteric vasoactivity associated with eating and digestion in the conscious dog. 27. Am J Physiol 1970 July;219(1): pp. 170–174. [PubMed: 4393203]
154.
Fronek K, Stahlgren LH. Systemic and regional hemodynamic changes during food intake and digestion in nonanesthetized dogs. 1. Circ Res 1968 December;23(6): pp. 687–692. [PubMed: 4882287]
155.
Bond JH, Prentiss RA, Levitt MD. The effects of feeding on blood flow to the stomach, small bowel, and colon of the conscious dog. 13. J Lab Clin Med 1979 April;93(4): pp. 594–599. [PubMed: 429859]
156.
Fara JW, Rubinstein EH, Sonnenschein RR. Intestinal hormones in mesenteric vasodilation after intraduodenal agents. 1. Am J Physiol 1972 November;223(5): pp. 1058–1067. [PubMed: 4654340]
157.
Anzueto HL, Kvietys PR, Granger DN. Postprandial hemodynamics in the conscious rat. 43. Am J Physiol 1986 July;251(1 Pt 1): pp. G117–G123. [PubMed: 3728670]
158.
Skovgaard N, Conlon JM, Wang T. Evidence that neurotensin mediates postprandial intestinal hyperemia in the python, Python regius. 1. Am J Physiol Regul Integr Comp Physiol 2007 September;293(3): pp. R1393–R1399. 10.1152/ajpregu.00256.2007. [PubMed: 17567714] [CrossRef]
159.
Seth H, Sandblom E, Axelsson M. Nutrient-induced gastrointestinal hyperemia and specific dynamic action in rainbow trout (Oncorhynchus mykiss)—importance of proteins and lipids. 1. Am J Physiol Regul Integr Comp Physiol 2009 February;296(2): pp. R345–R352. [PubMed: 19052318]
160.
Takagi T, Naruse S, Shionoya S. Postprandial celiac and superior mesenteric blood flows in conscious dogs. 3. Am J Physiol 1988 October;255(4 Pt 1): pp. G522–G528. [PubMed: 2902803]
161.
Kato M, Naruse S, Takagi T, Shionoya S. Postprandial gastric blood flow in conscious dogs. 8. Am J Physiol 1989 July;257(1 Pt 1): pp. G111–G117. [PubMed: 2750901]
162.
Brandt JL, Castleman L, Ruskin HD, Greenwald J, Kelly JJ, Jr. The effect of oral protein and glucose feeding of splanchnic blood flow and oxygen utilization in normal and cirrhotic subjects. 3. J Clin Invest 1955 July;34(7, Part 1): pp. 1017–1025. 10.1172/JCI103151. [PMC free article: PMC438853] [PubMed: 14392217] [CrossRef]
163.
Sieber C, Beglinger C, Jager K, Stalder GA. Intestinal phase of superior mesenteric artery blood flow in man. 1. Gut 1992 April;33(4): pp. 497–501. 10.1136/gut.33.4.497. [PMC free article: PMC1374066] [PubMed: 1582594] [CrossRef]
164.
Chou CC. Splanchnic and overall cardiovascular hemodynamics during eating and digestion. Fed Proc 1983 April;42(6): pp. 1658–1661. [PubMed: 6832382]
165.
Chou CC, Hsieh CP, Yu YM, Kvietys P, Yu LC, Pittman R, Dabney JM. Localization of mesenteric hyperemia during digestion in dogs. 6. Am J Physiol 1976 March;230(3): pp. 583–589. [PubMed: 1266961]
166.
Chou CC, Kvietys P, Post J, Sit SP. Constituents of chyme responsible for postprandial intestinal hyperemia. 1. Am J Physiol 1978 December;235(6): pp. H677–H682. [PubMed: 736156]
167.
Pawlik WW, Fondacaro JD, Jacobson ED. Metabolic hyperemia in canine gut. 3. Am J Physiol 1980 July;239(1): pp. G12–G17. [PubMed: 6994511]
168.
Shepherd AP, Riedel GL. Laser-Doppler blood flowmetry of intestinal mucosal hyperemia induced by glucose and bile. 10. Am J Physiol 1985 April;248(4 Pt 1): pp. G393–G397. [PubMed: 3157326]
169.
Siregar H, Chou CC. Relative contribution of fat, protein, carbohydrate, and ethanol to intestinal hyperemia. 2. Am J Physiol 1982 January;242(1): pp. G27–G31. [PubMed: 7058895]
170.
Valleau JD, Granger DN, Taylor AE. Effect of solute-coupled volume absorption on oxygen consumption in cat ileum. 1. Am J Physiol 1979 February;236(2): pp. E198–E203. [PubMed: 420290]
171.
Granger DN, Korthuis RJ, Kvietys PR, Tso P. Intestinal microvascular exchange during lipid absorption. 2. Am J Physiol 1988 November;255(5 Pt 1): pp. G690–G695. [PubMed: 3189557]
172.
Kvietys PR, Gallavan RH, Chou CC. Contribution of bile to postprandial intestinal hyperemia. 2. Am J Physiol 1980 April;238(4): pp. G284–G288. [PubMed: 7377305]
173.
Kvietys PR, Granger DN. Effect of volatile fatty acids on blood flow and oxygen uptake by the dog colon. 87. Gastroenterology 1981 May;80(5 Pt 1): pp. 962–969. [PubMed: 7202979]
174.
Nyhof RA, Chou CC. Evidence against local neural mechanism for intestinal postprandial hyperemia. 3. Am J Physiol 1983 September;245(3): pp. H437–H446. [PubMed: 6137149]
175.
Nyhof RA, Ingold-Wilcox D, Chou CC. Effect of atropine on digested food-induced intestinal hyperemia. 2. Am J Physiol 1985 December;249(6 Pt 1): pp. G685–G690. [PubMed: 4083350]
176.
Biber B. Vasodilator mechanisms in the small intestine. An experimental study in the cat. 131. Acta Physiol Scand Suppl 1973;401: pp. 1–31. [PubMed: 4523820]
177.
Fahrenkrug J, Haglund U, Jodal M, Lundgren O, Olbe L, de Muckadell OB. Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications. 1. J Physiol 1978 November;284: pp. 291–305. [PMC free article: PMC1282822] [PubMed: 215756]
178.
Premen AJ, Kvietys PR, Granger DN. Postprandial regulation of intestinal blood flow: role of gastrointestinal hormones. 4. Am J Physiol 1985 August;249(2 Pt 1): pp. G250–G255. [PubMed: 4025551]
179.
Gallavan RH, Jr, Shaw C, Murphy RF, Buchanan KD, Joffe SN, Jacobson ED. Effects of micellar oleic acid on canine jejunal blood flow and neurotensin release. 1. Am J Physiol 1986 November;251(5 Pt 1): pp. G649–G655. [PubMed: 3777170]
180.
Gallavan RH, Jr, Chen MH, Joffe SN, Jacobson ED. Vasoactive intestinal polypeptide, cholecystokinin, glucagon, and bile-oleate-induced jejunal hyperemia. 2. Am J Physiol 1985 February;248(2 Pt 1): pp. G208–G215. [PubMed: 3970202]
181.
Rozsa Z, Jacobson ED. Capsaicin-sensitive nerves are involved in bile-oleate-induced intestinal hyperemia. 6. Am J Physiol 1989 March;256(3 Pt 1): pp. G476–G481. [PubMed: 2466409]
182.
Baca I, Mittmann U, Feurle GE, Haas M, Muller T. Effect of neurotensin on regional intestinal blood flow in the dog. 3. Res Exp Med (Berl) 1981;179(1): pp. 53–58. 10.1007/BF01852125. [PubMed: 7268217] [CrossRef]
183.
Holm L, Perry MA. Role of blood flow in gastric acid secretion. 3. Am J Physiol 1988 March;254(3 Pt 1): pp. G281–G293. [PubMed: 2831734]
184.
Cheung LY, Moody FG, Larson K, Lowry SF. Oxygen consumption during cimetidine and prostaglandin E2 inhibition of acid secretion. 2. Am J Physiol 1978 May;234(5): pp. E445–E450. [PubMed: 645895]
185.
Kowalewski K, Kolodej A. Relation between hydrogen ion secretion and oxygen consumption by ex vivo isolated canine stomach, perfused with homologous blood. 36. Can J Physiol Pharmacol 1972 October;50(10): pp. 955–961. [PubMed: 4637183]
186.
Holm-Rutili L, Berglindh T. Pentagastrin and gastric mucosal blood flow. 1. Am J Physiol 1986 May;250(5 Pt 1): pp. G575–G580. [PubMed: 2939729]
187.
Matheson PJ, Wilson MA, Spain DA, Harris PD, Anderson GL, Garrison RN. Glucose-induced intestinal hyperemia is mediated by nitric oxide. 11. J Surg Res 1997 October;72(2): pp. 146–154. 10.1006/jsre.1997.5176. [PubMed: 9356236] [CrossRef]
188.
Bohlen HG. Integration of intestinal structure, function, and microvascular regulation. 25. Microcirculation 1998;5(1): pp. 27–37. 10.1111/j.1549-8719.1998.tb00050.x; 10.1080/713773809; 10.1080/mic.5.1.27.37. [PubMed: 9702720] [CrossRef] [CrossRef] [CrossRef]
189.
Bulbring E. Measurements of oxygen consumption in smooth muscle. J Physiol 1953 October;122(1): pp. 111–134. [PMC free article: PMC1366182] [PubMed: 13109745]
190.
Walus KM, Fondacaro JD, Jacobson ED. Hemodynamic and metabolic changes during stimulation of ileal motility. 1. Dig Dis Sci 1981 December;26(12): pp. 1069–1077. 10.1007/BF01295970. [PubMed: 7307853] [CrossRef]
191.
