A systematic review of the number needed to screen to detect a case of active tuberculosis in different risk groups

by Adrienne E. Shapiro, Ripa Chakravorty, Tokunbo Akande, Knut Lonnroth, Jonathan E. Golub

with additional contributions from:

Meredith G. Mirrer, Colleen Hanrahan, Darya Kizub, Lois Eldred, Maitreyi Sahu, Mukund Uplekar, Jacob Creswell, Ikushi Onozaki, Salah-Eddine Ottomani,

January 25, 2013

Abbreviations and definitions

ACF: active case-finding AFB: acid-fast bacilli **AIDS:** acquired immune deficiency syndrome **ARTI**: annual risk of tuberculosis infection **ART/ARV**: antiretroviral therapy **Cx:** culture **CXR:** chest X-ray **ECF:** enhanced case-finding **HIV:** human immunodeficiency virus **HAART:** highly active antiretroviral therapy **ICF:** intensified case-finding **IGRA:** interferon-gamma release assay **IPT:** isoniazid prophylaxis therapy **LTBI:** latent tuberculosis infection **MDR:** multi-drug resistant tuberculosis ND: not defined **NS:** not specified **NNS:** number needed to screen **NS:** not specified **RCT:** randomized controlled trial Sm: sputum smear microscopy for AFB **Sx:** symptoms **TB:** tuberculosis **TST:** tuberculin skin test

Acknowledgments

The authors are grateful for the comments and suggestions provided by attendees of the May 22-23, 2012 Technical Working Group Meeting.

Introduction

The WHO official global TB control policy advocates the DOTS strategy, which relies on passive self-presentation for case detection.¹ Despite the successes of DOTS in controlling TB in, some evidence suggests that active case-finding may be a necessary component of TB control in high-prevalence areas, particularly in the setting of HIV.²³ Self-presentation to a health center by symptomatic persons alone may be insufficient to detecting enough cases of TB to make an impact on the epidemic¹. Although such "passive case-finding" is efficient, as patients who self-present to a health facility are more likely to be symptomatic and detectable, the burden of arriving at a health facility remains with the patient. Obstacles to self-presentation such as distance to the nearest health facility, sex, socioeconomic factors, and age have all been associated with delayed time to diagnosis of TB from onset of symptoms; thus coinfected individuals may be less likely to suspect TB and be less likely to self-present to health facilities.^{6,7}

In contrast to the passive case-finding strategy, active case-finding (ACF) places the onus of case-finding on the health system, not the patient. There are numerous strategies for active case-finding, ranging from population-wide screening to targeted case-finding in high risk groups such as health care workers, HIV positive individuals, and miners. Another group frequently targeted for screening, particularly in the industrialized world, are contacts of known TB cases, who have an increased risk due to their known exposure. In the United States, for example, contact tracing is standard practice when a case of TB is reported. In contrast, in South Africa, there is no routine contact tracing in households or workplaces, although adults patients are requested to bring young children (< 5 years of age) to the clinic or screening.⁸

ACF has been used extensively in a variety of settings for detecting TB, and this strategy has been demonstrably effective in reducing TB prevalence, incidence, and mortality.⁹ Methodologies ranging from total population screening using mobile chest X-ray (CXR) units to symptom screens of HIV patients followed by sputum smear microscopy and sometimes culture have been employed to detect TB. The primary criticism of ACF is that it is resource-intensive, high cost, and there is not a consensus on the most appropriate screening algorithms or the population categories (e.g. risk groups) to prioritize for screening, as well as the frequency of screening. Population-based screens are thought to be extremely expensive and low-yield, while symptom screens may fail to detect TB patients with non-traditional case presentations, as commonly seen in HIV patients. Health systems in low-income countries do not have the budget or the human resources to conduct constant population-wide screens, but the evidence for more targeted ACF methods is inconclusive as to the optimal method, particularly in dual TB/HIV epidemic settings.

A recent review and meta-analysis of contact tracing studies conducted in low-income countries found an overall prevalence of active TB disease in 5% of contacts of known cases using a clinical case-definition for TB, and half as much when bacteriologic confirmation was required.¹⁰ Even this more restrictive case definition is a prevalence

more than twice as much as the background prevalence in South Africa, one of the highestburden countries in the world. This further suggests that household-based ACF may be a higher-yield intervention than population-based.

