- 1.
World Health Organization. Agreement for Performance of Work Between the WHO Department of OHE/FOS/FZD and University of Calgary. Geneva, Switzerland. 2016.
- 2.
World Health Organization. Joint FAO/OIE/WHO expert workshop on non-human antimicrobial usage and antimicrobial resistance: Scientific asssessment. Geneva, Switzerland. 1–5 December 2003.
- 3.
World Health Organization. Antimicrobial use in aquaculture and antimicrobial resistance. Report of a joint FAO/OIE/WHO expert consultation on antimicrobial use in aquaculture and antimicrobial resistance. Seoul, Republic of Korea. 13–16 June 2006.
- 4.
Tusevljak
N, Dutil
L, Rajic
A, Uhland
FC, McClure
C, St-Hilaire
S, et al. Antimicrobial use and resistance in aquaculture: findings of a globally administered survey of aquaculture-allied professionals. Zoonoses Public Health. 2013;60(6):426–36. [
PubMed: 23072270]
- 5.
. Antibiotic resistance: An ecological perspective on an old problem. Washington, DC: American Academy of Microbiology; 2009. [
PubMed: 32644325]
- 6.
Bauer-Garland
J, Frye
JG, Gray
JT, Berrang
ME, Harrison
MA, Fedorka-Cray
PJ. Transmission of
Salmonella enterica serotype Typhimurium in poultry with and without antimicrobial selective pressure. Journal of Applied Microbiology. 2006;101(6):1301–8. [
PubMed: 17105560]
- 7.
Looft
T, Johnson
TA, Allen
HK, Bayles
DO, Alt
DP, Stedtfeld
RD, et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A. 2012;109(5):1691–6. [
PMC free article: PMC3277147] [
PubMed: 22307632]
- 8.
Young
I, Rajic
A, Wilhelm
BJ, Waddell
L, Parker
S, McEwen
SA. Comparison of the prevalence of bacterial enteropathogens, potentially zoonotic bacteria and bacterial resistance to antimicrobials in organic and conventional poultry, swine and beef production: a systematic review and meta-analysis. Epidemiol Infect. 2009;137(9):1217–32. [
PubMed: 19379542]
- 9.
World Health Organization. Global principles for the containment of antimicrobial resistance in animals intended for food: Report of a WHO consultation with the participation of the Food and Agriculture Organization of the United Nations and the Office International des Epizooties. Geneva, Switzerland. 5–9 June 2000.
- 10.
World Health Organization. Critically important antibacterial agents for human medicine for risk management strategies of non-human use: Report of a WHO working group consultation. Canberra, Australia. 15–18 February 2005.
- 11.
- 12.
DANMAP. Danish programme for surveillance of antimicrobial consumption and resistance in bacteria from animals, food and humans 2016 [
- 13.
- 14.
- 15.
Aarestrup
FM, Seyfarth
AM, Emborg
HD, Pedersen
K, Hendriksen
RS, Bager
F. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob Agents Chemother. 2001;45(7):2054–9. [
PMC free article: PMC90599] [
PubMed: 11408222]
- 16.
World Health Organization. Critically important antimicrobials for human medicine: 1st revision. 2007.
- 17.
- 18.
Moher
D, Liberati
A, Tetzlaff
J, Altman
DG, Group
P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9, W64. [
PubMed: 19622511]
- 19.
WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). Critically Important Antimicrobials for Human Medicine. 2011.
- 20.
World Organisation for Animal Health (OIE). OIE list of antimicrobial agents of veterinary importance. 2015.
- 21.
Downs
SH, Black
N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of epidemiology and community health. 1998;52(6):377–84. [
PMC free article: PMC1756728] [
PubMed: 9764259]
- 22.
DerSimonian
R, Kacker
R. Random-effects model for meta-analysis of clinical trials: an update. Contemporary clinical trials. 2007;28(2):105–14. [
PubMed: 16807131]
- 23.
Borenstein
M, Hedges
L, Higgins
JP, Rothstein
HR. Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons, Ltd; 2009.
- 24.
Higgins
JP, Thompson
SG. Quantifying heterogeneity in a meta-analysis. Statistics in medicine. 2002;21(11):1539–58. [
PubMed: 12111919]
- 25.
- 26.
Begg
CB, Mazumdar
M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101. [
PubMed: 7786990]
- 27.
Duval
S, Tweedie
R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63. [
PubMed: 10877304]
- 28.
Alonso-Coello
P, Schunemann
HJ, Moberg
J, Brignardello-Petersen
R, Akl
EA, Davoli
M, et al. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. Bmj. 2016;353:i2016. [
PubMed: 27353417]
- 29.
Guyatt
G, Oxman
AD, Akl
EA, Kunz
R, Vist
G, Brozek
J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. Journal of clinical epidemiology. 2011;64(4):383–94. [
PubMed: 21195583]
- 30.
- 31.
Aarestrup
FM. Occurrence of glycopeptide resistance among
Enterococcus faecium isolates from conventional and ecological poultry farms. Microb Drug Resist. 1995;1(3):255–7. [
PubMed: 9158784]
- 32.
Aarestrup
FM, Bager
F, Andersen
JS. Association between the use of avilamycin for growth promotion and the occurrence of resistance among
Enterococcus faecium from broilers: epidemiological study and changes over time. Microb Drug Resist. 2000;6(1):71–5. [
PubMed: 10868810]
- 33.
Aarestrup
FM, Hasman
H, Jensen
LB, Moreno
M, Herrero
IA, Dominguez
L, et al. Antimicrobial resistance among enterococci from pigs in three European countries. Appl Environ Microbiol. 2002;68(8):4127–9. [
PMC free article: PMC124043] [
PubMed: 12147518]
- 34.
Aarestrup
FM, Kruse
H, Tast
E, Hammerum
AM, Jensen
LB. Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among
Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway. Microb Drug Resist. 2000;6(1):63–70. [
PubMed: 10868809]
- 35.
Abdalrahman
LS, Stanley
A, Wells
H, Fakhr
MK. Isolation, Virulence, and Antimicrobial Resistance of Methicillin-Resistant
Staphylococcus aureus (MRSA) and Methicillin Sensitive
Staphylococcus aureus (MSSA) Strains from Oklahoma Retail Poultry Meats. Int J Environ Res Public Health. 2015;12(6):6148–61. [
PMC free article: PMC4483693] [
PubMed: 26035662]
- 36.
Agerso
Y, Aarestrup
FM. Voluntary ban on cephalosporin use in Danish pig production has effectively reduced extended-spectrum cephalosporinase-producing
Escherichia coli in slaughter pigs. Journal of Antimicrobial Chemotherapy. 2013;68(3):569–72. [
PubMed: 23129728]
- 37.
Agga
GE, Schmidt
JW, Arthur
TM, editors. Antimicrobial resistance of enteric bacteria among ceftiofur treated and non-antimicrobial treated co-mingled pasture beef cows. 4th ASM Conference on Antimicrobial resistance in zoonotic bacteria and foodborne pathogens; 2015
8–11 May 2015; Washington, United States.
- 38.
Alali
WQ, Thakur
S, Berghaus
RD, Martin
MP, Gebreyes
WA. Prevalence and distribution of
Salmonella in organic and conventional broiler poultry farms. Foodborne Pathog Dis. 2010;7(11):1363–71. [
PubMed: 20617937]
- 39.
Alvarez-Fernandez
E, Cancelo
A, Diaz-Vega
C, Capita
R, Alonso-Calleja
C. Antimicrobial resistance in E. coli isolates from conventionally and organically reared poultry: A comparison of agar disc diffusion and Sensi Test Gram-negative methods. Food Control. 2013;30(1):227–34.
- 40.
Alvarez-Fernandez
E, Dominguez-Rodriguez
J, Capita
R, Alonso-Calleja
C. Influence of housing systems on microbial load and antimicrobial resistance patterns of
Escherichia coli isolates from eggs produced for human consumption. Journal of Food Protection. 2012;75(5):847–53. [
PubMed: 22564932]
- 41.