Chou CC, Gallavan RH. Blood flow and intestinal motility. 5. Fed Proc 1982 April;41(6): pp. 2090–2095. [PubMed: 6122605]
192.
Fioramonti J, Bueno L. Relation between intestinal motility and mesenteric blood flow in the conscious dog. Am J Physiol 1984 February;246(2 Pt 1): pp. G108–G113. [PubMed: 6696108]
193.
Sidky M, Bean JW. Influence of rhythmic and tonic contraction of intestinal muscle on blood flow and blood reservoir capacity in dog intestine. 2. Am J Physiol 1958 May;193(2): pp. 386–392. [PubMed: 13533560]
194.
Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. 1. Physiol Rev 2008 July;88(3): pp. 1009–1086. 10.1152/physrev.00045.2006. [PubMed: 18626066] [CrossRef]
195.
Segal SS. Regulation of blood flow in the microcirculation. 18. Microcirculation 2005 January;12(1): pp. 33–45. 10.1080/10739680590895028. [PubMed: 15804972] [CrossRef]
196.
Renkin EM. Multiple pathways of capillary permeability. 44. Circ Res 1977 December;41(6): pp. 735–743. [PubMed: 923024]
197.
Granger DN, Kvietys PR, Perry MA, Barrowman JA. The microcirculation and intestinal transport In: Physiology of the Gastrointestinal Tract. 2nd ed. Johnson LR, ed. pp. 1671–1697. 1987. New York: Raven Press.
198.
Casley-Smith JR, Gannon BJ. Intestinal microcirculation: spatial organization and fine structure. In: Physiology of the Intestinal Circulation. Shepherd AP, Granger DN. pp. 9–31. 1984. New York: Raven Press.
199.
Simionescu N, Simionescu M, Palade GE. Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. 21. J Cell Biol 1972 May;53(2): pp. 365–392. 10.1083/jcb.53.2.365. [PMC free article: PMC2108730] [PubMed: 4112540] [CrossRef]
200.
Casley-Smith JR. Endothelial fenestrae in intestinal villi: differences between the arterial and venous ends of the capillaries. 135. Microvasc Res 1971 January;3(1): pp. 49–68. 10.1016/0026-2862(71)90006-9. [PubMed: 5092927] [CrossRef]
201.
Clementi F, Palade GE. Intestinal capillaries. I. Permeability to peroxidase and ferritin. 2. J Cell Biol 1969 April;41(1): pp. 33–58. [PMC free article: PMC2107738] [PubMed: 5775791]
202.
Palade GE, Simionescu M, Simionescu N. Structural aspects of the permeability of the microvascular endothelium. 10. Acta Physiol Scand Suppl 1979;463: pp. 11–32. [PubMed: 382743]
203.
Feng D, Nagy JA, Pyne K, Hammel I, Dvorak HF, Dvorak AM. Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. 3. Microcirculation 1999 March;6(1): pp. 23–44. 10.1080/713773925; 10.1111/j.1549-8719.1999.tb00085.x; 10.1111/j.1549-8719.1999.tb00085.x. [PubMed: 10100187] [CrossRef] [CrossRef] [CrossRef]
204.
Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. 4. Physiol Rev 1994 January;74(1): pp. 163–219. [PubMed: 8295933]
205.
Michel CC, Curry FE. Microvascular permeability. 1. Physiol Rev 1999 July;79(3): pp. 703–761. [PubMed: 10390517]
206.
Rostgaard J, Qvortrup K. Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. 5. Microvasc Res 1997 January;53(1): pp. 1–13. 10.1006/mvre.1996.1987. [PubMed: 9056471] [CrossRef]
207.
Curry FR. Microvascular solute and water transport. 14. Microcirculation 2005 January;12(1): pp. 17–31. 10.1080/10739680590894993. [PubMed: 15804971] [CrossRef]
208.
Salmon AH, Neal CR, Sage LM, Glass CA, Harper SJ, Bates DO. Angiopoietin-1 alters microvascular permeability coefficients In vivo via modification of endothelial glycocalyx. 2. Cardiovasc Res 2009 July 1;83(1): pp. 24–33. 10.1093/cvr/cvp093. [PMC free article: PMC2695703] [PubMed: 19297368] [CrossRef]
209.
Palade GE, Bruns RR. Structural modulations of plasmalemmal vesicles. 1. J Cell Biol 1968 June;37(3): pp. 633–649. 10.1083/jcb.37.3.633. [PMC free article: PMC2107438] [PubMed: 11905197] [CrossRef]
210.
Taylor A, Granger D. Exchange of macromolecules across the microcirculation. In: Handbook of Physiology. The Cardiovascular System. Microcirculation. Renkin EM, Michel CC. Section 2, Volume IV, Part 1, Chapter 11. pp. 467–520. 1984. Washington, DC, American Physiological Society.
211.
Perry M, Granger D. Permeability characteristics of intestinal capillaries. Physiology of the Intestinal Circulation. Shepherd AP, Granger DN, eds. pp. 233–248. 1984. New York: Raven Press.
212.
Perry MA, Crook WJ, Granger DN. Permeability of gastric capillaries to small and large molecules. 35. Am J Physiol 1981 December;241(6): pp. G478–G486. [PubMed: 6172985]
213.
Perry MA, Granger DN. Permeability of intestinal capillaries to small molecules. 39. Am J Physiol 1981 July;241(1): pp. G24–G30. [PubMed: 7246781]
214.
Renkin EM. Filtration, diffusion, and molecular sieving through porous cellulose membranes. 85. J Gen Physiol 1954 November 20;38(2): pp. 225–243. [PMC free article: PMC2147404] [PubMed: 13211998]
215.
Granger DN, Taylor AE. Permeability of intestinal capillaries to endogenous macromolecules. 23. Am J Physiol 1980 April;238(4): pp. H457–H464. [PubMed: 7377316]
216.
Rutili G, Arfors KE. Protein concentration in interstitial and lymphatic fluids from the subcutaneous tissue. 6. Acta Physiol Scand 1977 January;99(1): pp. 1–8. 10.1111/j.1748-1716.1977.tb10345.x. [PubMed: 65903] [CrossRef]
217.
Zawieja DC, Barber BJ. Lymph protein concentration in initial and collecting lymphatics of the rat. 3. Am J Physiol 1987 May;252(5 Pt 1): pp. G602–G606. [PubMed: 3578518]
218.
Richardson PD, Granger DN, Mailman D, Kvietys PR. Permeability characteristics of colonic capillaries. 1. Am J Physiol 1980 October;239(4): pp. G300–G305. [PubMed: 7425132]
219.
Perry MA, Navia CA, Granger DN, Parker JC, Taylor AE. Calculation of equivalent pore radii in dog hindpaw capillaries using endogenous lymph and plasma proteins. 1. Microvasc Res 1983 September;26(2): pp. 250–253. 10.1016/0026-2862(83)90074-2. [PubMed: 6621410] [CrossRef]
220.
Renkin EM, Watson PD, Sloop CH, Joyner WM, Curry FE. Transport pathways for fluid and large molecules in microvascular endothelium of the dog's paw. 1. Microvasc Res 1977 September;14(2): pp. 205–214. 10.1016/0026-2862(77)90019-X. [PubMed: 927218] [CrossRef]
221.
Perry MA, Shepherd AP, Kvietys PR, Granger DN. Effect of hypoxia on feline intestinal capillary permeability. 1. Am J Physiol 1985 March;248(3 Pt 1): pp. G272–G276. [PubMed: 2579578]
222.
Perry MA, Benoit JN, Kvietys PR, Granger DN. Restricted transport of cationic macromolecules across intestinal capillaries. 1. Am J Physiol 1983 October;245(4): pp. G568–G572. [PubMed: 6194696]
223.
Baldwin AL, Wilson LM. Stationary red blood cells induce a negative charge on mucosal capillary endothelium. Am J Physiol 1994 April;266(4 Pt 1): pp. G685–G694. [PubMed: 7513962]
224.
Deen WM, Lazzara MJ, Myers BD. Structural determinants of glomerular permeability. 5. Am J Physiol Renal Physiol 2001 October;281(4): pp. F579–F596. [PubMed: 11553505]
225.
Granger DN, Perry MA, Kvietys PR, Taylor AE. Permeability of intestinal capillaries: effects of fat absorption and gastrointestinal hormones. 6. Am J Physiol 1982 March;242(3): pp. G194–G201. [PubMed: 7065182]
226.
Granger DN, Taylor AE. Effects of solute-coupled transport on lymph flow and oncotic pressures in cat ileum. 38. Am J Physiol 1978 October;235(4): pp. E429–E436. [PubMed: 696864]
227.
Granger DN, Perry MA, Kvietys PR, Taylor AE. Capillary and interstitial forces during fluid absorption in the cat small intestine. 9. Gastroenterology 1984 February;86(2): pp. 267–273. [PubMed: 6690353]
228.
Holzer HH, Turkelson CM, Solomon TE, Raybould HE. Intestinal lipid inhibits gastric emptying via CCK and a vagal capsaicin-sensitive afferent pathway in rats. 1. Am J Physiol 1994 October;267(4 Pt 1): pp. G625–G629. [PubMed: 7943327]
229.
Fujimura M, Khalil T, Sakamoto T, Greeley GH, Jr, Salter MG, Townsend CM, Jr, Thompson JC. Release of neurotensin by selective perfusion of the jejunum with oleic acid in dogs. 1. Gastroenterology 1989 June;96(6): pp. 1502–1505. [PubMed: 2714577]
230.
Harper SL, Barrowman JA, Kvietys PR, Granger DN. Effect of neurotensin on intestinal capillary permeability and blood flow. 8. Am J Physiol 1984 August;247(2 Pt 1): pp. G161–G166. [PubMed: 6465312]
231.