Little is known about the programmatic efficacy of ACF in the context of widespread background HIV prevalence. In the review of household contact studies, only 4 papers had any data on the HIV status of the index TB case, and none had data on the HIV status of the contacts. There is an ongoing debate about the efficacy and, importantly, the costeffectiveness of ACF in high HIV prevalence settings. Current large-scale studies (eg ZAMSTAR¹¹) are seeking to determine this, but results may be context-dependent. To date, little formal cost-effectiveness analysis has been done to assess ACF and although models have been proposed, data from actual interventions remains limited.

There is increasing realization that addressing the current TB case-finding deficit will require introduction of ACF and enhanced case-finding (ECF) strategies. The WHO has made intensified (active) case-finding among HIV-infected individuals one of the pillars of the 3I's policy for TB/HIV, which recommends that all HIV-infected individuals be screened for TB (*intensified case-finding (ICF)*), provided with *isoniazid prophylaxis therapy* (IPT) if they do not have active TB, and the introduction of *infection control* measures in settings where there is a risk for exposure to TB.¹² Besides HIV-infected people, other populations are likely to require more aggressive case-finding to reduce TB incidence. For example, HIV positive individuals who do not know their status will not benefit from 3I's-driven ACF, though they remain at high risk.

This systematic review was undertaken to evaluate and synthesize the existing body of evidence that has been collected about ACF to assess the number of people needed to screen in order to detect one case of active TB. Specifically, it sought to answer the following questions:

- 1) What is the average number of people needed to screen (NNS) in order to detect one case of active TB?
- 2) How do population characteristics affect the NNS?
- 3) How does the underlying prevalence of TB and/or HIV affect the NNS
- 4) How do different screening tools and strategies affect the NNS

This review updates and extends the 2005 systematic review of active case-finding by Golub et al.⁹, with particular attention to an understanding how population, location, and screening strategy interact.

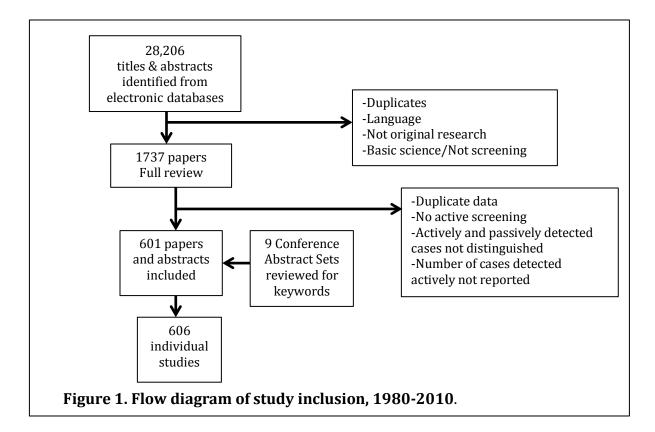
New advances in TB diagnostic tools also require a comprehensive understanding of how, where, and in what populations ACF can be beneficial to a TB program. The WHO recently approved the GeneXpert MDR/RIF rapid platform-based diagnostic tool for TB detection, and it is already clear that it performs well under trial conditions in high-risk populations such as HIV-infected people and prisoners.¹² Understanding the landscape of ACF strategies will be critical when considering how best to utilize this and other new tools as they become available.

We conducted a comprehensive, systematic review of the literature addressing ACF for TB in the global context. We discuss the evidence for the use of ACF in specific populations, the resources that are required for ACF, and conclude with recommendations about what populations may benefit most from which ACF approaches, as well as identify priorities for future research.

Methods

Selection of papers and abstracts to include

We searched online databases PubMed, EMBASE, and SCOPUS from 1980-2010 to identify titles and abstracts of peer-reviewed papers that met criteria for initial review. Due to the lack of standardization of terminology historically used to describe active case-finding, search terms were broad and intended to maximize sensitivity of the search to relevant papers. Search terms included combinations of "tuberculosis," "TB," "consumption," "phthisis," with "active case-finding," "intensified case-finding," "mass chest X-ray," "chest radiography," "contact screening," "contact examination," "prevalence survey," and "screening," among other terms. A complete list of search terms for each database can be found in Appendix A.