Avrain
L, Humbert
F, L’Hospitalier
R, Sanders
P, Vernozy-Rozand
C, Kempf
I. Antimicrobial resistance in
Campylobacter from broilers: association with production type and antimicrobial use. Vet Microbiol. 2003;96(3):267–76. [
PubMed: 14559174]
- 42.
Bager
F, Aarestrup
FM, Madsen
M, Wegener
HC. Glycopeptide resistance in
Enterococcus faecium from broilers and pigs following discontinued use of avoparcin. Microbial Drug Resistance. 1999;5(1):53–6. [
PubMed: 10332722]
- 43.
Barlow
RS, Fegan
N, Gobius
KS. A comparison of antibiotic resistance integrons in cattle from separate beef meat production systems at slaughter. Journal of Applied Microbiology. 2008;104(3):651–8. [
PubMed: 17927756]
- 44.
Barlow
RS, Fegan
N, Gobius
KS. Integron-containing bacteria in faeces of cattle from different production systems at slaughter. Journal of Applied Microbiology. 2009;107(2):540–5. [
PubMed: 19302491]
- 45.
Bauer-Garland
J, Frye
JG, Gray
JT, Berrang
ME, Harrison
MA, Fedorka-Cray
PJ. Transmission of
Salmonella enterica serotype Typhimurium in poultry with and without antimicrobial selective pressure. Journal of Applied Microbiology. 2006;101(6):1301–8. [
PubMed: 17105560]
- 46.
Bengtsson
B, Wierup
M. Antimicrobial resistance in Scandinavia after ban of antimicrobial growth promoters. Animal Biotechnology. 2006;17(2):147–56. [
PubMed: 17127526]
- 47.
Bennedsgaard
TW, Thamsborg
SM, Aarestrup
FM, Enevoldsen
C, Vaarst
M, Christoffersen
AB. Resistance to penicillin of Staphylococcus aureus isolates from cows with high somatic cell counts in organic and conventional dairy herds in Denmark. Acta Vet Scand. 2006;48:24. [
PMC free article: PMC1687190] [
PubMed: 17125515]
- 48.
Boerlin
P, Wissing
A, Aarestrup
FM, Frey
J, Nicolet
J. Antimicrobial growth promoter ban and resistance to macrolides and vancomycin in enterococci from pigs. J Clin Microbiol. 2001;39(11):4193–5. [
PMC free article: PMC88516] [
PubMed: 11682559]
- 49.
Bombyk
RA, Bykowski
AL, Draper
CE, Savelkoul
EJ, Sullivan
LR, Wyckoff
TJ. Comparison of types and antimicrobial susceptibility of
Staphylococcus from conventional and organic dairies in west-central Minnesota, USA. Journal of Applied Microbiology. 2008;104(6):1726–31. [
PubMed: 18179539]
- 50.
Bombyk
RAM, Helland
TJ, Wyckoff
TJO. Characterization of tetracycline resistance determinants in Staphylococcus from conventional and organic dairy cows in west-central Minnesota. Abstracts of the General Meeting of the American Society for Microbiology. 2007;107:744.
- 51.
Borgen
K, Simonsen
GS, Sundsfjord
A, Wasteson
Y, Olsvik
O, Kruse
H. Continuing high prevalence of VanA-type vancomycin-resistant enterococci on Norwegian poultry farms three years after avoparcin was banned. Journal of Applied Microbiology. 2000;89(3):478–85. [
PubMed: 11021580]
- 52.
Borgen
K, Sørum
M, Wasteson
Y, Kruse
H. VanA-type vancomycin-resistant enterococci (VRE) remain prevalent in poultry carcasses 3 years after avoparcin was banned. Int J Food Microbiol. 2001;64(1–2):89–94. [
PubMed: 11252515]
- 53.
Boutet
P, Detilleux
J, Motkin
M, Deliege
M, Piraux
E, Depinois
A, et al. A comparison of somatic cell count and antimicrobial susceptibility of subclinical mastitis pathogens in organic and conventional dairy herds./Comparaison du taux cellulaire et de la sensibilité antimicrobienne des germes responsables de mammite subclinique bovine entre les filières conventionnelle et biologique. Annales de Médecine Vétérinaire. 2005;149(3):173–82.
- 54.
Boyer
TC. Antibiotic resistance in the lower intestinal microbiota of dairy cattle: Longitudinal analysis of phenotypic and genotypic resistance [Ph.D.]. Ann Arbor: University of Minnesota; 2012.
- 55.
Bunner
CA, Norby
B, Bartlett
PC, Erskine
RJ, Downes
FP, Kaneene
JB. Prevalence and pattern of antimicrobial susceptibility in
Escherichia coli isolated from pigs reared under antimicrobial-free and conventional production methods. J Am Vet Med Assoc. 2007;231(2):275–83. [
PubMed: 17630898]
- 56.
Buntenkoetter
V, Blaha
T, Tegeler
R, Fetsch
A, Hartmann
M, Kreienbrock
L, et al. Comparison of the phenotypic antimicrobial resistances and spa-types of methicillin-resistant
Staphylococcus aureus (MRSA) isolates derived from pigs in conventional and in organic husbandry systems. Berl Munch Tierarztl Wochenschr. 2014;127(3–4):135–43. [
PubMed: 24693659]
- 57.
Butaye
P, Devriese
LA, Goossens
H, Ieven
M, Haesebrouck
F. Enterococci with acquired vancomycin resistance in pigs and chickens of different age groups. Antimicrobial Agents and Chemotherapy. 1999;43(2):365–66. [
PMC free article: PMC89079] [
PubMed: 9925534]
- 58.
Government of Canada. Reductions in Antimicrobial Use and Resistance: Preliminary Evidence of the Effect of the Canadian Chicken Industry’s Elimination of Use of Antimicrobials of Very High Importance to Human Medicine. Government of Canada; 2016. p. 1–5.
- 59.
Cho
S, Bender
JB, Diez-Gonzalez
F, Fossler
CP, Hedberg
CW, Kaneene
JB, et al. Prevalence and characterization of
Escherichia coli O157 isolates from Minnesota dairy farms and county fairs. Journal of Food Protection. 2006;69(2):252–9. [
PubMed: 16496562]
- 60.
Cho
S, Fossler
CP, Diez-Gonzalez
F, Wells
SJ, Hedberg
CW, Kaneene
JB, et al. Antimicrobial susceptibility of Shiga toxin-producing
Escherichia coli isolated from organic dairy farms, conventional dairy farms, and county fairs in Minnesota. Foodborne Pathog Dis. 2007;4(2):178–86. [
PubMed: 17600485]
- 61.
Cicconi-Hogan
KM, Belomestnykh
N, Gamroth
M, Ruegg
PL, Tikofsky
L, Schukken
YH. Prevalence of methicillin resistance in coagulase-negative staphylococci and
Staphylococcus aureus isolated from bulk milk on organic and conventional dairy farms in the United States. Journal of Dairy Science. 2014;97(5):2959–64. [
PubMed: 24582450]
- 62.
Coalition for Animal Health. Political Bans on Antibiotics are Counterproductive. European Test Case: Increased Animal Disease, Mixed Human Health Benefit. nd.
- 63.
Cohen Stuart
J, van den Munckhof
T, Voets
G, Scharringa
J, Fluit
A, Hall
ML. Comparison of ESBL contamination in organic and conventional retail chicken meat. Int J Food Microbiol. 2012;154(3):212–4. [
PubMed: 22260927]
- 64.
Cui
S. Detection and characterization of Escherichia coli O157:H7 and Salmonella in food [Ph.D.]. Ann Arbor: University of Maryland, College Park; 2004.
- 65.
Cui
S, Ge
B, Zheng
J, Meng
J. Prevalence and antimicrobial resistance of
Campylobacter spp. and
Salmonella serovars in organic chickens from Maryland retail stores. Appl Environ Microbiol. 2005;71(7):4108–11. [
PMC free article: PMC1169031] [
PubMed: 16000828]
- 66.