Mortillaro NA, Granger DN, Kvietys PR, Rutili G, Taylor AE. Effects of histamine and histamine antagonists on intestinal capillary permeability. 2. Am J Physiol 1981 May;240(5): pp. G381–G386. [PubMed: 7235025]
232.
Laine GA, Granger HJ. Permeability of intestinal microvessels in chronic arterial hypertension. 4. Hypertension 1983 September;5(5): pp. 722–727. [PubMed: 6618634]
233.
Wosik K, Cayrol R, Dodelet-Devillers A, Berthelet F, Bernard M, Moumdjian R, Bouthillier A, Reudelhuber TL, Prat A. Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis. 3. J Neurosci 2007 August 22;27(34): pp. 9032–9042. 10.1523/JNEUROSCI.2088-07.2007. [PMC free article: PMC6672193] [PubMed: 17715340] [CrossRef]
234.
Michel CC, Neal CR. Openings through endothelial cells associated with increased microvascular permeability. 2. Microcirculation 1999 March;6(1): pp. 45–54. 10.1080/mic.6.1.45.54; 10.1080/713773926; 10.1111/j.1549-8719.1999.tb00086.x. [PubMed: 10100188] [CrossRef] [CrossRef] [CrossRef]
235.
Michel CC, Curry FR. Glycocalyx volume: a critical review of tracer dilution methods for its measurement. 1. Microcirculation 2009 April;16(3): pp. 213–219. 10.1080/10739680802527404. [PMC free article: PMC4041983] [PubMed: 19184776] [CrossRef]
236.
Renkin EM. Relation of capillary morphology to transport of fluid and large molecules: a review. 40. Acta Physiol Scand Suppl 1979;463: pp. 81–91. [PubMed: 382747]
237.
Stan RV, Kubitza M, Palade GE. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. 2. Proc Natl Acad Sci U S A 1999 November 9;96(23): pp. 13203–13207. 10.1073/pnas.96.23.13203. [PMC free article: PMC23925] [PubMed: 10557298] [CrossRef]
238.
Ioannidou S, Deinhardt K, Miotla J, Bradley J, Cheung E, Samuelsson S, Ng YS, Shima DT. An in vitro assay reveals a role for the diaphragm protein PV-1 in endothelial fenestra morphogenesis. 1. Proc Natl Acad Sci U S A 2006 November 7;103(45): pp. 16770–16775. 10.1073/pnas.0603501103. [PMC free article: PMC1636530] [PubMed: 17075074] [CrossRef]
239.
Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W. Vascular endothelial growth factor induces endothelial fenestrations in vitro. 3. J Cell Biol 1998 February 23;140(4): pp. 947–959. 10.1083/jcb.140.4.947. [PMC free article: PMC2141756] [PubMed: 9472045] [CrossRef]
240.
Curry FE, Adamson RH. Transendothelial pathways in venular microvessels exposed to agents which increase permeability: the gaps in our knowledge. 14. Microcirculation 1999 March;6(1): pp. 3–5. 10.1080/mic.6.1.3.5; 10.1080/713773923; 10.1111/j.1549-8719.1999.tb00083.x. [PubMed: 10100185] [CrossRef] [CrossRef] [CrossRef]
241.
Malik AB, Lo SK. Vascular endothelial adhesion molecules and tissue inflammation. 3. Pharmacol Rev 1996 June;48(2): pp. 213–229. [PubMed: 8804104]
242.
McDonald DM, Thurston G, Baluk P. Endothelial gaps as sites for plasma leakage in inflammation. 34. Microcirculation 1999 March;6(1): pp. 7–22. 10.1080/mic.6.1.7.22; 10.1111/j.1549-8719.1999.tb00084.x; 10.1080/713773924. [PubMed: 10100186] [CrossRef] [CrossRef] [CrossRef]
243.
Kvietys PR, Sandig M. Neutrophil diapedesis: paracellular or transcellular? 2. News Physiol Sci 2001 February;16: pp. 15–19. [PubMed: 11390940]
244.
Muthuchamy M, Zawieja D. Molecular regulation of lymphatic contractility. 4. Ann N Y Acad Sci 2008;1131: pp. 89–99. 10.1196/annals.1413.008. [PubMed: 18519962] [CrossRef]
245.
Gashev AA. Lymphatic vessels: pressure- and flow-dependent regulatory reactions. 7. Ann N Y Acad Sci 2008;1131: pp. 100–109. 10.1196/annals.1413.009. [PubMed: 18519963] [CrossRef]
246.
Granger DN. Intestinal microcirculation and transmucosal fluid transport. Am J Physiol 1981 May;240(5): pp. G343–G349. [PubMed: 7015880]
247.
Kvietys PR, Patterson WG, Russell JM, Barrowman JA, Granger DN. Role of the microcirculation in ethanol-induced mucosal injury in the dog. 2. Gastroenterology 1984 September;87(3): pp. 562–571. [PubMed: 6745607]
248.
Granger DN, Barrowman JA, Harper SL, Kvietys PR, Korthuis RJ. Sympathetic stimulation and intestinal capillary fluid exchange. 10. Am J Physiol 1984 September;247(3 Pt 1): pp. G279–G283. [PubMed: 6476118]
249.
Granger DN, Mortillaro NA, Kvietys PR, Rutili G, Parker JC, Taylor AE. Role of the interstitial matrix during intestinal volume absorption. 4. Am J Physiol 1980 March;238(3): pp. G183–G189. [PubMed: 7369367]
250.
Mortillaro NA, Taylor AE. Interaction of capillary and tissue forces in the cat small intestine. 12. Circ Res 1976 September;39(3): pp. 348–358. [PubMed: 954164]
251.
Barrowman JA, Granger DN. Effects of experimental cirrhosis on splanchnic microvascular fluid and solute exchange in the rat. 10. Gastroenterology 1984 July;87(1): pp. 165–172. [PubMed: 6724260]
252.
Bohlen HG, Gore RW. Comparison of microvascular pressures and diameters in the innervated and denervated rat intestine. 4. Microvasc Res 1977 November;14(3): pp. 251–264. 10.1016/0026-2862(77)90024-3. [PubMed: 593162] [CrossRef]
253.
Mortillaro NA, Taylor AE. Interstitial fluid pressure of ileum measured from chronically implanted polyethylene capsules. 3. Am J Physiol 1989 July;257(1 Pt 2): pp. H62–H69. [PubMed: 2473658]
254.
Lee JS. Lymph capillary pressure of rat intestinal villi during fluid absorption. Am J Physiol 1979;237: pp. E301–E307. [PubMed: 474755]
255.
Lee JS. Epithelial cell extrusion during fluid transport in canine small intestine. Am J Physiol 1977;232: pp. E408–E414. [PubMed: 851184]
256.
Altamirano M, Requena M, Perez TC. Interstitial fluid pressure in canine gastric mucosa. 1. Am J Physiol 1975 November;229(5): pp. 1414–1420. [PubMed: 1200163]
257.
Barrowman JA, Perry MA, Kvietys PR, Ulrich M, Granger DN. Effects of bradykinin on intestinal transcapillary fluid exchange. 2. Can J Physiol Pharmacol 1981 August;59(8): pp. 786–789. [PubMed: 7296377]
258.
Granger DN, Kvietys PR, Wilborn WH, Mortillaro NA, Taylor AE. Mechanism of glucagon-induced intestinal secretion. 4. Am J Physiol 1980 July;239(1): pp. G30–G38. [PubMed: 7396000]
259.
Granger DN, Sennett M, McElearney P, Taylor AE. Effect of local arterial hypotension on cat intestinal capillary permeability. 1. Gastroenterology 1980 September;79(3): pp. 474–480. [PubMed: 7429108]
260.
Lee J. Lymph pressure in intestinal villi and lymph flow during fluid secretion. In: Tissue Fluid Pressure and Composition. Hargens AR, ed. 165–172. 1981. Baltimore, MD: Williams & Wilkins.
261.
Altamirano M, Requena, Perez TC. Interstitial fluid pressure and alkaline gastric secretion. 2. Am J Physiol 1975 November;229(5): pp. 1421–1426. [PubMed: 913]
262.
Mortillaro NA, Taylor AE. Microvascular permeability to endogenous plasma proteins in the jejunum. 2. Am J Physiol 1990 June;258(6 Pt 2): pp. H1650–H1654. [PubMed: 2360662]
263.
Yablonski ME, Lifson N. Mechanism of production of intestinal secretion by elevated venous pressure. 2. J Clin Invest 1976 April;57(4): pp. 904–915. 10.1172/JCI108367. [PMC free article: PMC436734] [PubMed: 947959] [CrossRef]
264.
Johnson PC. Effect of venous pressure on mean capillary pressure and vascular resistance in the intestine. Circ Res 1965 March;16: pp. 294–300. [PubMed: 14268450]
265.
Taylor AE. Capillary fluid filtration. Starling forces and lymph flow. Circ Res 1981 September;49(3): pp. 557–575. [PubMed: 7020975]
266.
DiBona DR, Chen LC, Sharp GW. A study of intercellular spaces in the rabbit jejunum during acute volume expansion and after treatment with cholera toxin. 1. J Clin Invest 1974 May;53(5): pp. 1300–1307. 10.1172/JCI107677. [PMC free article: PMC302617] [PubMed: 4596506] [CrossRef]
267.
Granger DN, Shackleford JS, Taylor AE. PGE1-induced intestinal secretion: mechanism of enhanced transmucosal protein efflux. 1. Am J Physiol 1979 June;236(6): pp. E788–E796. [PubMed: 443432]
268.
Granger DN, Mortillaro NA, Taylor AE. Interactions of intestinal lymph flow and secretion. 8. Am J Physiol 1977 January;232(1): pp. E13–E18. [PubMed: 835698]
269.
Mangino MJ, Chou CC. Thromboxane synthesis inhibitors and postprandial jejunal capillary exchange capacity. 2. Am J Physiol 1988 May;254(5 Pt 1): pp. G695–G701. [PubMed: 3364569]
270.