Titles and abstracts identified by the search terms were entered into a database, duplicates were eliminated, and remaining entries were independently screened by two readers for inclusion in the next stage of review. Discrepancies were resolved by consensus and/or consultation with a third reader. Initial review criteria were very broad and required only that the publication be original research (ie not a review, commentary, or author reply letter); titles, abstracts, or key words suggest that active case-finding took place. Titles and abstracts were included for further review if a determination could not be made at this stage. We excluded studies that screened only for TB infection, not active TB, such as annual risk of TB infection (ARTI) studies and TB screening prior to TNF- α inhibitor prescription. Papers and abstracts in English, Spanish, French, Russian, and Japanese were accepted; other languages were excluded due to lack of language capacity to evaluate these publications.

In addition to online databases, abstracts from 2008-2010 of the conferences of the International AIDS Society (AIDS/IAS), the International Union Against Tuberculosis and Lung Diseases, and the American Thoracic Society were searched to identify the most recent research conducted on active case-finding strategies. Search terms differed slightly among the three conferences and included "tuberculosis;" "TB;" "case-finding;" "contact tracing;" and "active." A complete list of search terms for conference abstracts can be found in Appendix B. Inclusion criteria for abstracts identified by these search terms were: 1. One or more active case-finding strategies was undertaken in the study; 2. The number of people screened was reported; 3. The number of cases of active TB detected using active case-finding was reported.

Review process & data abstraction

The review process at each stage is outlined in Figure 1. PDFs were obtained of all available papers eligible for full review. A single reader determined eligibility for final inclusion using the inclusion criteria: 1. The paper was an original research contribution and not a review, commentary, or other non-original piece; 2. Active case-finding was conducted on all or some of the study population; and 3. The prevalence or incidence of active TB cases detected through active case-finding was reported. Papers not meeting these criteria were rejected at this stage and the reason for rejection recorded in the study database. Papers for which it was not clear from the abstract whether active case-finding or passive case-finding only was conducted were reviewed in full to determine this. Duplicate publications or publications reporting data that had already been described in a previous study were discarded. Peer-reviewed publications were given priority over conference abstracts if the publication included the data presented in the abstract.

Study characteristics and results were abstracted from each included paper and entered into a database according to a standardized protocol. Abstracted data included study design, demographic information about the study population, active case-finding strategy, case definition for TB, and outcome. If multiple populations or risk groups were screened separately but reported in a single publication, each population was abstracted separately.

Definitions

The *study population* was defined as the number of people screened for TB, according to individual study criteria, regardless of the availability of results. If the number of people screened for whom results were available was the only number reported, that number was taken as the study population.

Active TB was defined as any diagnosis of tuberculosis disease. Diagnostic criteria varied across included studies. Any case of active TB defined as such within a given study was included as a case.

In this review, a strategy was considered to be "*primary screening*" if it applied to all of the study population, and "*secondary screening*" if only a subset of the studied population received it. The diagnostic criteria used to make a final determination of what constituted a case of TB in a given study was also described separately. Data on both primary and secondary screening strategies were abstracted if available. For example, a study that screened a population with TST and then followed up positive TSTs with a chest X-ray would be classified as using TST as a primary screen and a chest X-ray as a secondary screen. If diagnosis was made on the basis of chest X-ray, chest X-ray would also be the diagnostic approach. A study that reported screening all participants for a symptom history and diagnosing TB using a combination of TB culture, radiological, and clinical criteria would have "symptom screen" as a primary screen, no secondary screen, and diagnostic criteria, all screening criteria were included as diagnostic criteria.

Papers that reported TB cases identified through both active and passive case-finding were included if the active and passive case-finding results could be disaggregated; for these papers the subset of the study population that was actively screened was treated as the study population for purposes of data abstraction. Only actively-detected TB was counted as a case found; if a case of TB was detected by the study which had previously been detected through passive case-finding (e.g. the person was already on treatment), this case was *not* counted as a case of TB detected by active case-finding.

Papers were not included if the study population was pre-screened (e.g. for TB symptoms) unless the source population size was also reported. For example, a study that conducted active case-finding in 100 HIV patients reporting cough > 2 weeks would not be included unless the total population size of HIV patients screened in order to find the 100 coughers was also reported. The minimum dataset required for inclusion in the database were the number of people screened and the number of active TB cases detected actively, or the incidence of active TB detected by ACF.

