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Decision-Analytic Modeling to Evaluate 
Benefits and Harms of Medical Tests— 

Uses and Limitations 
Abstract  

The clinical utility of medical tests is measured by whether the information they 
provide affects patient-relevant outcomes. To a large extent, effects of medical tests are 
indirect in nature. In principle, a test result affects patient outcomes mainly by 
influencing treatment choices. This indirectness in the link between testing and its 
downstream effects poses practical challenges to comparing alternative test-and-treat 
strategies in clinical trials. Keeping in mind the broader audience of researchers who 
perform comparative effectiveness reviews and technology assessments, we summarize 
the rationale for and pitfalls of decision modeling in the comparative evaluation of 
medical tests by using specific examples. Modeling facilitates the interpretation of test 
performance measures by connecting the link between testing and patient outcomes, 
accounting for uncertainties and explicating assumptions, and allowing the systematic 
study of tradeoffs and uncertainty. We discuss challenges encountered when modeling 
test-and-treat strategies, including, but not limited to, scarcity of data on important 
parameters, transferring estimates of test performance across studies, choosing modeling 
outcomes, and obtaining summary estimates for test performance data.  
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Introduction 
The value of any medical test is ultimately measured by whether the information 

it provides affects patient-relevant outcomes such as morbidity, mortality, or health-
related quality of life. Although testing in itself can affect outcomes directly,1 most of its 
impact is indirect. In principle, test results influence downstream clinical decisions that 
will eventually determine patient outcomes. From this point of view, test performance (as 
conveyed by sensitivity, specificity, positive and negative likelihood ratios, or other 
metrics) is only a surrogate endpoint. The link between test results and their induced 
downstream effects has to be supported, theoretically or empirically, on a case-by-case 
basis.  

Arguably, the most robust empirical demonstration of the utility of a medical test 
is through a properly designed randomized trial2-5 that compares patient management 
with the test vs. one or more alternative strategies.  In practice such trials are not 
routinely performed, because they are often deemed unattainable.3,5 Obstacles are posed 
by the indirectness of the link between testing and clinical outcomes and the plethora of 
alternative test-and-treat strategies that are reasonable to contrast.6 Observational studies 
of patient management strategies are also uncommonly performed, and further, selection 
bias and confounding can threaten their internal validity and generalizability.  

Limited by the existing literature, systematic reviews of medical tests summarize 
performance characteristics rather than effects on patient outcomes.7 However, the link 
between test performance and patient-relevant outcomes is typically complex. High test 
performance does not guarantee that physicians will act according to test results, that 
patients will adhere to recommendations, or that the chosen interventions will be 
effective. Moreover, when comparing strategies that utilize alternative tests, differences 
in test performance do not necessarily translate to corresponding differences in patient-
relevant outcomes.  

For the majority of tests and clinical settings, the link between test performance 
and patient-relevant outcomes must be deduced from evidence reported in different 
studies. In addition, health care decisions have to be made irrespective of evidence 
availability or unavailability and have to account for many factors beyond test 
performance and treatment effectiveness. Transparent and reproducible approaches, such 
as decision-analytic modeling, are often necessary in evaluating the comparative clinical 
utility of medical tests.8,9  

Herein, we discuss the rationale for and impact of using modeling to assess 
medical tests for the broad audience of researchers who perform comparative 
effectiveness reviews and technology assessments, and for policymakers who are 
debating the merits of different approaches to these products. There is a lot of variation 
among entities conducting such reviews and assessments in the extent to which they are 
supportive of, or even familiar with, modeling. We do not explicitly discuss costs and 
cost-effectiveness analyses, nor do we provide guidelines and recommendations for good 
modeling practices. Instead, we highlight specific examples to help readers appreciate the 
role of formal quantitative analyses in the interpretation of evidence on medical tests.  
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Using Modeling To Interpret Evidence on Medical Test 
Performance  