Cuny
C, Friedrich
AW, Witte
W. Absence of Livestock-Associated Methicillin-Resistant
Staphylococcus aureus Clonal Complex CC398 as a Nasal Colonizer of Pigs Raised in an Alternative System. Applied and Environmental Microbiology. 2012;78(4):1296–7. [
PMC free article: PMC3273000] [
PubMed: 22156420]
- 67.
Del Grosso
M, Caprioli
A, Chinzari
P, Fontana
MC, Pezzotti
G, Manfrin
A, et al. Detection and Characterization of Vancomycin-Resistant Enterococci in Farm Animals and Raw Meat Products in Italy. Microbial Drug Resistance. 2000;6(4):313–8. [
PubMed: 11272260]
- 68.
Desmonts
MH, Dufour-Gesbert
F, Avrain
L, Kempf
I. Antimicrobial resistance in Campylobacter strains isolated from French broilers before and after antimicrobial growth promoter bans. Journal of antimicrobial chemotherapy. 2004;54(6):1025–30. [
PubMed: 15537699]
- 69.
Docic
M, Bilkei
G. Differences in antibiotic resistance in
Escherichia coli, isolated from East-European swine herds with or without prophylactic use of antibiotics. J Vet Med B Infect Dis Vet Public Health. 2003;50(1):27–30. [
PubMed: 12710497]
- 70.
Dolejska
M, Jurcickova
Z, Literak
I, Pokludova
L, Bures
J, Hera
A, et al. IncN plasmids carrying bla CTX-M-1 in
Escherichia coli isolates on a dairy farm. Vet Microbiol. 2011;149(3–4):513–6. [
PubMed: 21276666]
- 71.
Dorado-García
A, Bos
ME, Dohmen
W, Verstappen
KM, Wagenaar
JA, Heederik
DJ, editors. Intervention Measures Reducing Livestock-Associated MRSA on Pig Farms in The Netherlands: A Longitudinal Study. 3rd ASM-ESCMID Conference on Methicillin-resistant Staphylococci in Animals: Veterinary and Public Health Implications; 2013; Copenhagen, Denmark.
- 72.
Dorado-Garcia
A, Dohmen
W, Bos
ME, Verstappen
KM, Houben
M, Wagenaar
JA, et al. Dose-response relationship between antimicrobial drugs and livestock-associated MRSA in pig farming. Emerg Infect Dis. 2015;21(6):950–9. [
PMC free article: PMC4451891] [
PubMed: 25989456]
- 73.
Dorado-Garcia
A, Graveland
H, Bos
ME, Verstappen
KM, Van Cleef
BA, Kluytmans
JA, et al. Effects of Reducing Antimicrobial Use and Applying a Cleaning and Disinfection Program in Veal Calf Farming: Experiences from an Intervention Study to Control Livestock-Associated MRSA.[Erratum appears in PLoS One. 2015;10(9):e0139536; PMID: 26413843]. PLoS ONE. 2015;10(8):e0135826. [
PMC free article: PMC4549302] [
PubMed: 26305895]
- 74.
Dutil
L, Irwin
R, Finley
R, Ng
LK, Avery
B, Boerlin
P, et al. Ceftiofur resistance in
Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg Infect Dis. 2010;16(1):48–54. [
PMC free article: PMC2874360] [
PubMed: 20031042]
- 75.
El-Shibiny
A, Connerton
PL, Connerton
IF. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl Environ Microbiol. 2005;71(3):1259–66. [
PMC free article: PMC1065130] [
PubMed: 15746327]
- 76.
Emborg
HD, Andersen
JS, Seyfarth
AM, Andersen
SR, Boel
J, Wegener
HC. Relations between the occurrence of resistance to antimicrobial growth promoters among
Enterococcus faecium isolated from broilers and broiler meat. Int J Food Microbiol. 2003;84(3):273–84. [
PubMed: 12810291]
- 77.
Fraqueza
MJ, Martins
A, Borges
AC, Fernandes
MH, Fernandes
MJ, Vaz
Y, et al. Antimicrobial resistance among
Campylobacter spp. strains isolated from different poultry production systems at slaughterhouse level. Poultry Science. 2014;93(6):1578–86. [
PubMed: 24879708]
- 78.
Gallay
A, Prouzet-Mauleon
V, Kempf
I, Lehours
P, Labadi
L, Camou
C, et al.
Campylobacter antimicrobial drug resistance among humans, broiler chickens, and pigs, France. Emerg Infect Dis. 2007;13(2):259–66. [
PMC free article: PMC2725848] [
PubMed: 17479889]
- 79.
Garcia-Migura
L, Pleydell
E, Barnes
S, Davies
RH, Liebana
E. Characterization of vancomycin-resistant
Enterococcus faecium isolates from broiler poultry and pig farms in England and Wales. J Clin Microbiol. 2005;43(7):3283–9. [
PMC free article: PMC1169128] [
PubMed: 16000449]
- 80.
Garmo
RT, Waage
S, Sviland
S, Henriksen
BI, Osteras
O, Reksen
O. Reproductive performance, udder health, and antibiotic resistance in mastitis bacteria isolated from Norwegian Red cows in conventional and organic farming. Acta Vet Scand. 2010;52:11. [
PMC free article: PMC2829576] [
PubMed: 20141638]
- 81.
Ge
B, Zheng
J, Meng
J, editors. Antimicrobial susceptibility of Campylobacter from retail organic and conventional chickens. Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 Oct–Nov.
- 82.
Gebreyes
WA, Thakur
S, Morrow
WEM. Comparison of Prevalence, Antimicrobial Resistance, and Occurrence of Multidrug-Resistant
Salmonella in Antimicrobial-Free and Conventional Pig Production. Journal of Food Protection. 2006;69(4):743–8. [
PubMed: 16629014]
- 83.
Gellin
G, Langlois
BE, Dawson
KA, Aaron
DK. Antibiotic resistance of gram-negative enteric bacteria from pigs in three herds with different histories of antibiotic exposure. Applied and Environmental Microbiology
1989;55(9). [
PMC free article: PMC203070] [
PubMed: 2802608]
- 84.
Gerzova
L, Babak
V, Sedlar
K, Faldynova
M, Videnska
P, Cejkova
D, et al. Characterization of antibiotic resistance gene abundance and microbiota composition in feces of organic and conventional pigs from four EU countries. PLoS ONE. 2015;10(7):e0132892-e. [
PMC free article: PMC4517930] [
PubMed: 26218075]
- 85.
Guarddon
M, Miranda
JM, Rodríguez
JA, Vázquez
BI, Cepeda
A, Franco
CM. Quantitative detection of tetracycline-resistant microorganisms in conventional and organic beef, pork and chicken meat. CyTA - Journal of Food. 2014;12(4):383–8.
- 86.
Halbert
LW, Kaneene
JB, Linz
J, Mansfield
LS, Wilson
D, Ruegg
PL, et al. Genetic mechanisms contributing to reduced tetracycline susceptibility of
Campylobacter isolated from organic and conventional dairy farms in the midwestern and northeastern United States. Journal of Food Protection. 2006;69(3):482–8. [
PubMed: 16541675]
- 87.
Halbert
LW, Kaneene
JB, Ruegg
PL, Warnick
LD, Wells
SJ, Mansfield
LS, et al. Evaluation of antimicrobial susceptibility patterns in
Campylobacter spp isolated from dairy cattle and farms managed organically and conventionally in the midwestern and northeastern United States. J Am Vet Med Assoc. 2006;228(7):1074–81. [
PubMed: 16579787]
- 88.
Hammerum
AM, Heuer
OE, Emborg
HD, Bagger-Skjot
L, Jensen
VF, Rogues
AM, et al. Danish integrated antimicrobial resistance monitoring and research program. Emerg Infect Dis. 2007;13(11):1632–9. [
PMC free article: PMC3375779] [
PubMed: 18217544]
- 89.
Han
F, Lestari
SI, Pu
S, Ge
B. Prevalence and antimicrobial resistance among
Campylobacter spp. in Louisiana retail chickens after the enrofloxacin ban. Foodborne Pathog Dis. 2009;6(2):163–71. [
PubMed: 19099357]
- 90.