Barrowman JA. Physiology of the Gastrointestinal Lymphatic System. 1978. Cambridge: Cambridge University Press.
271.
Borgstrom B, Laurell CB. Studies of lymph and lymph-proteins during absorption of fat and saline by rats. 1. Acta Physiol Scand 1953 October 6;29(2–3): pp. 264–280. 10.1111/j.1748-1716.1953.tb01023.x. [PubMed: 13114001] [CrossRef]
272.
Fraser JR, Gibson PR. Mechanisms by which food intake elevates circulating levels of hyaluronan in humans. 1. J Intern Med 2005 November;258(5): pp. 460–466. 10.1111/j.1365-2796.2005.01564.x. [PubMed: 16238682] [CrossRef]
273.
Granger HJ. Role of the interstitial matrix and lymphatic pump in regulation of transcapillary fluid balance. 99. Microvasc Res 1979 September;18(2): pp. 209–216. 10.1016/0026-2862(79)90029-3. [PubMed: 386049] [CrossRef]
274.
Bohlen HG, Unthank JL. Rat intestinal lymph osmolarity during glucose and oleic acid absorption. 6. Am J Physiol 1989 September;257(3 Pt 1): pp. G438–G446. [PubMed: 2782414]
275.
Womack WA, Barrowman JA, Graham WH, Benoit JN, Kvietys PR, Granger DN. Quantitative assessment of villous motility. 1. Am J Physiol 1987 February;252(2 Pt 1): pp. G250–G256. [PubMed: 3826351]
276.
Granger D, Barrowman J, Kvietys P. Clinical Gastrointestinal Physiology. 1985. Philadelphia, PA: Saunders.
277.
Sabesin SM, Frase S. Electron microscopic studies of the assembly, intracellular transport, and secretion of chylomicrons by rat intestine. 3. J Lipid Res 1977 July;18(4): pp. 496–511. [PubMed: 894141]
278.
Casley-Smith JR. The identification of chylomicra and lipoproteins in tissue sections and their passage into jejunal lacteals. J Cell Biol 1962 November;15: pp. 259–277. 10.1083/jcb.15.2.259. [PMC free article: PMC2106149] [PubMed: 14019085] [CrossRef]
279.
Dobbins WO, III, Rollins EL. Intestinal mucosal lymphatic permeability: an electron microscopic study of endothelial vesicles and cell junctions. 2. J Ultrastruct Res 1970 October;33(1): pp. 29–59. 10.1016/S0022-5320(70)90117-6. [PubMed: 5487209] [CrossRef]
280.
Tso P, Pitts V, Granger DN. Role of lymph flow in intestinal chylomicron transport. 1. Am J Physiol 1985 July;249(1 Pt 1): pp. G21–G28. [PubMed: 4014464]
281.
Lee JS, Silverberg JW. Effect of cholera toxin on fluid absorption and villus lymph pressure in dog jejunal mucosa. 2. Gastroenterology 1972 May;62(5): pp. 993–1000. [PubMed: 5029082]
282.
Cedgard S, Hallback DA, Jodal M, Lundgren O, Redfors S. The effects of cholera toxin on intramural blood flow distribution and capillary hydraulic conductivity in the cat small intestine. 1. Acta Physiol Scand 1978 February;102(2): pp. 148–158. 10.1111/j.1748-1716.1978.tb06058.x. [PubMed: 626095] [CrossRef]
283.
Benoit JN, Navia CA, Taylor AE, Granger DN. Mathematical model of intestinal transcapillary fluid and protein exchange. In: Physiology of the Intestinal Circulation. Shepherd AP, Granger DN, eds. pp. 275–287. 1984. New York: Raven Press. 10.1016/j.coph.2007.09.004. [CrossRef]
284.
Holzer P. Role of visceral afferent neurons in mucosal inflammation and defense. 18. Curr Opin Pharmacol 2007 December;7(6): pp. 563–569. 10.1152/ajpgi.00517.2006. [PMC free article: PMC4370836] [PubMed: 18029228] [CrossRef]
285.
Holzer P. Taste receptors in the gastrointestinal tract. V. Acid sensing in the gastrointestinal tract. 29. Am J Physiol Gastrointest Liver Physiol 2007 March;292(3): pp. G699–G705. 10.1016/j.autneu.2006.01.004. [PMC free article: PMC4370835] [PubMed: 17122365] [CrossRef]
286.
Holzer P. Efferent-like roles of afferent neurons in the gut: blood flow regulation and tissue protection. 33. Auton Neurosci 2006 April 30;125(1–2): pp. 70–75. [PMC free article: PMC4363547] [PubMed: 16542883]
287.
Wallace JL. Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn't the stomach digest itself ? 8. Physiol Rev 2008 October;88(4): pp. 1547–1565. 10.1152/physrev.00004.2008. [PubMed: 18923189] [CrossRef]
288.
Ham M, Kaunitz JD. Gastroduodenal defense. 5. Curr Opin Gastroenterol 2007 November;23(6): pp. 607–616. 10.1097/MOG.0b013e3282f02607. [PubMed: 17906436] [CrossRef]
289.
Akiba Y, Ghayouri S, Takeuchi T, Mizumori M, Guth PH, Engel E, Swenson ER, Kaunitz JD. Carbonic anhydrases and mucosal vanilloid receptors help mediate the hyperemic response to luminal CO2 in rat duodenum. 13. Gastroenterology 2006 July;131(1): pp. 142–152. 10.1053/j.gastro.2006.04.018. [PubMed: 16831598] [CrossRef]
290.
Shorrock CJ, Rees WD. Overview of gastroduodenal mucosal protection. 10. Am J Med 1988 February 22;84(2A): pp. 25–34. 10.1016/0002-9343(88)90251-3. [PubMed: 3279766] [CrossRef]
291.
Wallace JL, Granger DN. The cellular and molecular basis of gastric mucosal defense. 2. FASEB J 1996 May;10(7): pp. 731–740. [PubMed: 8635690]
292.
Clapham DE. TRP channels as cellular sensors. Nature 2003 December 4;426(6966): pp. 517–524. 10.1038/nature02196. [PubMed: 14654832] [CrossRef]
293.
Kaunitz JD, Akiba Y. Luminal acid elicits a protective duodenal mucosal response. 22. Keio J Med 2002 March;51(1): pp. 29–35. [PubMed: 11951376]
294.
Akiba Y, Nakamura M, Nagata H, Kaunitz JD, Ishii H. Acid-sensing pathways in rat gastrointestinal mucosa. 1. J Gastroenterol 2002 November;37 Suppl 14: pp. 133–138. [PubMed: 12572881]
295.
Takeuchi K, Magee D, Critchlow J, Matthews J, Silen W. Studies of the pH gradient and thickness of frog gastric mucus gel. 2. Gastroenterology 1983 February;84(2): pp. 331–340. [PubMed: 6600224]
296.
Engel E, Guth PH, Nishizaki Y, Kaunitz JD. Barrier function of the gastric mucus gel. 21. Am J Physiol 1995 December;269(6 Pt 1): pp. G994–G999. [PubMed: 8572232]
297.
Starlinger M, Schiessel R, Hung CR, Silen W. H+ back diffusion stimulating gastric mucosal blood flow in the rabbit fundus. 1. Surgery 1981 February;89(2): pp. 232–236. [PubMed: 7455908]
298.
Abdel-Salam OM, Czimmer J, Debreceni A, Szolcsanyi J, Mozsik G. Gastric mucosal integrity: gastric mucosal blood flow and microcirculation. An overview. 1. J Physiol Paris 2001 January;95(1–6): pp. 105–127. 10.1016/S0928-4257(01)00015-8. [PubMed: 11595425] [CrossRef]
299.
Wallace JL, McKnight GW. The mucoid cap over superficial gastric damage in the rat. A high-pH microenvironment dissipated by nonsteroidal antiinflammatory drugs and endothelin. 12. Gastroenterology 1990 August;99(2): pp. 295–304. [PubMed: 2194893]
300.
Merchant NB, Dempsey DT, Grabowski MW, Rizzo M, Ritchie WP, Jr. Capsaicin-induced gastric mucosal hyperemia and protection: the role of calcitonin gene-related peptide. 3. Surgery 1994 August;116(2): pp. 419–425. [PubMed: 8048007]
301.
Podolsky RS, Grabowski M, Milner R, Ritchie WP, Dempsey DT. Capsaicin-induced gastric hyperemia and protection are NO-dependent. 1. J Surg Res 1994 October;57(4): pp. 438–442. 10.1006/jsre.1994.1167. [PubMed: 7934020] [CrossRef]
302.
Sullivan TR, Jr, Milner R, Dempsey DT, Ritchie WP, Jr. Effect of capsaicin on gastric mucosal injury and blood flow following bile acid exposure. 2. J Surg Res 1992 June;52(6): pp. 596–600. 10.1016/0022-4804(92)90135-M. [PubMed: 1528037] [CrossRef]
303.
Sullivan TR, Jr, Dempsey DT, Milner R, Ritchie WP, Jr. Effect of local acid–base status on gastric mucosal blood flow and surface cell injury by bile acid. 1. J Surg Res 1994 January;56(1): pp. 112–116. 10.1006/jsre.1994.1019. [PubMed: 8277762] [CrossRef]
304.
Hofmann AF, Borgstrom B. The intraluminal ohase of fat digestion in man: the lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption. J Clin Invest 1964;43: pp. 247–257. [PMC free article: PMC289518] [PubMed: 14162533]
305.
Kvietys PR, Specian RD, Grisham MB, Tso P. Jejunal mucosal injury and restitution: role of hydrolytic products of food digestion. 4. Am J Physiol 1991 September;261(3 Pt 1): pp. G384–G391. [PubMed: 1887887]
306.