Data analysis

The primary outcome of interest in this review was the number of persons required to be screened in order to detect a single case of active TB (number needed to screen, or NNS). For each individual study, this was computed indirectly as the inverse of the prevalence of TB detected through direct screening. Due to substantial known heterogeneity between studies in terms of population composition, screening and diagnostic approaches, background prevalence of TB, HIV, and other risk factors, it was not possible to calculate meaningful aggregate estimates of NNS across all studies. Studies were stratified according to a number of these features in an effort to create more homogenous subgroups for analysis.

NNS Calculations

We report individual study NNSes as well as crude medians and weighted mean NNS values, along with ranges and interquartile ranges (IQR). Crude median NNS values were calculated by taking the inverse of the median of the prevalences detected in the individual studies. Weighted mean NNS values were calculated by first taking a weighted average of the prevalence detected in each individual study, weighted by study population size, and then calculating the inverse. A study which detected no TB cases had an undefined NNS (i.e. resulting in an infinite calculated NNS due to dividing by zero). However, studies that detected no TB cases did contribute to the summary estimates since summary estimates were calculated from prevalences before inverting the value to generate the NNS. Ranges report the highest defined NNS value and indicate where the upper range is undefined due to a study detecting zero cases. IQRs were calculated by taking the inverse of the quartiles of the yield. Where there were multiple studies in a category that detected zero cases of TB, these zero values may result in undefined quartile values. All NNS calculations were rounded up to the nearest integer value in order to better represent the concept of number of individuals needed to screen.

Sensitivity analysis

Sensitivity analyses were conducted for each risk group or each incidence stratum within a risk group in order to identify single studies whose yield of active TB detected heavily influenced the weighted mean NNS. The Stata meta-analysis command "metainf" was used to sequentially remove each study in a set and calculate the weighted average yield (prevalence) without that study using random-effects meta-analysis. Yields were log-transformed prior to these calculations in order to achieve normally distributed data. The standard error for the prevalence in each study were calculated by the formula $\sqrt{p * (1-p)}$ / N). Where study prevalence was zero, the Agresti-Coull estimator was used for the numerator and denominator, by convention. Studies whose absence moved the weighted mean yield outside of the confidence interval of the average yield calculated by including all studies were defined as being significant outliers. Individual studies whose absence resulted in a marked shift of the mean (identified by visual inspection of the graphical output) while remaining within the confidence bounds were defined as outliers which

influenced the mean. Weighted NNSes calculated from the inverse of the mean yield excluding these outliers are reported as well. Statistical calculations were conducted in Stata 9.0 (College Station, TX).

Further sensitivity analyses were conducted by restricting NNS calculations to the subset of studies that reported bacteriologic criteria (sputum smear or culture) as components of the diagnostic algorithm. Studies that did not include bacteriologic criteria or did not state the criteria used were not included in this subset analysis.

A small number of studies could be included in multiple risk groups (e.g. both HIV-infected and drug users). These studies thus contributed to multiple NNS calculations.

HIV infection was the most commonly identified co-risk in the risk groups evaluated for this study. For the purposes of this review, a study population was considered as part of the HIV-infected risk group if the study population was explicitly identified as an HIV-infected population (100% HIV-infected), or if the study evaluated the HIV status of participants and found >75% of participants to be HIV-infected.

Because the underlying incidence of TB affects the yield of each screening approach in different settings, results have been divided into four categories based on the 2010 country-level incidence of TB (WHO, 2010):

- 1. Low incidence: less than 30 per 100,000.
- 2. Moderate incidence: 30-100 per 100,000.
- 3. Medium incidence: 100-300 per 100,000.
- 4. High incidence: >300 per 100,000.

Results

We included 601 papers and abstracts in the final analysis, which are summerised in Table 1. From these papers, we identified 26 risk categories and settings. For each category, we stratified the analyses by background TB incidence in the country of the study. Details for each category are provided in Tables 2-26 in Annex C.

Eighty-four countries were represented in this set of studies. Major sources of variability in the studies included for each category include the size of the population screened, screening and diagnostic tools available, screening algorithms used, Xray technology available, the diagnostic criteria used, and the age groups screened in each group. Other sources of variability within the studies in each category are described in the individual sections.