Harper
AL, Male
AJ, Scheibel
RP, Hanson
BM, Wardyn
SE, Smith
TC, editors. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in organic and confinement swine operations in the Midwestern United States. ESCMID/ASM Conference; 2009; London, UK.
- 91.
Harvey
R, Funk
J, Wittum
TE, Hoet
AE. A metagenomic approach for determining prevalence of tetracycline resistance genes in the fecal flora of conventionally raised feedlot steers and feedlot steers raised without antimicrobials. American Journal of Veterinary Research. 2009;70(2):198–202. [
PubMed: 19231951]
- 92.
Hässig
M, Eugster
S, Lewis
FI. Herd level antimicrobial resistance in beef calves in Switzerland 1986 through 2011. Open Journal of Veterinary Medicine. 2014;4(11):247–54.
- 93.
Heuer
OE, Pedersen
K, Andersen
JS, Madsen
M. Prevalence and antimicrobial susceptibility of thermophilic
Campylobacter in organic and conventional broiler flocks. Lett Appl Microbiol. 2001;33(4):269–74. [
PubMed: 11559399]
- 94.
Heuer
OE, Pedersen
K, Andersen
JS, Madsen
M. Vancomycin-resistant enterococci (VRE) in broiler flocks 5 years after the avoparcin ban. Microb Drug Resist. 2002;8(2):133–8. [
PubMed: 12118518]
- 95.
Hiki
M, Kawanishi
M, Abo
H, Kojima
A, Koike
R, Hamamoto
S, et al. Decreased Resistance to Broad-Spectrum Cephalosporin in
Escherichia coli from Healthy Broilers at Farms in Japan After Voluntary Withdrawal of Ceftiofur. Foodborne Pathog Dis. 2015;12(7):639–43. [
PubMed: 26135895]
- 96.
Hiroi
M, Matsui
S, Kubo
R, Iida
N, Noda
Y, Kanda
T, et al. Factors for Occurrence of Extended-Spectrum beta-Lactamase-Producing
Escherichia coli in Broilers. J Vet Med Sci. 2012;74(12):1635–7. [
PubMed: 22786468]
- 97.
Hoogenboom
LA, Bokhorst
JG, Northolt
MD, van de Vijver
LP, Broex
NJ, Mevius
DJ, et al. Contaminants and microorganisms in Dutch organic food products: a comparison with conventional products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008;25(10):1195–207. [
PubMed: 18608495]
- 98.
Huijbers
PM, van Hoek
AH, Graat
EA, Haenen
AP, Florijn
A, Hengeveld
PD, et al. Methicillin-resistant
Staphylococcus aureus and extended-spectrum and AmpC beta-lactamase-producing
Escherichia coli in broilers and in people living and/or working on organic broiler farms. Vet Microbiol. 2015;176(1–2):120–5. [
PubMed: 25582613]
- 99.
Jensen
HH, Hayes
DJ. Impact of Denmark’s ban on antimicrobials for growth promotion. Current Opinion in Microbiology. 2014;19:30–6. [
PubMed: 24997397]
- 100.
Johnson
JR, Sannes
MR, Croy
C, Johnston
B, Clabots
C, Kuskowski
MA, et al. Antimicrobial drug-resistant
Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002–2004. Emerg Infect Dis. 2007;13(6):838–46. [
PMC free article: PMC2792839] [
PubMed: 17553221]
- 101.
Johnston
JR. A comparison of antibiotic resistance in bacteria isolated from conventionally versus organically raised livestock. BIOS (Ocean Grove). 2002;73(2):47–51.
- 102.
Joseph
S, Sapkota
A, Cullen
P, Wagner
D, Hulet
M, Hayer
J, et al. Reduced resistance to antibiotics among Salmonella spp. recovered from U.S. organic poultry farms. Antimicrobial resistance in zoonotic bacteria and foodborne pathogens in animals, humans and the environment: American Society for Microbiology; 2008. p. 17.
- 103.
Joseph
SW, Paramadhas
R, Cullen
P, Wagner
D, Hulet
M, Hayes
J, et al. Reduced Resistance to Antibiotics among Enterococcus faecium of Organic Poultry Farm Origin. Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy. 2007;47:95–6.
- 104.
Keelara Veerappa
S. Molecular Epidemiology of Salmonella Isolated from Pigs Reared in Distinct Swine Production Systems and Humans [Ph.D.]. Ann Arbor: North Carolina State University; 2013.
- 105.
Kerouanton
A, Rose
V, Chidaine
B, Kempf
I, Denis
M. Comparison of organic and conventional pig productions on prevalence, antibiotic resistance and genetic diversity of Escherichia coli [Conference poster]./Résistance à la tétracycline et diversité génétique d’Escherichia coli isolés de porcs biologiques et de porcs conventionnels. Journées de la Recherche Porcine en France. 2014;46:179–80.
- 106.
Khachatryan
AR, Besser
TE, Hancock
DD, Call
DR. Use of a Nonmedicated Dietary Supplement Correlates with Increased Prevalence of Streptomycin-Sulfa-Tetracycline-Resistant
Escherichia coli on a Dairy Farm. Applied and Environmental Microbiology. 2006;72(7):4583–8. [
PMC free article: PMC1489318] [
PubMed: 16820447]
- 107.
Kieke
AL, Borchardt
MA, Kieke
BA, Spencer
SK, Vandermause
MF, Smith
KE, et al. Use of Streptogramin Growth Promoters in Poultry and Isolation of Streptogramin-Resistant
Enterococcus faecium from Humans. The Journal of Infectious Diseases. 2006;194(9):1200–8. [
PubMed: 17041845]
- 108.
Kilonzo-Nthenge
A, Brown
A, Nahashon
SN, Long
D. Occurrence and antimicrobial resistance of enterococci isolated from organic and conventional retail chicken. Journal of Food Protection. 2015;78(4):760–6. [
PubMed: 25836402]
- 109.
Klare
I, Badstübner
D, Konstabel
C, Böhme
G, Claus
H, Witte
W. Decreased incidence of VanA-type Vancomycin-Resistant Enterococci isolated from poultry meat and from faecal samples of humans in the community after discontinuation of Avoparcin usage in animal husbandry. Microbial Drug Resistance. 1999;5(1):45–52. [
PubMed: 10332721]
- 110.
Kola
A, Kohler
C, Pfeifer
Y, Schwab
F, Kühn
K, Schulz
K, et al. High prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. Journal of Antimicrobial Chemotherapy. 2012;67(11):2631–4. [
PubMed: 22868643]
- 111.
Kruse
H, Johansen
BK, Rorvik
LM, Schaller
G. The Use of Avoparcin as a Growth Promoter and the Occurrence of Vancomycin-Resistant Enterococcus Species in Norwegian Poultry and Swine Production. Microbial Drug Resistance. 1999;5(2):135–9. [
PubMed: 10432274]
- 112.
Kuhn
I, Iversen
A, Finn
M, Greko
C, Burman
LG, Blanch
AR, et al. Occurrence and relatedness of vancomycin-resistant enterococci in animals, humans, and the environment in different European regions. Appl Environ Microbiol. 2005;71(9):5383–90. [
PMC free article: PMC1214655] [
PubMed: 16151128]
- 113.
Lam
TJGM, Engelen
Ev, Scherpenzeel
CGM, Hage
JJ. Strategies to reduce antibiotic usage in dairy cattle in the Netherlands. Cattle Practice. 2012;20(3):163–71.
- 114.
Langlois
BE, Cromwell
GL, Stahly
TS, Dawson
KA, Hays
VW. Antibiotic resistance of fecal coliforms after long-term withdrawal of therapeutic and subtherapeutic antibiotic use in a swine herd. Appl Environ Microbiol. 1983;46(6):1433–4. [
PMC free article: PMC239589] [
PubMed: 6660878]
- 115.
Langlois
BE, Dawson
K, Cromwell
G, Stahly
T. Antibiotic resistance in pigs following a 13 year ban. Journal of Animal Science. 1986;62(Suppl. 3):18–32.
- 116.