Putting the Puzzle Together  
Studies of test performance give information on the ability of tests to discriminate 

disease from non-disease. The effect of treatments is usually studied in clinical trials, and 
the prevalence of disease conditions is typically reported in epidemiological studies. In 
most instances, one has to integrate evidence from all these types of studies to evaluate 
the clinical utility of a test in a given setting.10 For example, the effects of screening for 
type 2 diabetes on life expectancy have not been directly studied.11 Instead, there is good 
evidence on the prevalence of diabetes in specific risk groups, the accuracy of screening, 
and the downstream effects of proper interventions for diabetes on clinical outcomes.12 
Decision modeling helps explain the implications of screening for impaired glucose 
tolerance among 45-year-olds with above-average risk and identifies it as a cost-effective 
approach.13 Results from ongoing relevant trials are still pending.12   

Dealing With Uncertainties and Assumptions  
Simulation modeling explicitly accounts for uncertainty in key quantities and 

explicates overt and implicit assumptions.14 Typically this is done with one- or multi-way 
sensitivity analyses, where the estimates of one or more model input parameters are 
systematically varied over prespecified ranges. Alternative modeling options (e.g., 
comprehensive Bayesian decision analysis15 and microsimulation models16) can 
incorporate all parameter uncertainties in the model itself.  

Tradeoffs 
All testing procedures and treatment decisions are associated with benefits, risks, 

and costs. Decision analysis is a natural framework to assess such tradeoffs. For example, 
brain biopsy is an invasive procedure that was being considered for the differential 
diagnosis of suspected herpes simple virus encephalitis in the 1980s. At that time, 
vidarabine was proven an effective yet toxic treatment for the disease, which has high 
mortality or long-term neurologic sequelae if it is left untreated. Simultaneously weighing 
the likelihood of encephalitis and the risks and benefits of brain biopsy and the toxic 
treatment is extremely challenging, even for seasoned specialists. Decision analyses 
assessed tradeoffs associated with the choices to give vidarabine empirically, withhold 
treatment, or biopsy the brain for a diagnosis before initiating treatment, and they 
provided guidance on thresholds for choosing between the possible options.17,18  

Comparing Multiple Test-and-Treat Strategies  
Often there are many alternative ways to employ existing tests in clinical practice. 

In such cases, it is not feasible to directly compare all patient management strategies in 
clinical trials. To attain necessary power, sample sizes become too large, followup 
duration too long, and costs prohibitively high. Careful modeling offers a feasible 
alternative. In an evidence report, cost-effectiveness analyses contrasted 17 technologies 
(tests) and 4 combinations thereof for the diagnosis of acute cardiac ischemia in the 
emergency department. These had not been compared head-to-head in a clinical trial.19 
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Conversely, management strategies that are deemed promising in modeling analyses 
could be prioritized for study in actual clinical trials.  

Even when assessing a single test, differences in its application can impact on 
clinical outcomes and associated costs. An example is colonoscopy screening for 
colorectal cancer. Different start and stop ages for colonoscopy screening, and screening 
at varying intervals have been proposed and employed.  Modeling provides valuable 
insights on which combinations are optimal. The MISCAN-COLON microsimulation 
model16,20 has been used to contrast (among others) screening at different intervals and 
various start and stop ages.21 In fact, the U.S. Preventive Services Task Force took into 
account insights gained from modeling in formulating their screening 
recommendations.22 Scrutiny at this level is impossible without simulation modeling. 

Succession of Technologies  
In fast-paced fields with rapid uptake of novel technologies, continuous 

innovations can render widely used tests obsolete within a short period of time. By the 
time of their completion, clinical trials may not be applicable to current standard practice. 
Examples are the transition from low- to high-resolution computed tomography (CT) and 
spiral CT, the introduction of magnetic resonance imaging with stronger fields, and the 
gradual improvement of ultrasound resolution. Careful modeling can help in appreciating 
the expected benefits, risks, and costs of implementing newer tests by considering 
improvements in accuracy, as well as potential shifts in the disease spectrum for positive 
diagnoses.  