Table 1. Mean number needed to screen (NNS) to find one case of TB in select risk categories; all screening approaches are aggregated within risk group. ND=not defined. *Upper range of NNS not defined due to presence of a study that found zero cases of TB. Highest defined NNS reported as upper limit of range.

Pop'n Screened/ Study Type (# studies)		Median NI Weighted Mean (# stud	NNS (Range)			
	Low Incidence	Moderate Incidence	Medium Incidence	High Incidence		
General Inpatient (N=4)	-	-	9 (7-23) 795 (6-3364) (N=4)			
General Outpatient (N=14)	441 (130 758 (42 – (N=€	30000)	269 (1	4-281) 9-806) =8)		
VCT (N=5)	-	- 21 (18-23) - 37 (8-120) (N=5)				
Vaccine Trial (N=3)	-	-	22 (7-343) 140 (7-343) (N=3)	-		
Community/ Pop'n wide (N=98)	2314 (676-ND) 3922 (137-30865*) (N=20)	273 (55-713) 669 (15-5594) (N=9)	305 (138-773) 603 (25-4286) (N=51)	89 (32-152) 100 (16-6355) (N=18)		
HIV clinic/cohort (N=74)	25 (11-144) 30 (8-391*) (N=8)	31 (23-45) 61 (5-316) (N=6)	15 (7-32) 13 (2-120*) (N=40)	10 (5-22) 10 (3-64) (N=20)		
Pregnancy (N=9)	1457 (208-3848) 536 (88-3843*) (N=5)	-	36 (2			
Diabetes (N=6)	-	2223 (-) (N=1)	35 (1	.5-38) .7-54) =5)		
Drug users (N=8)	252 (149-ND) 158 (108-252*) (N=5)	5 (-) (N=1)	11 (8-20) 20 (8-20) (N=2)	-		
Prisons (N=44)	520 (69-1676) 1180 (4-2945*) (N=18)	45 (34-82) 155 (19-191) (N=10)	43 (21-123) 110 (7-2762) (N=16)			
Homeless (N=18)	83 (38-196) 133 (22-1778) (N=18)	-	-	-		
Immigration/ Refugee/Border (N=38)	136 (58- 108 (6-1 (N=3	630*)	156 (78-165) 120 (57-291) (N=6)			
		Continued				

Table 1. Continued.

Pop'n Screened/ Study Type		Crude Media Weighted Mea (# stu	n NNS (Range)	
	Low Incidence	Moderate Incidence	Medium Incidence	High Incidence
Occupational—Miners (N=8)	48 (-) (N=1)	154 (-) (N=1)	-	41 (26-49) 36 (21-93) (N=6)
Occupational— Military (N=6)	261 (153-984) 1159 (134-492*) (N=4)	-	138 (73-1440) 1280 (73-1440) (N=2)	-
Occupational—Health Care (N=16)	ND (42) 1613 (30 (N=	-5550*)	393 (46-1684) 506 (25-842*) (N=4)	-
Occupational –Other (N=14)	764 (96-3406) 1565 (47-5235*) (N=9)	-	104 (52-160) 109 (4-778) (N=5)	-
Contact tracing— Household (N=89)	63 (33-300) 54 (5-430*) (N=28)	40 (21-69) 40 (7-355*) (N=16)	33 (8-79) 25 (3-568*) (N=32)	14 (9-22) 17 (2-129) (N=13)
Contact tracing— Community (N=78)	107 (39-447) 104 (3-4200*) (N=73)	56 (50-107) 85 (6-137) (N=5)	-	
Contact tracing— Health Care (N=17)	ND (445-ND) 276 (7-223*) (N=16)	25 (-) (N=1)	-	-
Contact tracing— Other (N=4)	ND (*) (N=3)	-	198 (-) (N=1)	-
Elder/Nursing homes (N=7)	273 (8 120 (68 (N=	-137*)	-	7 (-) (N=1)
Psychiatric Facilities (N=3)	62 (32- 1049 (32 (N=	2-1275)	111 (-) (N=1)	-
Immigrants (N=26)	203 (60-2524) 235 (3-1262*) (N=24)	-	384 (198-6250) 1206 (198-6250) (N=2)	-
Other disease risks (N=6)	2846 (268-ND) 290 (10-2846*) (N=5)	-	4 (-) (N=1)	-
Gynecology clinics (N=5)	18 (-) (N=1)	-	10 (6-3 13 (5-3 (N=4	38)
Other/multiple risk groups (N=4)	97 (66-140) 107 (54-177) (N=4)	-	-	-
Other institutional settings (N=6)	673 (80 810 (13- (N=	1475*)	45 (-) (N=1)	-

Findings from Select Risk Groups

Values presented are weighted means (ranges) unless otherwise stated.