Velasquez OR, Henninger K, Fowler M, Tso P, Crissinger KD. Oleic acid-induced mucosal injury in developing piglet intestine. 1. Am J Physiol 1993 March;264(3 Pt 1): pp. G576–G582. [PubMed: 8460708]
307.
Velasquez OR, Place AR, Tso P, Crissinger KD. Developing intestine is injured during absorption of oleic acid but not its ethyl ester. 1. J Clin Invest 1994 February;93(2): pp. 479–485. 10.1172/JCI116996. [PMC free article: PMC293863] [PubMed: 8113387] [CrossRef]
308.
Cepinskas G, Specian RD, Kvietys PR. Adaptive cytoprotection in the small intestine: role of mucus. 2. Am J Physiol 1993 May;264(5 Pt 1): pp. G921–G927. [PubMed: 8498518]
309.
Ammon HV, Thomas PJ, Phillips SF. Effects of oleic and ricinoleic acids on net jejunal water and electrolyte movement. Perfusion studies in man. 3. J Clin Invest 1974 February;53(2): pp. 374–379. 10.1172/JCI107569. [PMC free article: PMC301478] [PubMed: 11344549] [CrossRef]
310.
Ammon HV, Thomas PJ, Phillips SF. Effects of long chain fatty acids on solute absorption: perfusion studies in the human jejunum. 2. Gut 1977 October;18(10): pp. 805–813. 10.1136/gut.18.10.805. [PMC free article: PMC1411680] [PubMed: 590838] [CrossRef]
311.
Kvietys PR, Wilborn WH, Granger DN. Effect of atropine on bile–oleic acid-induced alterations in dog jejunal hemodynamics, oxygenation, and net transmucosal water movement. 2. Gastroenterology 1981 January;80(1): pp. 31–38. [PubMed: 7450408]
312.
Lapre JA, Termont DS, Groen AK, Van der MR. Lytic effects of mixed micelles of fatty acids and bile acids. 3. Am J Physiol 1992 September;263(3 Pt 1): pp. G333–G337. [PubMed: 1415545]
313.
Pawlik WW, Gustaw P, Jacobson ED, Sendur R, Czarnobilski K. Nitric oxide mediates intestinal hyperaemic responses to intraluminal bile-oleate. 2. Pflugers Arch 1995 January;429(3): pp. 301–305. 10.1007/BF00374143. [PubMed: 7761253] [CrossRef]
314.
Charman WN, Porter CJ, Mithani S, Dressman JB. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. 1. J Pharm Sci 1997 March;86(3): pp. 269–282. 10.1021/js960085v. [PubMed: 9050793] [CrossRef]
315.
Pingle SC, Matta JA, Ahern GP. Capsaicin receptor: TRPV1 a promiscuous TRP channel. 1. Handb Exp Pharmacol 2007;(179): pp. 155–171. 10.1007/978-3-540-34891-7_9. [PubMed: 17217056] [CrossRef]
316.
Thabuis C, Tissot-Favre D, Bezelgues JB, Martin JC, Cruz-Hernandez C, Dionisi F, Destaillats F. Biological functions and metabolism of oleoylethanolamide. 1. Lipids 2008 October;43(10): pp. 887–894. [PubMed: 18704536]
317.
Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, Cuomo V, Piomelli D. The lipid messenger OEA links dietary fat intake to satiety. 1. Cell Metab 2008 October;8(4): pp. 281–288. 10.1016/j.cmet.2008.08.005. [PMC free article: PMC2572640] [PubMed: 18840358] [CrossRef]
318.
Ahern GP. Activation of TRPV1 by the satiety factor oleoylethanolamide. 15. J Biol Chem 2003 August 15;278(33): pp. 30429–30434. 10.1074/jbc.M305051200. [PubMed: 12761211] [CrossRef]
319.
Hansen MB, Witte AB. The role of serotonin in intestinal luminal sensing and secretion. 1. Acta Physiol (Oxf) 2008 August;193(4): pp. 311–323. 10.1111/j.1748-1716.2008.01870.x. [PubMed: 18462271] [CrossRef]
320.
Savastano DM, Hayes MR, Covasa M. Serotonin-type 3 receptors mediate intestinal lipid-induced satiation and Fos-like immunoreactivity in the dorsal hindbrain. 1. Am J Physiol Regul Integr Comp Physiol 2007 March;292(3): pp. R1063–R1070. [PubMed: 17110529]
321.
Ishikawa S, Cepinskas G, Specian RD, Itoh M, Kvietys PR. Epidermal growth factor attenuates jejunal mucosal injury induced by oleic acid: role of mucus. 1. Am J Physiol 1994 December;267(6 Pt 1): pp. G1067–G1077. [PubMed: 7810653]
322.
Argenzio RA, Meuten DJ. Short-chain fatty acids induce reversible injury of porcine colon. 1. Dig Dis Sci 1991 October;36(10): pp. 1459–1468. 10.1007/BF01296816. [PubMed: 1914771] [CrossRef]
323.
Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. 1. Physiol Rev 2001 July;81(3): pp. 1031–1064. [PubMed: 11427691]
324.
Nafday SM, Chen W, Peng L, Babyatsky MW, Holzman IR, Lin J. Short-chain fatty acids induce colonic mucosal injury in rats with various postnatal ages. 3. Pediatr Res 2005 February;57(2): pp. 201–204. 10.1203/01.PDR.0000150721.83224.89. [PubMed: 15611351] [CrossRef]
325.
Flourie B, Florent C, Jouany JP, Thivend P, Etanchaud F, Rambaud JC. Colonic metabolism of wheat starch in healthy humans. Effects on fecal outputs and clinical symptoms. 14. Gastroenterology 1986 January;90(1): pp. 111–119. [PubMed: 2998917]
326.
Barcelo A, Claustre J, Moro F, Chayvialle JA, Cuber JC, Plaisancie P. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. 3. Gut 2000 February;46(2): pp. 218–224. 10.1136/gut.46.2.218. [PMC free article: PMC1727811] [PubMed: 10644316] [CrossRef]
327.
Fukumoto S, Tatewaki M, Yamada T, Fujimiya M, Mantyh C, Voss M, Eubanks S, Harris M, Pappas TN, Takahashi T. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. 1. Am J Physiol Regul Integr Comp Physiol 2003 May;284(5): pp. R1269–R1276. [PubMed: 12676748]
328.
Paimela H, Goddard PJ, Carter K, Khakee R, McNeil PL, Ito S, Silen W. Restitution of frog gastric mucosa in vitro: effect of basic fibroblast growth factor. 3. Gastroenterology 1993 May;104(5): pp. 1337–1345. [PubMed: 8482448]
329.
Paimela H, Goddard PJ, Silen W. Present views on restitution of gastrointestinal epithelium. 1. Dig Dis Sci 1995 November;40(11): pp. 2495–2496. 10.1007/BF02063263. [PubMed: 7587840] [CrossRef]
330.
Mammen JM, Matthews JB. Mucosal repair in the gastrointestinal tract. 3. Crit Care Med 2003 August;31(8 Suppl): pp. S532–S537. 10.1097/01.CCM.0000081429.89277.AF. [PubMed: 12907883] [CrossRef]
331.
Silen W, Ito S. Mechanisms for rapid re-epithelialization of the gastric mucosal surface. 11. Annu Rev Physiol 1985;47: pp. 217–229. 10.1146/annurev.ph.47.030185.001245. [PubMed: 3888074] [CrossRef]
332.
Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J. Restoration of barrier function in injured intestinal mucosa. 10. Physiol Rev 2007 April;87(2): pp. 545–564. 10.1152/physrev.00012.2006. [PubMed: 17429041] [CrossRef]
333.
Sturm A, Dignass AU. Epithelial restitution and wound healing in inflammatory bowel disease. 4. World J Gastroenterol 2008 January 21;14(3): pp. 348–353. 10.3748/wjg.14.348. [PMC free article: PMC2679124] [PubMed: 18200658] [CrossRef]
334.
Lacy ER. Rapid epithelial restitution in the stomach: an updated perspective. 22. Scand J Gastroenterol Suppl 1995;210: pp. 6–8. 10.3109/00365529509090260. [PubMed: 8578209] [CrossRef]
335.
Evangelista S. Role of calcitonin gene-related peptide in gastric mucosal defence and healing. 2. Curr Pharm Des 2009;15(30): pp. 3571–3576. 10.2174/138161209789207024. [PubMed: 19860701] [CrossRef]
336.
Wilson AJ, Gibson PR. Epithelial migration in the colon: filling in the gaps. 6. Clin Sci (Lond) 1997 August;93(2): pp. 97–108. [PubMed: 9301423]
337.
Grant R, Grossman MI, Ivy AC. Histological changes in the gastric mucosa during digestion and their relationship to mucosal growth. 1. Gastroenterology 1953 October;25(2): pp. 218–231. [PubMed: 13107918]
338.
Premen AJ, Banchs V, Womack WA, Kvietys PR, Granger DN. Importance of collateral circulation in the vascularly occluded feline intestine. 1. Gastroenterology 1987 May;92(5 Pt 1): pp. 1215–1219. [PubMed: 3557016]
339.
Bulkley GB, Womack WA, Downey JM, Kvietys PR, Granger DN. Characterization of segmental collateral blood flow in the small intestine. 2. Am J Physiol 1985 August;249(2 Pt 1): pp. G228–G235. [PubMed: 4025549]
340.
Perry MA, Haedicke GJ, Bulkley GB, Kvietys PR, Granger DN. Relationship between acid secretion and blood flow in the canine stomach: role of oxygen consumption. 1. Gastroenterology 1983 September;85(3): pp. 529–534. [PubMed: 6873601]
341.