Exploring Hypothetical Conditions for Diseases With No Effective 
Treatment  

As mentioned before, a test result in itself does not necessarily affect patient-
relevant outcomes.1 This is evident in the case of early diagnosis of a disease for which 
there is no effective treatment. Notwithstanding patient preferences on how desirable it is 
to know the result of such a test and the concomitant emotional, cognitive, and behavioral 
changes conferred by testing and its results, an accurate diagnosis is not expected to 
impact on patient-relevant outcomes. An attractive way of exploring the clinical utility of 
such a test is to calculate under what conditions it would be worthwhile to employ it. For 
example, one can assume that the test would guide the selection of hypothetical 
treatments with different effectiveness and safety profiles. An evidence report used a 
decision model to evaluate the ability of positron emission tomography (PET) to guide 
management of suspected Alzheimer’s dementia.23 Because current medical treatment for 
Alzheimer’s has low efficacy and toxicity, the analysis concluded that routine PET 
screening is not justified. In fact it was deemed that PET screening becomes attractive 
only if one assumes that PET would triage patients for treatment with an effective but 
toxic intervention.   

Challenges in Modeling Test-and-Treat Strategies 
Models are simplified representations of what can occur in real life, 

comprehensive enough to capture important behaviors of the simulated scenario and 
simple enough to study.  Problems ensue when models fail to capture important behaviors 



 4 

(are incomplete or simplistic), because they can mislead. Many excellent publications 
describe guidelines for good modeling practices, especially in the context of cost-
effectiveness analyses.24-30 Here, we describe methodological and epidemiological 
considerations that are pertinent to modeling of medical tests. We describe issues that 
arise when data on important parameters are sparse or unreliable and when test 
performance is not transferable across studies, and discuss miscellaneous issues that 
range from statistical considerations to choice of outcomes.   

Issues With Insufficient Data 
Problems arise when key input quantities of a model are known with low 

precision or not known at all. Notwithstanding the uniqueness of each case, there are 
general caveats we can make. From a bird’s-eye view and excluding costs from our 
considerations, simulations of a test-and-treat strategy have at least three groups of 
important parameters: prevalence of the disease in the setting of interest, test performance 
and direct effects of testing, and benefits and risks of subsequent treatment(s) in the 
diseased and nondiseased. Direct effects include testing-induced emotional, cognitive, 
and behavioral changes or complications of dangerous and invasive tests.  

Insufficient or Unreliable Data on Prevalence 
Prevalence affects greatly the positive and negative predictive value of a testing 

strategy. For example, in very low risk populations (very low disease prevalence), even 
very specific tests can yield relatively large numbers of false positives.31 When the 
condition of interest is relatively rare, small absolute changes in prevalence estimates can 
have great impact in the positive predictive value of a testing strategy. 

Valid prevalence estimates are often hard to obtain, especially when one is 
interested in a particular setting or subpopulation. For example, the prevalence of 
obstructive sleep apnea among older adults cannot be deduced by the majority of studies 
of diagnostic tests for sleep apnea, because the latter focus mainly on middle-aged 
males.32  

On a related note, many conditions are defined by operational cutoffs along a 
spectrum of possible clinical presentations. The “disease” is then an arbitrary construct 
that may or may not correspond to different prognoses. In the sleep apnea example, most 
published studies defined sleep apnea as ≥15 apneas or hypopneas per hour of sleep in a 
patient with suggestive symptoms and signs.32 In reality, there is no clinical rationale to 
distinguish between 13 and 17 apneas or hypopneas per hour of sleep. Yet, when 
modeling presence or absence of “disease” to examine test-and-treat strategies, such 
distinctions and simplifications may be unavoidable.33  

Insufficient or Unreliable Data on Diagnostic Accuracy 
A plethora of considerations is relevant here, many of which stem from 

fundamental shortcomings in the design, conduct, and reporting of diagnostic accuracy 
studies.34 The STAndards for the Reporting of Diagnostic accuracy studies (STARD) 
initiative published a 25-item checklist that aims to improve reporting of studies of 
diagnostic tests.35 The reader is referred to the many excellent methodological and 
empirical explorations that discuss the effects of bias and variation on the performance of 
medical tests.36-38  
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Here, we opt to discuss in some detail a recurrent challenge that arises when the 
reference test misclassifies patients in a nontrivial way (tarnished gold standard). Errors 
made by the reference standard bias the usual estimators of sensitivity and specificity of 
the index test:39 They can be underestimates when the results of the two tests are 
statistically independent, conditional on the true disease status of the patients,40,41 or 
overestimates if the results of the two tests are conditionally dependent (i.e., positively 
correlated either among patients with the disease or among people without the 
disease38,42). For example, in colon cancer diagnosis, both capsule endoscopy (index test) 
and colonoscopy (reference standard) can be jointly false negative for cancers with little 
intraluminal manifestation or jointly false positive for some benign intraluminal masses. 
Treating colonoscopy as an error-free reference standard likely overestimates the ability 
of the camera pill to detect all colonic cancers. 