HIV/AIDS (Table 2, annex C)

The risk of TB is high in HIV-infected persons, and screening for TB in HIV is recommended at the time of diagnosis and periodically thereafter. A total of 63 papers were included reporting active case-finding in populations consisting entirely of persons infected with HIV. The median NNS across this set of studies was 12 (IQR 7-34) Weighted mean NNS across all studies of persons with HIV was 13 (2-391). Eleven additional studies that included study populations with a primary risk group other than HIV, but with a reported HIV prevalence >75% in the study population, had a median NNS of 22 (IOR 8-47) and weighted mean of 23 (5-88). In total, 74 studies reported the number of active TB cases found among high-HIV prevalence populations screened. For this group of studies, the mean weighted NNS=13 (2-391) across all background incidence levels. The median NNS was 15 (IQR 7-34). In low and moderate countries, studies that used a primary screen consisting of **only a symptom screen** had a weighted **mean NNS=39**, compared to a weighted **mean NNS=60** in studies that screened using anything other than symptom screen alone. In medium and high incidence countries, studies with a primary screen consisting of **only a symptom screen** had a weighted mean **NNS of 41**, compared to any other primary screen with NNS=10. In medium and high incidence countries, studies that used a primary or secondary screen including chest X-ray had a mean NNS=8, compared to NNS=23 in studies that did not use chest X-ray as part of the screening. In medium and high incidence countries, studies that used **TB culture in the diagnosis** had a mean NNS=3, compared to NNS=26 in studies that did not use TB culture in the diagnosis.

Sensitivity Analyses

In no incidence setting did a single study significantly affect the weighted mean NNS. In low-incidence settings, removing the two studies with the largest effect on the weighted mean NNS had the effect of shifting the weighted mean NNS from 30 to 19. In moderateincidence settings, the weighted mean NNS calculated without the study with the largest effect resulted in a shift from 61 to 35. In medium-incidence settings, the weighted mean NNS shifted from 13 to 26 after omitting the study with the largest effect. In high-incidence settings, the mean shifted from 10 to 7 when the two most influential studies were omitted. Restricting studies to those with bacteriologic confirmation of TB disease resulted in slight variation in the mean NNS, but not consistently higher or lower. The overall weighted mean NNS was 8 when limited to studies with bacteriologic confirmation. In low-incidence settings, NNS was 54; moderate incidence, NNS was 35, medium incidence, NNS was 7, and high incidence, NNS was 9 with bacteriologic confirmation.

Voluntary Counseling and Testing (Table 3)

The population of persons attending VCT centers for HIV testing is enriched for HIVinfected persons, and VCT attendees may also be at higher risk for TB than the general population. Not all persons attending VCT are HIV-infected, so this is a separate category from the "HIV clinic/cohort" category. ACF conducted in VCT settings was only reported in medium and high TB incidence countries (total N=5), screening a total of 19, 513 persons. The overall weighted mean NNS in VCT settings was 37 (range 8-120). The median NNS was 21 (IQR 18-23). In studies that used **only a symptom screen** to screen VCT clients for TB, the mean **NNS was 42 (23-120)**, compared to **18 (8-21)** in studies that used other screening approaches (including smear). Studies that used **TB culture in the diagnosis** of VCT clients screened for TB had a mean NNS of 20 (18-21) compared to those that did not use culture, NNS=40 (8-120). Restricting studies to those with bacteriologic confirmation only marginally affected the weighted mean yield, increasing NNS to 38 from 37. Omitting the most influential study resulted in a mean NNS of 38.