Varro V, Csernay L, Szarvas F, Blaho G. Effect of glucose and glycine solution on the circulation of the isolated jejunal loop in the dog. 4. Am J Dig Dis 1967 January;12(1): pp. 60–64. 10.1007/BF02235228. [PubMed: 6017993] [CrossRef]
342.
Walus KM, Jacobson ED. Relation between small intestinal motility and circulation. 3. Am J Physiol 1981 July;241(1): pp. G1–15. [PubMed: 7018269]
343.
Womack WA, Tygart PK, Mailman D, Kvietys PR, Granger DN. Villous motility: relationship to lymph flow and blood flow in the dog jejunum. 1. Gastroenterology 1988 April;94(4): pp. 977–983. [PubMed: 3345896]
344.
Moses FM. Exercise-associated intestinal ischemia. 3. Curr Sports Med Rep 2005 April;4(2): pp. 91–95. [PubMed: 15763045]
345.
Oldenburg WA, Lau LL, Rodenberg TJ, Edmonds HJ, Burger CD. Acute mesenteric ischemia: a clinical review. 5. Arch Intern Med 2004 May 24;164(10): pp. 1054–1062. 10.1001/archinte.164.10.1054. [PubMed: 15159262] [CrossRef]
346.
Carden DL, Granger DN. Pathophysiology of ischaemia–reperfusion injury. 1. J Pathol 2000 February;190(3): pp. 255–266. 10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6. [PubMed: 10685060] [CrossRef]
347.
Leung FW, Su KC, Passaro E Jr, Guth PH. Regional differences in gut blood flow and mucosal damage in response to ischemia and reperfusion. 3. Am J Physiol 1992 September;263(3 Pt 1): pp. G301–G305. [PubMed: 1415542]
348.
Takeyoshi I, Zhang S, Nakamura K, Ikoma A, Zhu Y, Starzl TE, Todo S. Effect of ischemia on the canine large bowel: a comparison with the small intestine. 4. J Surg Res 1996 April;62(1): pp. 41–48. 10.1006/jsre.1996.0170. [PMC free article: PMC2963939] [PubMed: 8606507] [CrossRef]
349.
Fukuyama K, Iwakiri R, Noda T, Kojima M, Utsumi H, Tsunada S, Sakata H, Ootani A, Fujimoto K. Apoptosis induced by ischemia–reperfusion and fasting in gastric mucosa compared to small intestinal mucosa in rats. 1. Dig Dis Sci 2001 March;46(3): pp. 545–549. [PubMed: 11318530]
350.
Jodal M, Lundgren O. Countercurrent mechanisms in the mammalian gastrointestinal tract. 39. Gastroenterology 1986 July;91(1): pp. 225–241. [PubMed: 3519349]
351.
Levitt DG, Bond JH, Levitt MD. Use of a model of small bowel mucosa to predict passive absorption. 3. Am J Physiol 1980 July;239(1): pp. G23–G29. [PubMed: 6249129]
352.
Taylor CT, Colgan SP. Hypoxia and gastrointestinal disease. 1. J Mol Med 2007 December;85(12): pp. 1295–1300. [PubMed: 18026919]
353.
Haglund U. Gut ischaemia. Gut 1994 January;35(1 Suppl): pp. S73–S76. [PMC free article: PMC1378153] [PubMed: 8125397]
354.
Parks DA, Grogaard B, Granger DN. Comparison of partial and complete arterial occlusion models for studying intestinal ischemia. 1. Surgery 1982 November;92(5): pp. 896–901. [PubMed: 7135211]
355.
Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. 5. Arch Surg 1970 October;101(4): pp. 478–483. [PubMed: 5457245]
356.
Derikx JP, Matthijsen RA, de Bruine AP, van Bijnen AA, Heineman E, van Dam RM, Dejong CH, Buurman WA. Rapid reversal of human intestinal ischemia–reperfusion induced damage by shedding of injured enterocytes and reepithelialisation. 10. PLoS One 2008;3(10): p. e3428. 10.1371/journal.pone.0003428. [PMC free article: PMC2561292] [PubMed: 18927609] [CrossRef]
357.
Matthijsen RA, Derikx JP, Kuipers D, van Dam RM, Dejong CH, Buurman WA. Enterocyte shedding and epithelial lining repair following ischemia of the human small intestine attenuate inflammation. 1. PLoS One 2009;4(9): p. e7045. 10.1371/journal.pone.0007045. [PMC free article: PMC2737143] [PubMed: 19753114] [CrossRef]
358.
Ahren C, Haglund U. Mucosal lesions in the small intestine of the cat during low flow. 4. Acta Physiol Scand 1973 August;88(4): pp. 541–550. 10.1111/j.1748-1716.1973.tb05483.x. [PubMed: 4765601] [CrossRef]
359.
Bulkley GB. Free radical-mediated reperfusion injury: a selective review. 94. Br J Cancer Suppl 1987 June;8: pp. 66–73. [PMC free article: PMC2149484] [PubMed: 3307876]
360.
Bulkley GB, Kvietys PR, Parks DA, Perry MA, Granger DN. Relationship of blood flow and oxygen consumption to ischemic injury in the canine small intestine. 2. Gastroenterology 1985 October;89(4): pp. 852–857. [PubMed: 4029566]
361.
Perry MA, Wadhwa SS. Gradual reintroduction of oxygen reduces reperfusion injury in cat stomach. 1. Am J Physiol 1988 March;254(3 Pt 1): pp. G366–G372. [PubMed: 3348404]
362.
Robinson JW, Haroud M, Winistorfer B, Mirkovitch V. Recovery of function and structure of dog ileum and colon following two hours' acute ischaemia. 1. Eur J Clin Invest 1974 December 5;4(6): pp. 443–452. 10.1111/j.1365-2362.1974.tb00418.x. [PubMed: 4280343] [CrossRef]
363.
Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. 1. Gastroenterology 1981 July;81(1): pp. 22–29. [PubMed: 6263743]
364.
Osborne DL, Aw TY, Cepinskas G, Kvietys PR. Development of ischemia/reperfusion tolerance in the rat small intestine. An epithelium-independent event. 1. J Clin Invest 1994 November;94(5): pp. 1910–1918. 10.1172/JCI117541. [PMC free article: PMC294600] [PubMed: 7962536] [CrossRef]
365.
Kanwar S, Hickey MJ, Kubes P. Postischemic inflammation: a role for mast cells in intestine but not in skeletal muscle. 3. Am J Physiol 1998 August;275(2 Pt 1): pp. G212–G218. [PubMed: 9688647]
366.
Granger DN. Role of xanthine oxidase and granulocytes in ischemia–reperfusion injury. Am J Physiol 1988 December;255(6 Pt 2): pp. H1269–H1275. [PubMed: 3059826]
367.
Granger DN. Ischemia–reperfusion: mechanisms of microvascular dysfunction and the influence of risk factors for cardiovascular disease. Microcirculation 1999 September;6(3): pp. 167–178. 10.1038/sj.mn.7300081; 10.1080/mic.6.3.167.178; 10.1111/j.1549-8719.1999.tb00099.x. [PubMed: 10501090] [CrossRef] [CrossRef] [CrossRef]
368.
Massberg S, Messmer K. The nature of ischemia/reperfusion injury. 7. Transplant Proc 1998 December;30(8): pp. 4217–4223. 10.1016/S0041-1345(98)01397-9. [PubMed: 9865350] [CrossRef]
369.
Kvietys PR, Granger DN. Endothelial cell monolayers as a tool for studying microvascular pathophysiology. 2. Am J Physiol 1997 December;273(6 Pt 1): pp. G1189–G1199. [PubMed: 9435543]
370.
Jarasch ED, Bruder G, Heid HW. Significance of xanthine oxidase in capillary endothelial cells. 1. Acta Physiol Scand Suppl 1986;548: pp. 39–46. [PubMed: 3463124]
371.
Ratych RE, Chuknyiska RS, Bulkley GB. The primary localization of free radical generation after anoxia / reoxygenation in isolated endothelial cells. 1. Surgery 1987 August;102(2): pp. 122–131. [PubMed: 3039675]
372.
Grisham MB, Hernandez LA, Granger DN. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol 1986 October;251(4 Pt 1): pp. G567–G574. [PubMed: 3020994]
373.
Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM, Granger DN. Role of neutrophils in ischemia–reperfusion-induced microvascular injury. 1. Am J Physiol 1987 September;253(3 Pt 2): pp. H699–H703. [PubMed: 3631303]
374.
Yoshida N, Granger DN, Anderson DC, Rothlein R, Lane C, Kvietys PR. Anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. 1. Am J Physiol 1992 June;262(6 Pt 2): pp. H1891–H1898. [PubMed: 1352432]
375.
Heller T, Hennecke M, Baumann U, Gessner JE, zu Vilsendorf AM, Baensch M, Boulay F, Kola A, Klos A, Bautsch W, Kohl J. Selection of a C5a receptor antagonist from phage libraries attenuating the inflammatory response in immune complex disease and ischemia/reperfusion injury. 2. J Immunol 1999 July 15;163(2): pp. 985–994. [PubMed: 10395696]
376.
Ichikawa H, Flores S, Kvietys PR, Wolf RE, Yoshikawa T, Granger DN, Aw TY. Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. 1. Circ Res 1997 December;81(6): pp. 922–931. [PubMed: 9400372]
377.
Grisham MB, Granger DN, Lefer DJ. Modulation of leukocyte–endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease. 7. Free Radic Biol Med 1998 September;25(4–5): pp. 404–433. 10.1016/S0891-5849(98)00094-X. [PubMed: 9741579] [CrossRef]
378.
Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. 2. Proc Natl Acad Sci U S A 1991 June 1;88(11): pp. 4651–4655. 10.1073/pnas.88.11.4651. [PMC free article: PMC51723] [PubMed: 1675786] [CrossRef]
379.