Insufficient or Poor Data on Effectiveness 
In this case, the link between test accuracy and clinical outcomes is weak.  

Notwithstanding insights gained from modeling of hypothetical treatment effectiveness, 
as in the aforementioned example on PET and Alzheimer’s dementia,23 it is questionable 
whether such cases should be routinely subjected to detailed and extensive modeling (at 
least in the context of interpreting systematic reviews of test performance).7 Some 
modeling may still be helpful to identify influential input parameters that must be studied 
further (e.g., prevalence or effectiveness) and to select the most promising management 
strategies for diagnostic tests to be further tested in clinical trials. 

Transferability or Nontransferability of Diagnostic Performance Across 
Studies 

Studies of medical test performance are not always conducted in the setting of 
interest43 and do not necessarily evaluate a test in its anticipated and clinically 
meaningful role. In simulation models, estimates of sensitivity and specificity are often 
“borrowed” across settings and roles to make calculations possible. Judgment calls are 
being made in this process, some of which are discussed below.   

Tranferability or Nontransferability of Test Performance Estimates Across 
Populations and Settings  

Estimates of sensitivity and specificity are often considered independently of 
disease prevalence,44 and decision analysts typically transfer them across settings with 
different disease prevalence. However, differences in study inclusion criteria can result in 
spectrum effects—i.e., differences in the calculated sensitivity and specificity of a 
medical test as the case-mix of the studied population shifts.45,46 Indeed, empirical studies 
have frequently revealed substantial variation of test performance metrics in studies with 
different disease prevelence.47   

The transferability of test performance estimates across studies is also influenced 
by differences in the uptake of a medical test over time or across health systems. Soon 
after a test gets into practice, health providers may start using it for increasingly broader 
indications (indication creep), resulting in corresponding shifts in the case-mix of the 
tested population.  Indication creep is not necessarily undesirable as long as there are no 
changes in the disease spectrum for the positive diagnoses (something that is not easy to 
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ascertain).  However, it should be taken into consideration because it does change the 
anticipated demand for the technology, and it complicates cost and other projections.  

Transferability or Nontransferability of Performance Estimates Across Studies 
Evaluating the Test in Different Roles 

A medical test can have different roles in a test-and-treat strategy, depending on 
the clinical context. It may be used as the sole diagnostic modality, to triage patients for 
further workup, or as a confirmatory test for patients selected by prior diagnostic workup.  
One has to be very cautious in generalizing estimates of diagnostic performance across 
studies that evaluate a test in different roles.  Both the case-mix of tested populations and 
the positivity thresholds of the test can vary at the same time. For example, a decision 
analysis compared PET (as the sole diagnostic test) vs. an array of alternative diagnostic 
strategies for managing patients with solitary pulmonary nodules in their chest 
radiogram.48 The decision analysis derived the sensitivity and specificity of PET from 
studies that used it as a confirmatory test after a positive or inconclusive computed 
tomography.48 While this modeling assumption may be defendable, it has to be clearly 
presented and adequately explored.  

Transferability or Nontransferability of Performance Estimates Across Studies 
Evaluating Different Versions of the Test  

Different versions of a test can have very different performance characteristics. 
Although this will probably be evident to a context expert, it may be missed by modelers 
who are not intimately familiar with the intricacies of a topic.  For example, intact 
parathyroid hormone (PTH) measurements are used to manage patients with renal 
osteodystrophy. There are extreme discrepancies between the alternative assays for 
measuring PTH (from the same manufacturer and other manufacturers)49 that can result 
in conflicting recommendations in the same patients. Failure to appreciate such secular 
trends can render any decision model obsolete and misleading, and can affect real life as 
well. After all, an unexplained increase in the number of parathyroidectomies in the 
United States between 1999 and 2002 (coinciding with the transition between assays) has 
been documented.50  