Larsen
JL, Nielsen
NC. Influence of restrictive use of antibiotics on the development of drug resistance in intestinal
Escherichia coli from pigs (author’s transl). Nord Vet Med. 1975;27(7–8):353–64. [
PubMed: 1099531]
- 117.
Lauderdale
TL, Shiau
YR, Wang
HY, Lai
JF, Huang
IW, Chen
PC, et al. Effect of banning vancomycin analogue avoparcin on vancomycin-resistant enterococci in chicken farms in Taiwan. Environ Microbiol. 2007;9(3):819–23. [
PubMed: 17298380]
- 118.
Lebek
G, Gubelmann
P. Six years of official restriction on the use of antibiotics as feed additives in Switzerland. Random bacteriological sampling of faeces on farms./Sechs Jahre gesetzlich angeordnete Abstinenz von therapeutisch genutzten Antibiotika als nutritive Futterzusatze in der Schweiz-Tierfaeces-Stichproben in einigen landwirtschaftlichen Betrieben. Schweizer Archiv fur Tierheilkunde. 1979;121(6):295–309. [
PubMed: 384512]
- 119.
Lee
SK, Chon
JW, Song
KY, Hyeon
JY, Moon
JS, Seo
KH. Prevalence, characterization, and antimicrobial susceptibility of
Salmonella Gallinarum isolated from eggs produced in conventional or organic farms in South Korea. Poultry Science. 2013;92(10):2789–97. [
PubMed: 24046429]
- 120.
LeJeune
JT, Christie
NP. Microbiological quality of ground beef from conventionally-reared cattle and “raised without antibiotics” label claims. Journal of Food Protection. 2004;67(7):1433–37. [
PubMed: 15270497]
- 121.
Lenart-Boron
A, Augustyniak
K, Boron
P. Screening of antimicrobial resistance and molecular detection of fluoroquinolone resistance mechanisms in chicken faeces-derived Escherichia coli. Veterinární Medicína. 2016;61(2):80–9.
- 122.
Lestari
SI, Han
F, Wang
F, Ge
B. Prevalence and antimicrobial resistance of
Salmonella serovars in conventional and organic chickens from Louisiana retail stores. Journal of Food Protection. 2009;72(6):1165–72. [
PubMed: 19610326]
- 123.
Looft
T, Johnson
TA, Allen
HK, Bayles
DO, Alt
DP, Stedtfeld
RD, et al. In-feed antibiotic effects on the swine intestinal microbiome. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(5):1691–6. [
PMC free article: PMC3277147] [
PubMed: 22307632]
- 124.
Lou
R. Dietary mannan-oligosaccharide as an approach for altering prevalence of antibiotic resistance and distribution of tetracycline resistance determinants in fecal bacteria from swine [Ph.D.]. Ann Arbor: University of Kentucky; 1995.
- 125.
Luangtongkum
T, Morishita
TY, Ison
AJ, Huang
S, McDermott
PF, Zhang
Q. Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of
Campylobacter spp. in poultry. Appl Environ Microbiol. 2006;72(5):3600–7. [
PMC free article: PMC1472326] [
PubMed: 16672508]
- 126.
Mathew
AG, Beckmann
MA, Saxton
AM. A comparsion of antibiotic resistance in bacteria isolated from swine herds in which antibiotics were used or excluded. Journal of Swine Health and Production. 2001;9(3):125–9.
- 127.
Mazengia
E, Samadpour
M, Hill
HW, Greeson
K, Tenney
K, Liao
G, et al. Prevalence, Concentrations, and Antibiotic Sensitivities of
Salmonella Serovars in Poultry from Retail Establishments in Seattle, Washington. Journal of Food Protection. 2014;77(6):885–93. [
PubMed: 24853509]
- 128.
Meemken
D, Blaha
T. Research on the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) in domestic pigs and wild boars in Germany./Untersuchungen zum Vorkommen von Methicillin-resistenten Staphylococcus aureus (MRSA) bei Haus- und Wildschweinen. Deutsche Tierärztliche Wochenschrift. 2009;116(8):297–301.
- 129.
Mehboob
A, Kocherginskaya
SA, Aminov
RI, Mackie
RI. Quantitation of tetracycline resistance genes using Real-Time PCR on pig farms with and without antibiotic use. Abstracts of the General Meeting of the American Society for Microbiology. 2003;103:A-043.
- 130.
Millar
JR. The relationship between use of apramycin in the poultry industry and the detection of gentamicin resistant E. coli in processed chickens. New Zealand Journal of Medical Laboratory Science. 2007;61(3):65–8.
- 131.
Millman
J, Waits
K, Grande
H, Marks
A, Marks
J, Price
L, et al. Prevalence of antibiotic-resistant
E. coli in retail chicken: comparing conventional, organic, kosher, and raised without antibiotics [version 1; referees: 1 approved, 1 approved with reservations]. F1000Res. 2013;2(155):1–14. [
PMC free article: PMC3901448] [
PubMed: 24555073]
- 132.
Miranda
CD, Rojas
R. Occurrence of florfenicol resistance in bacteria associated with two Chilean salmon farms with different history of antibacterial usage. Aquaculture. 2007;266(1/4):39–46.
- 133.
Miranda
JM, Guarddon
M, Mondragon
A, Vazquez
BI, Fente
CA, Cepeda
A, et al. Antimicrobial resistance in
Enterococcus spp. strains isolated from organic chicken, conventional chicken, and turkey meat: a comparative survey. Journal of Food Protection. 2007;70(4):1021–4. [
PubMed: 17477278]
- 134.
Miranda
JM, Guarddon
M, Vázquez
BI, Fente
CA, Barros-Velázquez
J, Cepeda
A, et al. Antimicrobial resistance in Enterobacteriaceae strains isolated from organic chicken, conventional chicken and conventional turkey meat: a comparative survey. Food Control. 2008;19(4):412–6. [
PubMed: 17477278]
- 135.
Miranda
JM, Mondragon
A, Vazquez
BI, Fente
CA, Cepeda
A, Franco
CM. Influence of farming methods on microbiological contamination and prevalence of resistance to antimicrobial drugs in isolates from beef. Meat Sci. 2009;82(2):284–8. [
PubMed: 20416735]
- 136.
Miranda
JM, Mondragón
A, Vázquez
BI, Fente
CA, Cepeda
A, Franco
CM. Microbiological quality and antimicrobial resistance of Escherichia coli and Staphylococcus aureus isolated from conventional and organic “Arzúa-ulloa” cheese. CyTA - Journal of Food. 2009;7(2):103–10.
- 137.
Miranda
JM, Vázquez
BI, Fente
CA, Barros-Velázquez
J, Cepeda
A, Abuín
CMF. Antimicrobial resistance in Escherichia coli strains isolated from organic and conventional pork meat: a comparative survey. European Food Research and Technology. 2008;226(3):371–5.
- 138.
Miranda
JM, Vazquez
BI, Fente
CA, Calo-Mata
P, Cepeda
A, Franco
CM. Comparison of antimicrobial resistance in
Escherichia coli, Staphylococcus aureus, and
Listeria monocytogenes strains isolated from organic and conventional poultry meat. Journal of Food Protection. 2008;71(12):2537–42. [
PubMed: 19244911]
- 139.
Mitchell
R, Warnick
LD, Ray
K, Kaneene
JB, Ruegg
PL, Wells
SJ, et al. Antimicrobial susceptibility of Salmonella isolates from organic and conventional dairy farms. In: Smith
RA, editor. Proceedings of the Thirty-Seventh Annual Conference, American Association of Bovine Practitioners, Fort Worth, Texas, USA, 23–25 September, 2004. Stillwater; USA: American Association of Bovine Practitioners; 2004.
- 140.
Mollenkopf
DF, Cenera
JK, Bryant
EM, King
CA, Kashoma
I, Kumar
A, et al. Organic or antibiotic-free labeling does not impact the recovery of enteric pathogens and antimicrobial-resistant
Escherichia coli from fresh retail chicken. Foodborne Pathog Dis. 2014;11(12):920–9. [
PubMed: 25405393]
- 141.