Land W, Messmer K. The impact of ischemia/reperfusion injury on specific and non-specific, early and late chronic events after organ transplantation. Transplant Rev 1996;10: pp. 108–127.
380.
Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia–reperfusion injury of the intestine and protective strategies against injury. 8. Dig Dis Sci 2004 September;49(9): pp. 1359–1377. 10.1023/B:DDAS.0000042232.98927.91. [PubMed: 15481305] [CrossRef]
381.
Granger D, Kevil C, Grisham M. Recruitment of inflammatory and immune cells in the gut: physiology and pathophysiology.
382.
Wang Z, Rui T, Yang M, Valiyeva F, Kvietys PR. Alveolar macrophages from septic mice promote polymorphonuclear leukocyte transendothelial migration via an endothelial cell Src kinase/NADPH oxidase pathway. 1. J Immunol 2008 December 15;181(12): pp. 8735–8744. [PubMed: 19050294]
383.
Tailor A, Cooper D, Granger DN. Platelet–vessel wall interactions in the microcirculation. 1. Microcirculation 2005 April;12(3): pp. 275–285. 10.1080/10739680590925691. [PubMed: 15814436] [CrossRef]
384.
Massberg S, Enders G, Leiderer R, Eisenmenger S, Vestweber D, Krombach F, Messmer K. Platelet–endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. 4. Blood 1998 July 15;92(2): pp. 507–515. [PubMed: 9657750]
385.
Cooper D, Russell J, Chitman KD, Williams MC, Wolf RE, Granger DN. Leukocyte dependence of platelet adhesion in postcapillary venules. 1. Am J Physiol Heart Circ Physiol 2004 May;286(5): pp. H1895–H1900. 10.1152/ajpheart.01000.2003. [PubMed: 14715510] [CrossRef]
386.
Linfert D, Chowdhry T, Rabb H. Lymphocytes and ischemia–reperfusion injury. 1. Transplant Rev (Orlando) 2009 January;23(1): pp. 1–10. 10.1016/j.trre.2008.08.003. [PMC free article: PMC2651229] [PubMed: 19027612] [CrossRef]
387.
Shigematsu T, Wolf RE, Granger DN. T-lymphocytes modulate the microvascular and inflammatory responses to intestinal ischemia–reperfusion. 1. Microcirculation 2002 April;9(2): pp. 99–109. 10.1080/mic.9.2.99.109; 10.1038/sj.mn.7800126. [PubMed: 11932777] [CrossRef] [CrossRef]
388.
Kokura S, Wolf RE, Yoshikawa T, Ichikawa H, Granger DN, Aw TY. Endothelial cells exposed to anoxia/reoxygenation are hyperadhesive to T-lymphocytes: kinetics and molecular mechanisms. 3. Microcirculation 2000 February;7(1): pp. 13–23. 10.1080/sj.mn.7300088; 10.1038/sj.mn.7300088. [PubMed: 10708334] [CrossRef] [CrossRef]
389.
Kokura S, Wolf RE, Yoshikawa T, Granger DN, Aw TY. T-lymphocyte-derived tumor necrosis factor exacerbates anoxia-reoxygenation-induced neutrophil–endothelial cell adhesion. 4. Circ Res 2000 February 4;86(2): pp. 205–213. [PubMed: 10666417]
390.
Osman M, Russell J, Granger DN. Lymphocyte-derived interferon-gamma mediates ischemia–reperfusion-induced leukocyte and platelet adhesion in intestinal microcirculation. 1. Am J Physiol Gastrointest Liver Physiol 2009 March;296(3): pp. G659–G663. [PMC free article: PMC2660175] [PubMed: 19118114]
391.
Brzozowski T, Konturek PC, Konturek SJ, Drozdowicz D, Kwiecien S, Pajdo R, Bielanski W, Hahn EG. Role of gastric acid secretion in progression of acute gastric erosions induced by ischemia–reperfusion into gastric ulcers. 46. Eur J Pharmacol 2000 June 9;398(1): pp. 147–158. 10.1016/S0014-2999(00)00287-9. [PubMed: 10856459] [CrossRef]
392.
Kotani T, Murashima Y, Kobata A, Amagase K, Takeuchi K. Pathogenic importance of pepsin in ischemia/reperfusion-induced gastric injury. 2. Life Sci 2007 May 1;80(21): pp. 1984–1992. 10.1016/j.lfs.2007.02.041. [PubMed: 17395212] [CrossRef]
393.
Montgomery A, Borgstrom A, Haglund U. Pancreatic proteases and intestinal mucosal injury after ischemia and reperfusion in the pig. 3. Gastroenterology 1992 January;102(1): pp. 216–222. [PubMed: 1727756]
394.
Mitsuoka H, Kistler EB, Schmid-Schonbein GW. Generation of In vivo activating factors in the ischemic intestine by pancreatic enzymes. 3. Proc Natl Acad Sci U S A 2000 February 15;97(4): pp. 1772–1777. 10.1073/pnas.97.4.1772. [PMC free article: PMC26511] [PubMed: 10677533] [CrossRef]
395.
Langkamp-Henken B, Kudsk KA, Proctor KG. Fasting-induced reduction of intestinal reperfusion injury. 3. JPEN J Parenter Enteral Nutr 1995 March;19(2): pp. 127–132. 10.1177/0148607195019002127. [PubMed: 7609277] [CrossRef]
396.
Crissinger KD, Tso P. The role of lipids in ischemia/reperfusion-induced changes in mucosal permeability in developing piglets. 4. Gastroenterology 1992 May;102(5): pp. 1693–1699. [PubMed: 1568579]
397.
Schmid-Schonbein GW. Biomechanical aspects of the auto-digestion theory. 9. Mol Cell Biomech 2008 June;5(2): pp. 83–95. [PMC free article: PMC2671552] [PubMed: 18589497]
398.
Penn AH, Schmid-Schonbein GW. The intestine as source of cytotoxic mediators in shock: free fatty acids and degradation of lipid-binding proteins. 1. Am J Physiol Heart Circ Physiol 2008 April;294(4): pp. H1779–H1792. 10.1152/ajpheart.00902.2007. [PubMed: 18263716] [CrossRef]
399.
Cepinskas G, Rui T, Kvietys PR. Interaction between reactive oxygen metabolites and nitric oxide in oxidant tolerance. 3. Free Radic Biol Med 2002 August 15;33(4): pp. 433–440. 10.1016/S0891-5849(02)00962-0. [PubMed: 12160925] [CrossRef]
400.
Lu D, Maulik N, Moraru II, Kreutzer DL, Das DK. Molecular adaptation of vascular endothelial cells to oxidative stress. 2. Am J Physiol 1993 March;264(3 Pt 1): pp. C715–C722. [PubMed: 8460674]
401.
Cepinskas G, Lush CW, Kvietys PR. Anoxia/reoxygenation-induced tolerance with respect to polymorphonuclear leukocyte adhesion to cultured endothelial cells. A nuclear factor-kB-mediated phenomenon. 4. Circ Res 1999 January 8;84(1): pp. 103–112. [PubMed: 9915779]
402.
Davis JM, Gute DC, Jones S, Krsmanovic A, Korthuis RJ. Ischemic preconditioning prevents postischemic P-selectin expression in the rat small intestine. 1. Am J Physiol 1999 December;277(6 Pt 2): pp. H2476–H2481. [PubMed: 10600871]
403.
Park PO, Haglund U. Regeneration of small bowel mucosa after intestinal ischemia. 2. Crit Care Med 1992 January;20(1): pp. 135–139. 10.1097/00003246-199201000-00026. [PubMed: 1729031] [CrossRef]
404.
Colle I, Geerts AM, Van SC, Van VH. Hemodynamic changes in splanchnic blood vessels in portal hypertension. 4. Anat Rec (Hoboken) 2008 June;291(6): pp. 699–713. 10.1002/ar.20667. [PubMed: 18484617] [CrossRef]
405.
Cichoz-Lach H, Celinski K, Slomka M, Kasztelan-Szczerbinska B. Pathophysiology of portal hypertension. 3. J Physiol Pharmacol 2008 August;59 Suppl 2: pp. 231–238. [PubMed: 18812641]
406.
Bosch J, Berzigotti A, Garcia-Pagan JC, Abraldes JG. The management of portal hypertension: rational basis, available treatments and future options. 4. J Hepatol 2008;48 Suppl 1: pp. S68–S92. 10.1016/j.jhep.2008.01.021. [PubMed: 18304681] [CrossRef]
407.
Benoit J, Granger DN. Chronic portal hypertension and the splanchnic circulation. In: Pathophysiology of the Splanchnic Circulation (Vol I). Kvietys PR, Barrowman JA, Granger DN, eds. pp. 57–88. 1987. Boca Raton, FL: CRC Press.
408.
Kashani A, Landaverde C, Medici V, Rossaro L. Fluid retention in cirrhosis: pathophysiology and management. 1. QJM 2008 February;101(2): pp. 71–85. 10.1093/qjmed/hcm121. [PubMed: 18184668] [CrossRef]
409.
Bosch J, Garcia-Pagan JC. Complications of cirrhosis. I. Portal hypertension. 92. J Hepatol 2000;32(1 Suppl): pp. 141–156. 10.1016/S0168-8278(00)80422-5. [PubMed: 10728801] [CrossRef]
410.
La VG, Gentilini P. Hemodynamic alterations in liver cirrhosis. 2. Mol Aspects Med 2008 February;29(1–2): pp. 112–118. [PubMed: 18177931]
411.
Gatta A, Bolognesi M, Merkel C. Vasoactive factors and hemodynamic mechanisms in the pathophysiology of portal hypertension in cirrhosis. 4. Mol Aspects Med 2008 February;29(1–2): pp. 119–129. 10.1016/j.mam.2007.09.006. [PubMed: 18036654] [CrossRef]
412.