Issues With the Choice of Modeling Outcomes 
The choice of the outcome that should be maximized—e.g., event-free survival, 

survival, quality-adjusted life years (QALYs)—depends on the exact key research 
questions, which also define the perspective of the decision analysis—e.g., patient, health 
care provider, society. A comprehensive assessment of the value of a medical test should 
include all patient-relevant benefits and risks related to the duration and quality of the 
remaining life. Quality-adjusted life expectancy is such a measurement that is easy to 
understand and that allows comparisons with well-known practices in completely 
different settings. However, modeling quality-adjusted life expectancy requires 
information on utilities associated with health states, which are not always available. 
Alternatively, life expectancy, expected number of health events (e.g., strokes), 
interventions (e.g., surgeries), or even accuracy in diagnosis and treatment can provide 
useful information.  For example, such outcomes may be used when the time horizon of 
the simulation does not extend through a lifetime.  
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Other Issues 

Meta-Analysis of Diagnostic Accuracy Data—Which Method? 
There are many ways to obtain summary estimates for diagnostic studies,51-54 and 

their discussion is outside the scope of this writing. Briefly, separate summaries of 
sensitivities and specificities ignore the relationship between the two quantities and can 
result in misleading summaries for both.  A simple regression method proposed by Moses 
and Littenberg52 calculates a summary receiver operating characteristic (ROC) curve that 
describes the tradeoff between sensitivity and specificity in diagnostic accuracy studies 
but is an approximate approach.  More rigorous methods are being used increasingly, 
namely bivariate meta-analyses53 and hierarchical summary ROC curve analyses.54 The 
latter36-38 methods have been shown to be equivalent in many cases.55 However, all 
aforementioned methods rely on a single 2 by 2 table from each study.  When modeling 
explicit thresholds, this is probably excessively wasteful of data, and methods that 
directly combine ROC curves may be more suitable.   

Challenges in the Parameterization and Appraisal of Complex Models 
Arbitrarily complex clinical scenarios can be modeled with suitable techniques 

that include but are not limited to simple trees, Markov models, and microsimulation 
models. Limitations are posed by data availability or unavailability rather than technical 
difficulties in implementing simulation approaches.  

More advanced modeling can be less transparent and difficult to describe in full 
technical detail. Increased flexibility often has its toll. Essential quantities may be 
completely unknown (“deep” parameters) and must be set through assumptions or by 
calibrating model predictions vs. real empirical data.56 MISCAN-COLON16,20 and 
SimCRC57 are two microsimulation models describing the natural history of colorectal 
cancer. Both assume an adenoma-carcinoma sequence for cancer development but differ 
in their assumptions on adenoma growth rates. Tumor dwell time (an unknown deep 
parameter in both models) was set to approximately 10 years in MISCAN-COLON20,58 
and to approximately 30 years in SimCRC. Because of such esoteric differences, models 
can result in different conclusions.  

Finally, simulation models should ideally be validated against independent 
datasets that are comparable to the datasets on which the models were developed.56 

External validation is particularly important for simulation models in which the 
unobserved deep parameters are set without calibration (based on assumptions and 
analytical calculations).16,56 

Final Remarks 
By definition, all models are simplified representations of the real world, and 

therefore incomplete. Exactly for this reason, they are useful. They promote transparency 
by focusing attention on the influential constituents of each problem, and helping 
distinguish choices from chances and known parameters from unobserved ones. 
Modeling facilitates comparisons across testing strategies that have never been, and may 
never be, contrasted in real life. Formal methodologies for sensitivity analyses help 
appreciate the impact of uncertainties that accompany parameter estimates. For these 
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reasons, decision-analytic modeling provides the framework to make informed choices 
among diagnostic strategies under uncertainty and think through their implications. 

The main limitation in performing robust modeling of test-and-treat strategies is 
the unavailability of good-quality data on key parameters (prevalence of the condition, 
diagnostic accuracy in the modeled setting, therapeutic efficacy of treatments). All 
readers of decision analyses should be mindful of the assumptions that are invoked when 
estimates of sensitivity and specificity are transferred from studies on different settings. 
Notwithstanding the cautionary notes, we believe that, in the absence of studies 
comparing test-and-treat strategies with respect to patient-relevant outcomes and 
provided that good estimates for key parameters can be obtained, decision-analytic 
modeling should be considered as a standard tool in the assessment of the value of 
diagnostic tests. 
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