Morley
PS, Dargatz
DA, Hyatt
DR, Dewell
GA, Patterson
JG, Burgess
BA, et al. Effects of Restricted Antimicrobial Exposure on Antimicrobial Resistance in Fecal
Escherichia coli from Feedlot Cattle. Foodborne Pathog Dis. 2011;8(1):87–98. [
PubMed: 21034271]
- 142.
Nannapaneni
R, Hanning
I, Wiggins
KC, Story
RP, Ricke
SC, Johnson
MG. Ciprofloxacin-resistant
Campylobacter persists in raw retail chicken after the fluoroquinolone ban. Food Addit Contam. 2009;26(10):1348–53. [
PubMed: 21462579]
- 143.
Noormohamed
A, Fakhr
MK. Prevalence and Antimicrobial Susceptibility of
Campylobacter spp. in Oklahoma Conventional and Organic Retail Poultry. Open Microbiol J. 2014;8:130–7. [
PMC free article: PMC4235082] [
PubMed: 25408778]
- 144.
Norby
B, Bartlett
P, Kaneene
J. Prevalence and Antimicrobial susceptibility of Campylobacter in antibiotic-free and conventional swine farms in the Mid-Western United States. IJMM International Journal of Medical Microbiology. 2003;293(Suppl. 35):53.
- 145.
Nugent
C, Murdough
P, Panky
W, Barlow
J. Establishing and comparing profiles of antimicrobial resistance in Staphylococcus aureus isolates from selected organic and conventional dairy farms in Vermont. Journal of Dairy Science. 2001;84(Suppl. 1):334.
- 146.
Nulsen
MF, Mor
MB, Lawton
DE. Antibiotic resistance among indicator bacteria isolated from healthy pigs in New Zealand. N Z Vet J. 2008;56(1):29–35. [
PubMed: 18322557]
- 147.
Nwankwo
C, Ayogu
T, Ifeanyichukwu
I, Chika
E, Nwakaeze
E, Oji
A, et al. Cloacal feacal carriage and occurrence of antibiotic resistant Escherichia coli in chicken grown with and without antibiotic supplemented feed. Journal of Veterinary Medicine and Animal Health. 2014;6(3):91–4.
- 148.
- 149.
O’Neill
C. Antibiotic-resistant staphylococci in the agricultural environment: reservoirs of resistance and infection [Ph.D.]. Ann Arbor: University of Warwick (United Kingdom); 2010.
- 150.
Obeng
AS, Rickard
H, Ndi
O, Sexton
M, Barton
M. Antibiotic resistance, phylogenetic grouping and virulence potential of
Escherichia coli isolated from the faeces of intensively farmed and free range poultry. Vet Microbiol. 2012;154:305–15. [
PubMed: 21856098]
- 151.
Osadebe
L-MU. Prevalence and Characteristics of Community associated Methicillin Resistant Staphylococcus areus (CA-MRSA) In Connecticut Swine Industry [Ph.D.]. Ann Arbor: Yale University; 2012.
- 152.
Pantosti
A, Del Grosso
M, Tagliabue
S, Macri
A, Caprioli
A. Decrease of vancomycin-resistant enterococci in poultry meat after avoparcin ban. The Lancet. 1999;354(9180):741–42. [
PubMed: 10475190]
- 153.
Park
YK, Fox
LK, Hancock
DD, McMahan
W, Park
YH. Prevalence and antibiotic resistance of mastitis pathogens isolated from dairy herds transitioning to organic management. J vet sci. 2012;13(1):103–5. [
PMC free article: PMC3317450] [
PubMed: 22437543]
- 154.
Patchanee
P. Epidemiology of Salmonella enterica related to swine production system and food safety [Ph.D.]. Ann Arbor: The Ohio State University; 2008.
- 155.
Peng
M, Salaheen
S, Almario
JA, Tesfaye
B, Buchanan
R, Biswas
D. Prevalence and antibiotic resistance pattern of
Salmonella serovars in integrated crop-livestock farms and their products sold in local markets. Environ Microbiol. 2016;18(5):1654–65. [
PubMed: 26914740]
- 156.
Pettey
EA. Comparison of antibiotic susceptibility characteristics of fecal lactobacilli and the distribution of tetracycline resistance genes on two swine farms with different histories of antibiotic use [Ph.D.]. Ann Arbor: University of Kentucky; 2008.
- 157.
Pol
M, Ruegg
PL. Relationship between antimicrobial drug usage and antimicrobial susceptibility of gram-positive mastitis pathogens. Journal of Dairy Science. 2007;90(1):262–73. [
PubMed: 17183094]
- 158.
Price
LB, Johnson
E, Vailes
R, Silbergeld
E. Fluoroquinolone-resistant
Campylobacter isolates from conventional and antibiotic-free chicken products. Environ Health Perspect. 2005;113(5):557–60. [
PMC free article: PMC1257547] [
PubMed: 15866763]
- 159.
Price
LB, Lackey
LG, Vailes
R, Silbergeld
E. The persistence of fluoroquinolone-resistant
Campylobacter in poultry production. Environ Health Perspect. 2007;115(7):1035–9. [
PMC free article: PMC1913601] [
PubMed: 17637919]
- 160.
Ray
KA, Warnick
LD, Mitchell
RM, Kaneene
JB, Ruegg
PL, Wells
SJ, et al. Antimicrobial susceptibility of
Salmonella from organic and conventional dairy farms. Journal of Dairy Science. 2006;89(6):2038–50. [
PubMed: 16702267]
- 161.
Reinstein
S, Fox
JT, Shi
X, Alam
MJ, Renter
DG, Nagaraja
TG. Prevalence of
Escherichia coli O157:H7 in organically and naturally raised beef cattle. Applied and Environmental Microbiology. 2009;75(16):5421–3. [
PMC free article: PMC2725470] [
PubMed: 19542334]
- 162.
Rinsky
JL, Nadimpalli
M, Wing
S, Hall
D, Baron
D, Price
LB, et al. Livestock-associated methicillin and multidrug resistant
Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina. PLoS ONE
2013;8(7):e67641. [
PMC free article: PMC3699663] [
PubMed: 23844044]
- 163.
Roesch
M, Perreten
V, Doherr
MG, Schaeren
W, Schallibaum
M, Blum
JW. Comparison of antibiotic resistance of udder pathogens in dairy cows kept on organic and on conventional farms. Journal of Dairy Science. 2006;89(3):989–97. [
PubMed: 16507693]
- 164.
Rollo
SN, Norby
B, Bartlett
PC, Scott
HM, Wilson
DL, Fajt
VR, et al. Prevalence and patterns of antimicrobial resistance in
Campylobacter spp isolated from pigs reared under antimicrobial-free and conventional production methods in eight states in the Midwestern United States. J Am Vet Med Assoc. 2010;236(2):201–10. [
PubMed: 20074013]
- 165.
Rossa
LS, Stahlke
EvR, Diez
DC, Weber
SH, Stertz
SC, Macedo
REFd. Antimicrobial resistance and occurrence of indicator and pathogenic bacteria in organic and conventional chicken meat: comparative study./Resistência antimicrobiana e ocorrência de micro-organismos patogênicos e indicadores em frangos orgânicos e convencionais: estudo comparativo. Biotemas. 2013;26(3):211–20.
- 166.
Salaheen
S, Peng
M, Biswas
D. Ecological Dynamics of
Campylobacter in Integrated Mixed Crop-Livestock Farms and Its Prevalence and Survival Ability in Post-Harvest Products. Zoonoses and Public Health. 2016;13:13. [
PubMed: 27178350]
- 167.
Sanchez
HM. Antibiotic Resistance in Bacteria Isolated from Commercial Meat Samples and Air Samples Near Agricultural Sites [Ph.D.]. Ann Arbor: University of California, Los Angeles; 2015.
- 168.
Sapkota
AR, Hulet
RM, Zhang
G, McDermott
P, Kinney
EL, Schwab
KJ, et al. Lower prevalence of antibiotic-resistant Enterococci on U.S. conventional poultry farms that transitioned to organic practices. Environ Health Perspect. 2011;119(11):1622–8. [
PMC free article: PMC3226496] [
PubMed: 21827979]
- 169.