Aller MA, Nava MP, Cuellar C, Chivato T, Arias JL, Sanchez-Patan F, de VF, Alvarez E, Arias J. Evolutive phases of experimental prehepatic portal hypertension. 6. J Gastroenterol Hepatol 2007 July;22(7): pp. 1127–1133. 10.1111/j.1440-1746.2007.04876.x. [PubMed: 17608859] [CrossRef]
413.
Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. 7. Hepatology 2006 February;43(2 Suppl 1): pp. S121–S131. 10.1002/hep.20993. [PubMed: 16447289] [CrossRef]
414.
Geerts AM, Vanheule E, Praet M, Van VH, De VM, Colle I. Comparison of three research models of portal hypertension in mice: macroscopic, histological and portal pressure evaluation. 2. Int J Exp Pathol 2008 August;89(4): pp. 251–263. 10.1111/j.1365-2613.2008.00597.x. [PMC free article: PMC2525776] [PubMed: 18715470] [CrossRef]
415.
Sikuler E, Kravetz D, Groszmann RJ. Evolution of portal hypertension and mechanisms involved in its maintenance in a rat model. 2. Am J Physiol 1985 June;248(6 Pt 1): pp. G618–G625. [PubMed: 4003545]
416.
Tsai MH, Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. 1. Gastroenterology 2003 November;125(5): pp. 1452–1461. 10.1016/j.gastro.2003.07.014. [PubMed: 14598261] [CrossRef]
417.
Abraldes JG, Iwakiri Y, Loureiro-Silva M, Haq O, Sessa WC, Groszmann RJ. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. 2. Am J Physiol Gastrointest Liver Physiol 2006 May;290(5): pp. G980–G987. 10.1152/ajpgi.00336.2005. [PubMed: 16603731] [CrossRef]
418.
Benoit JN, Barrowman JA, Harper SL, Kvietys PR, Granger DN. Role of humoral factors in the intestinal hyperemia associated with chronic portal hypertension. 5. Am J Physiol 1984 November;247(5 Pt 1): pp. G486–G493. [PubMed: 6496739]
419.
Benoit JN, Womack WA, Korthuis RJ, Wilborn WH, Granger DN. Chronic portal hypertension: effects on gastrointestinal blood flow distribution. 2. Am J Physiol 1986 April;250(4 Pt 1): pp. G535–G539. [PubMed: 3963197]
420.
Benoit JN, Womack WA, Hernandez L, Granger DN. “Forward” and “backward” flow mechanisms of portal hypertension. Relative contributions in the rat model of portal vein stenosis. 3. Gastroenterology 1985 November;89(5): pp. 1092–1096. [PubMed: 4043666]
421.
Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal–systemic collateral vessels in portal hypertensive rats. 13. J Hepatol 2005 July;43(1): pp. 98–103. 10.1016/j.jhep.2005.02.022. [PubMed: 15893841] [CrossRef]
422.
Fernandez M, Vizzutti F, Garcia-Pagan JC, Rodes J, Bosch J. Anti-VEGF receptor-2 monoclonal antibody prevents portal–systemic collateral vessel formation in portal hypertensive mice. 14. Gastroenterology 2004 March;126(3): pp. 886–894. 10.1053/j.gastro.2003.12.012. [PubMed: 14988842] [CrossRef]
423.
Laragh JH, Cannon PJ, Bentzel CJ, Sicinski AM, Meltzer JI. Angiotensin II, norepinephrine, and renal transport of electrolytes and water in normal man and in cirrhosis with ascites. 1. J Clin Invest 1963 July;42(7): pp. 1179–1192. 10.1172/JCI104803. [PMC free article: PMC289386] [PubMed: 16695909] [CrossRef]
424.
Finberg JP, Syrop HA, Better OS. Blunted pressor response to angiotensin and sympathomimetic amines in bile-duct ligated dogs. 1. Clin Sci (Lond) 1981 November;61(5): pp. 535–539. [PubMed: 7285501]
425.
Murray BM, Paller MS. Decreased pressor reactivity to angiotensin II in cirrhotic rats. Evidence for a post-receptor defect in angiotensin action. 4. Circ Res 1985 September;57(3): pp. 424–431. [PubMed: 2992836]
426.
Kitano S, Koyanagi N, Sugimachi K, Kobayashi M, Inokuchi K. Mucosal blood flow and modified vascular responses to norepinephrine in the stomach of rats with liver cirrhosis. 20. Eur Surg Res 1982;14(3): pp. 221–230. 10.1159/000128292. [PubMed: 7117327] [CrossRef]
427.
Kiel JW, Pitts V, Benoit JN, Granger DN, Shepherd AP. Reduced vascular sensitivity to norepinephrine in portal-hypertensive rats. 1. Am J Physiol 1985 February;248(2 Pt 1): pp. G192–G195. [PubMed: 3970200]
428.
Benoit JN, Zimmerman B, Premen AJ, Go VL, Granger DN. Role of glucagon in splanchnic hyperemia of chronic portal hypertension. 15. Am J Physiol 1986 November;251(5 Pt 1): pp. G674–G677. [PubMed: 3777172]
429.
Atucha NM, Shah V, Garcia-Cardena G, Sessa WE, Groszmann RJ. Role of endothelium in the abnormal response of mesenteric vessels in rats with portal hypertension and liver cirrhosis. 1. Gastroenterology 1996 December;111(6): pp. 1627–1632. 10.1016/S0016-5085(96)70026-4. [PubMed: 8942743] [CrossRef]
430.
Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mice with targeted deletion of eNOS develop hyperdynamic circulation associated with portal hypertension. 8. Am J Physiol Gastrointest Liver Physiol 2002 November;283(5): pp. G1074–G1081. [PubMed: 12381520]
431.
Theodorakis NG, Wang YN, Skill NJ, Metz MA, Cahill PA, Redmond EM, Sitzmann JV. The role of nitric oxide synthase isoforms in extrahepatic portal hypertension: studies in gene-knockout mice. 3. Gastroenterology 2003 May;124(5): pp. 1500–1508. 10.1016/S0016-5085(03)00280-4. [PubMed: 12730888] [CrossRef]
432.
Theodorakis NG, Wang YN, Wu JM, Maluccio MA, Sitzmann JV, Skill NJ. Role of endothelial nitric oxide synthase in the development of portal hypertension in the carbon tetrachloride induced liver fibrosis model. 1. Am J Physiol Gastrointest Liver Physiol 2009 July 23. 10.1152/ajpgi.00229.2009. [PubMed: 19628654] [CrossRef]
433.
Batkai S, Jarai Z, Wagner JA, Goparaju SK, Varga K, Liu J, Wang L, Mirshahi F, Khanolkar AD, Makriyannis A, Urbaschek R, Garcia N, Jr, Sanyal AJ, Kunos G. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. 5. Nat Med 2001 July;7(7): pp. 827–832. [PubMed: 11433348]
434.
Moezi L, Gaskari SA, Lee SS. Endocannabinoids and liver disease. V. endocannabinoids as mediators of vascular and cardiac abnormalities in cirrhosis. 1. Am J Physiol Gastrointest Liver Physiol 2008 October;295(4): pp. G649–G653. 10.1152/ajpgi.90352.2008. [PubMed: 18703639] [CrossRef]
435.
Granger DN, Barrowman JA. Microcirculation of the alimentary tract. II. Pathophysiology of edema. Gastroenterology 1983 May;84(5 Pt 1): pp. 1035–1049. [PubMed: 6339310]
436.
Norman DA, Atkins JM, Seelig LL, Jr, Gomez-Sanchez C, Krejs GJ. Water and electrolyte movement and mucosal morphology in the jejunum of patients with portal hypertension. 1. Gastroenterology 1980 October;79(4): pp. 707–715. [PubMed: 7409388]
437.
Ohta M, Yamaguchi S, Gotoh N, Tomikawa M. Pathogenesis of portal hypertensive gastropathy: a clinical and experimental review. 1. Surgery 2002 January;131(1 Suppl): pp. S165–S170. 10.1067/msy.2002.119499. [PubMed: 11821805] [CrossRef]
438.
Perini RF, Camara PR, Ferraz JG. Pathogenesis of portal hypertensive gastropathy: translating basic research into clinical practice. 1. Nat Clin Pract Gastroenterol Hepatol 2009 March;6(3): pp. 150–158. 10.1038/ncpgasthep1356. [PubMed: 19190600] [CrossRef]
439.
Tomikawa M, Akiba Y, Kaunitz JD, Kawanaka H, Sugimachi K, Sarfeh IJ, Tarnawski AS. New insights into impairment of mucosal defense in portal hypertensive gastric mucosa. 1. J Gastrointest Surg 2000 September;4(5): pp. 458–463. 10.1016/S1091-255X(00)80086-4. [PubMed: 11077319] [CrossRef]
440.
Nishizaki Y, Guth PH, Sternini C, Kaunitz JD. Impairment of the gastric hyperemic response to luminal acid in cirrhotic rats. 1. Am J Physiol 1996 January;270(1 Pt 1): pp. G71–G78. [PubMed: 8772503]
441.
Iwao T, Toyonaga A, Ikegami M, Shigemori H, Oho K, Sumino M, Tanikawa K. Gastric mucus generation in cirrhotic patients with portal hypertension. Effects of tetraprenylace-tone. 21. Dig Dis Sci 1996 September;41(9): pp. 1727–1732. [PubMed: 8794786]
442.
Beck PL, McKnight W, Lee SS, Wallace JL. Prostaglandin modulation of the gastric vasculature and mucosal integrity in cirrhotic rats. 4. Am J Physiol 1993 September;265(3 Pt 1): pp. G453–G458. [PubMed: 8214067]
Copyright © 2010 by Morgan & Claypool Life Sciences.
Bookshelf ID: NBK53098

Views

Related Items in Bookshelf

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...