Sapkota
AR, Kim
A, Hulet
RM, McDermott
P, Schwab
KJ, Zhang
G, et al. Trends in the Prevalence and Antibiotic-resistance of Salmonella After Conventional Poultry Farms Transition to Organic Practices. Abstracts of the General Meeting of the American Society for Microbiology. 2010;110:Q-1478.
- 170.
Sapkota
AR, Kinney
EL, George
A, Hulet
RM, Cruz-Cano
R, Schwab
KJ, et al. Lower prevalence of antibiotic-resistant
Salmonella on large-scale U.S. conventional poultry farms that transitioned to organic practices. Sci Total Environ
2014;476–477:387–92. [
PubMed: 24486494]
- 171.
Sato
K, Bartlett
PC, Kaneene
JB, Downes
FP. Comparison of prevalence and antimicrobial susceptibilities of
Campylobacter spp. isolates from organic and conventional dairy herds in Wisconsin. Appl Environ Microbiol. 2004;70(3):1442–7. [
PMC free article: PMC368295] [
PubMed: 15006764]
- 172.
Sato
K, Bartlett
PC, Saeed
MA. Antimicrobial susceptibility of
Escherichia coli isolates from dairy farms using organic versus conventional production methods. J Am Vet Med Assoc. 2005;226(4):589–94. [
PubMed: 15742702]
- 173.
Sato
K, Bennedsgaard
TW, Bartlett
PC, Erskine
RJ, Kaneene
JB. Comparison of antimicrobial susceptibility of
Staphylococcus aureus isolated from bulk tank milk in organic and conventional dairy herds in the midwestern United States and Denmark. Journal of Food Protection. 2004;67(6):1104–10. [
PubMed: 15222534]
- 174.
Schmidt
JW, Agga
GE, Bosilevac
JM, Wheeler
TL, Arthur
TM, editors. Variations in the fecal occurrences of antimicrobial-resistant bacteria are greater between seasons than between “raised without antibiotics” and “conventional” cattle production systems. 4th ASM conference on antimicrobial resistance in zoonotic bacteria and foodborne pathogens; 2015; Washington DC, USA.
- 175.
Schwaiger
K, Schmied
EM, Bauer
J. Comparative analysis of antibiotic resistance characteristics of Gram-negative bacteria isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany. Zoonoses and Public Health. 2008;55(7):331–41. [
PubMed: 18667026]
- 176.
Schwaiger
K, Schmied
EM, Bauer
J. Comparative analysis on antibiotic resistance characteristics of
Listeria spp. and
Enterococcus spp. isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany. Zoonoses and Public Health. 2010;57(3):171–80. [
PubMed: 19486494]
- 177.
Siemon
CE, Bahnson
PB, Gebreyes
WA. Comparative investigations of prevalence and antimicrobial resistance of
Salmonella between pasture and conventionally reared poultry. Avian Dis. 2007;51(1):112–17. [
PubMed: 17461275]
- 178.
Sischo
WM, Stevenson
J, Kinder
D. A case study of antibiotic use practices to change population level antibiotic resistance. Antimicrobial resistance in zoonotic bacteria and foodborne pathogens in animals, humans and the environment; Toronto, Canada;2010.
- 179.
Skjot-Rasmussen
L, Ethelberg
S, Emborg
HD, Agerso
Y, Larsen
LS, Nordentoft
S, et al. Trends in occurrence of antimicrobial resistance in
Campylobacter jejuni isolates from broiler chickens, broiler chicken meat, and human domestically acquired cases and travel associated cases in Denmark. Int J Food Microbiol. 2009;131(2–3):277–9. [
PubMed: 19345436]
- 180.
Smith
HW, Lovell
MA.
Escherichia coli resistant to tetracyclines and to other antibiotics in the faeces of U.K. chickens and pigs in 1980. J Hyg (Lond). 1981;87(3):477–83. [
PMC free article: PMC2134116] [
PubMed: 7031130]
- 181.
Smith
TC, Gebreyes
WA, Abley
MJ, Harper
AL, Forshey
BM, Male
MJ, et al. Methicillin-resistant
Staphylococcus aureus in pigs and farm workers on conventional and antibiotic-free swine farms in the USA. PLoS ONE. 2013;8(5):e63704. [
PMC free article: PMC3646818] [
PubMed: 23667659]
- 182.
Soonthornchaikul
N. Resistance to antimicrobial agents in campylobacter isolated from chickens raised in intensive and organic farms and its implications for the management of risk to human health [Ph.D.]. Ann Arbor: Middlesex University (United Kingdom); 2006.
- 183.
Sørum
M, Holstad
G, Lillehaug
A, Kruse
H. Prevalence of Vancomycin Resistant Enterococci on Poultry Farms Established after the Ban of Avoparcin. Avian Dis. 2004;48(4):823–8. [
PubMed: 15666863]
- 184.
Sørum
M, Johnsen
PJ, Aasnes
B, Rosvoll
T, Kruse
H, Sundsfjord
A, et al. Prevalence, Persistence, and Molecular Characterization of Glycopeptide-Resistant Enterococci in Norwegian Poultry and Poultry Farmers 3 to 8 Years after the Ban on Avoparcin. Appl Environ Microbiol. 2006;72(1):516–21. [
PMC free article: PMC1352202] [
PubMed: 16391086]
- 185.
Stegeman
JA, Vernooij
JCM, Khalifa
OA, Van den Broek
J, Mevius
DJ. Establishing the change in antibiotic resistance of
Enterococcus faecium strains isolated from Dutch broilers by logistic regression and survival analysis. Preventive Veterinary Medicine. 2006;74(1):56–66. [
PubMed: 16488031]
- 186.
Struve
T, Vigre
H, Wingstrand
A, Sørensen
V, Jensen
V, Lundsby
K, et al. Effect of antimicrobial consumption on the occurence of resistence in conventional, free range and organic slaughter pig production in Denmark. 2nd ASM Conference on Antimicrobial Resistance in Zoonotic Bacteria and Foodborne Pathogens in Animals, Humans and the Environment; Toronto, Canada;2010.
- 187.
Suriyasathaporn
W. Milk quality and antimicrobial resistance against mastitis pathogens after changing from a conventional to an experimentally organic dairy farm. Asian-Australasian Journal of Animal Sciences. 2010;23(5):659–64.
- 188.
Tadesse
DA. Molecular epidemiology of Campylobacter and Yersinia enterocolitica isolates from pigs reared in conventional and antibiotic free farms from different geographic regions [Ph.D.]. Ann Arbor: The Ohio State University; 2009.
- 189.
Tamang
MD, Gurung
M, Nam
HM, Moon
DC, Kim
SR, Jang
GC, et al. Prevalence and characterization of
Salmonella in pigs from conventional and organic farms and first report of S. serovar 1,4,[5],12:i:- from Korea. Vet Microbiol. 2015;178(1–2):119–24. [
PubMed: 25982261]
- 190.
Teramoto
H, Salaheen
S, Debabrata
B. Contamination of post-harvest poultry products with multidrug resistant Staphylococcus aureus in Maryland-Washington DC metro area. Food Control. 2016;65:132–35.
- 191.
Thakur
S, Gebreyes
WA. Prevalence and Antimicrobial Resistance of
Campylobacter in Antimicrobial-Free and Conventional Pig Production Systems. Journal of Food Protection. 2005;68(11):2402–10. [
PubMed: 16300080]
- 192.
Tikofsky
LL, Barlow
JW, Santisteban
C, Schukken
YH. A comparison of antimicrobial susceptibility patterns for
Staphylococcus aureus in organic and conventional dairy herds. Microb Drug Resist. 2003;9(Suppl 1):S39–45. [
PubMed: 14633366]
- 193.
Tragesser
LA, Wittum
TE, Funk
JA, Winokur
PL, Rajala-Schultz
PJ. Association between ceftiofur use and isolation of
Escherichia coli with reduced susceptibility to ceftriaxone from fecal samples of dairy cows. American Journal of Veterinary Research. 2006;67(10):1696–700. [
PubMed: 17014318]
- 194.
Trost
E, Mantel
O, Dobrindt
U. Genomic and phenotypic characterization of commensal E. coli isolates from chicken: Prevalence of virulence and resistance traits. International Journal of Medical Microbiology. 2013;303:63–4.
- 195.
Truszczyński
M, Pejsak
Z. Influence of antibiotics used in animals on antibiotic resistance to bacteria pathogenic for man./Wpyw stosowania u zwierzat antybiotyków na lekooporność bakterii chorobotwórczych dla czowieka. Medycyna Weterynaryjna. 2006;62(12):1339–43.
- 196.
van den Bogaard
AE, Bruinsma
N, Stobberingh
EE. The effect of banning avoparcin on VRE carriage in The Netherlands. Journal of Antimicrobial Chemotherapy. 2000;46(1):146–8. [
PubMed: 10882707]
- 197.
van den Bogaard
AE, London
N, Driessen
C, Stobberingh
EE. Antibiotic resistance of faecal
Escherichia coli in poultry, poultry farmers and poultry slaughterers. Journal of Antimicrobial Chemotherapy. 2001;47(6):763–71. [
PubMed: 11389108]
- 198.
Veldman
K, Dierikx
C, Testerink
J, Japing
M, Kant
A, van Essen-Zandbergen
A, et al., editors. Decrease of antimicrobial resistance in E. coli from animal husbandry reflects the reduction of antibiotic usage in animals in the Netherlands. 24th European Congress of Clinical Microbiology and Infectious Diseases; 2014; Barcelona, Spain.
- 199.
Walk
ST, Mladonicky
JM, Middleton
JA, Heidt
AJ, Cunningham
JR, Bartlett
P, et al. Influence of antibiotic selection on genetic composition of
Escherichia coli populations from conventional and organic dairy farms. Appl Environ Microbiol. 2007;73(19):5982–9. [
PMC free article: PMC2074991] [
PubMed: 17704272]
- 200.
Warnick
L, Ray
K, Mitchell
R, Kaneene
J, Ruegg
P, Wells
H, et al. Salmonella antimicrobial resistance on organic and conventional dairy farms. Science - Prevention - Control;2015.
- 201.
Wyckoff
TJ, Wyckoff
PH, Hanson
JA, Davison
JM, Gerber
MM, Skala
JR. Changes in Antimicrobial Susceptibility of Staphylococcus Milk Isolates from a West-Central Minnesota Dairy Herd During Transition to Organic Management. Abstracts of the General Meeting of the American Society for Microbiology. 2012;112:3156.
- 202.
Zawack
K, Li
M, Booth
JG, Love
W, Lanzas
C, Grohn
YT. Monitoring Antimicrobial Resistance in the Food Supply Chain and its Implications for FDA Policy Initiatives. Antimicrob Agents Chemother. 2016;20:20. [
PMC free article: PMC4997833] [
PubMed: 27324772]
- 203.
Zhang
J, Massow
A, Stanley
M, Papariella
M, Chen
X, Kraft
B, et al. Contamination rates and antimicrobial resistance in
Enterococcus spp.,
Escherichia coli, and
Salmonella isolated from “no antibiotics added”-labeled chicken products. Foodborne Pathog Dis. 2011;8(11):1147–52. [
PubMed: 21714636]
- 204.
Zhang
J, Wall
SK, Xu
L, Ebner
PD. Contamination rates and antimicrobial resistance in bacteria isolated from “grass-fed” labeled beef products. Foodborne Pathog Dis. 2010;7(11):1331–6. [
PubMed: 20618073]
- 205.
Zhang
Y. Antimicrobial resistance of Listeria monocytogenes and Enterococcus faecium from food and animal sources [Ph.D.]. Ann Arbor: University of Maryland, College Park; 2005.
- 206.
Zwonitzer
MR, Soupir
ML, Jarboe
LR, Smith
DR. Quantifying Attachment and Antibiotic Resistance of from Conventional and Organic Swine Manure. J Environ Qual. 2016;45(2):609–17. [
PubMed: 27065408]
- 207.
Dorado-Garcia
A, Mevius
DJ, Jacobs
JJH, Van Geijlswijk
IM, Mouton
JW, Wagenaar
JA, et al. Quantitative assessment of antimicrobial resistance in livestock during the course of a nationwide antimicrobial use reduction in the Netherlands. Journal of Antimicrobial Chemotherapy. 2016;71(12):3607–19. [
PubMed: 27585970]
- 208.
Kassem
II, Kehinde
O, Kumar
A, Rajashekara
G. Antimicrobial-Resistant
Campylobacter in Organically and Conventionally Raised Layer Chickens. Foodborne Pathog Dis. 2017;14(1):29–34. [
PubMed: 27768387]
- 209.
Osterberg
J, Wingstrand
A, Jensen
AN, Kerouanton
A, Cibin
V, Barco
L, et al. Antibiotic resistance in
Escherichia coli from pigs in organic and conventional farming in four European countries. PLoS ONE
2016;11 (6) (e0157049). [
PMC free article: PMC4928804] [
PubMed: 27362262]
- 210.
Wanninger
S, Donati
M, Di Francesco
A, Hassig
M, Hoffmann
K, Seth-Smith
HMB, et al. Selective pressure promotes tetracycline resistance of
Chlamydia suis in fattening pigs. PLoS ONE
2016;11 (11)(e0166917). [
PMC free article: PMC5125646] [
PubMed: 27893834]
- 211.
Casewell
M, Friis
C, Marco
E, McMullin
P, Phillips
I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. Journal of Antimicrobial Chemotherapy. 2003;52(2):159–61. [
PubMed: 12837737]
- 212.
Smith-Spangler
C, Brandeau
ML, Hunter
GE, Bavinger
JC, Pearson
M, Eschbach
PJ, et al. Are organic foods safer or healthier than conventional alternatives?: a systematic review. Ann Intern Med. 2012;157(5):348–66. [
PubMed: 22944875]
- 213.
Wilhelm
B, Rajic
A, Waddell
L, Parker
S, Harris
J, Roberts
KC, et al. Prevalence of zoonotic or potentially zoonotic bacteria, antimicrobial resistance, and somatic cell counts in organic dairy production: current knowledge and research gaps. Foodborne Pathog Dis. 2009;6(5):525–39. [
PubMed: 19422303]
- 214.
Young
I, Rajic
A, Wilhelm
BJ, Waddell
L, Parker
S, McEwen
SA. Comparison of the prevalence of bacterial enteropathogens, potentially zoonotic bacteria and bacterial resistance to antimicrobials in organic and conventional poultry, swine and beef production: a systematic review and meta-analysis. Epidemiol Infect. 2009;137(9):1217–32. [
PubMed: 19379542]
- 215.
Lazarus
B, Paterson
DL, Mollinger
JL, Rogers
BA. Do human extraintestinal
Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review. Clin Infect Dis. 2015;60(3):439–52. [
PubMed: 25301206]
- 216.
Aarestrup
FM. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2015;370(1670):20140085. [
PMC free article: PMC4424434] [
PubMed: 25918442]
- 217.
- 218.
. Uses of Antimicrobials in Food Animals in Canada: Impact on Resistance and Human Health. Report of the Advisory Committee on Animal Uses of Antimicrobials and Impact on Resistance and Human Health. 2002.
- 219.
Council of the European Union. Council conclusions on the impact of antimicrobial resistance in the human health sector and in the veterinary sector – a “One Health” perspective. In: 3177th Employment SP, Health and Cosumer Affairs Council meeting, editor. Luxembourg;2012. p. 6.
- 220.
Queenan
K, Hasler
B, Rushton
J A. One Health approach to antimicrobial resistance surveillance: is there a business case for it?
Int J Antimicrob Agents
2016. [
PubMed: 27496533]
- 221.
Khan
LH. One Health and the Politics of Antimicrobial Resistance. Baltimore: Johns Hopkins University Press; 2016.
- 222.
Van Boeckel
TP, Brower
C, Gilbert
M, Grenfell
BT, Levin
SA, Robinson
TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015;112(18):5649–54. [
PMC free article: PMC4426470] [
PubMed: 25792457]