Community-wide/Population-Wide Surveys (Table 4)

This category includes all ACF activities that have screened an unselected (or randomly sampled) population. Study types include national and regional prevalence surveys (including door-to-door surveys) and mass chest X-ray campaigns. School-wide/universitywide surveys were also included in this category. Additional sources of variability in these studies include: a) Completeness of coverage in the communities screened; b) age groups screened in the communities. A total of 98 studies were included, for which the median NNS was 305 (IQR 115-1250). The overall weighted mean NNS for community-wide screens is: **566 (15-30,865*).** Six of 98 studies detected zero cases of TB. The mean NNSes by incidence category can be found in Table 1. In medium and high incidence countries, studies that used a **primary screen** consisting of **only a symptom screen** had a **mean** NNS=447 (16-6355), compared to an NNS=525 (24-3189) in studies that screened using anything other than symptom screen alone. In medium and high incidence countries, studies that used a primary or secondary screen including chest X-ray had a mean NNS=577 (16-3189), compared to NNS=374 (25-6355) in studies that did not use chest X-ray as part of the screening. In medium and high incidence countries, studies that used TB culture in the diagnosis had a mean NNS=267 (16-6355), compared to NNS=953 (25-4286) in studies that did not use TB culture in the diagnosis.

Sensitivity Analyses:

Restricting studies to those with bacteriologic criteria for diagnosis resulted in a similar median NNS (271 (IQR 113-936)) and a reduced weighted mean NNS (376 (25-4286)) in medium incidence countries. All studies in moderate and high incidence categories had studies using bacteriologic diagnoses. In low and moderate incidence countries, no single study significantly affected the NNS. Omitting the most influential study resulted in a weighted mean NNS of 3530 for low incidence settings. In moderate-incidence countries, omitting the most influential study resulted in a weighted mean NNS of 3530 for low incidence settings. In moderate-incidence countries, omitting the most influential study resulted in a mean NNS of 184. One study dominated the NNS in medium-incidence countries; omitting this study from the estimate resulted in a weighted mean NNS of 418. In high-incidence countries, omitting the most influential study gave a mean NNS of 84.

Household Contact-Tracing (Table 5)

Household contact-tracing is defined as active case-finding that takes place among household contacts of a known case of active TB (index case). Sources of variability in these studies include: a) how households were defined; b) whether both adult and child contacts were included c) how soon after identification of the index case the household contacts were screened. A total of 89 household contact-tracing studies were included. The median NNS: 36 (IQR 14-109) and the weighted mean NNS was 40 (2-568*). (See Table 1 for NNS stratified by background TB incidence). In medium and high incidence countries, studies that used a **primary screen** consisting of **only a symptom screen** had a **mean** NNS=64 (20-568), compared to an NNS=18 (2-165) in studies that screened using anything other than symptom screen alone. In medium and high incidence countries, studies that used a primary or secondary screen including chest X-ray had a mean NNS=17 (2-155), compared to NNS=54 (5-568) in studies that did not use chest X-ray as part of the screening. Across all incidence categories, studies with chest X-ray in the primary screen had a mean NNS of 39 (2-355), compared to NNS= 48 (5-568) in studies with no screening chest X-ray. In medium and high incidence countries, studies that used TB culture in the diagnosis had a mean NNS=35 (7-305), compared to NNS= 25 (2-568) in studies that did not use TB culture in the diagnosis. Including all incidence categories, studies with TB culture used for diagnosis had a mean NNS= 40 (5-327) with NNS also 40 (2-568) in studies not using TB culture in the diagnosis.

Community Contact-Tracing (Table 6)

Studies that include greater community contact-tracing, for example workplace or school contacts. These studies may also include household contacts, but describe TB evaluation of contacts outside the immediate household setting. Most studies included used a "widening ring" approach, in which close contacts were screened first, and then increasingly distant contacts (e.g. casual contact, low proximity contact, low time-exposure contacts) screened as contacts in more proximal rings tested positive. Major sources of variability in these studies include the degree of coverage of contacts screened and the relative closeness of contacts included in screening. 78 out of 79 studies of community contact-tracing were conducted in high (N=73) and moderate (N=5) incidence countries. Five studies did not detect any TB among contacts. The **overall weighted mean NNS** in community contact screening is **104 (3-4200*)**. The median NNS is 106 (IQR 39-346). In low and moderate incidence countries, nearly all studies (74/78) used TST in the screening approach. Studies that used **TST alone as the primary screen** had a mean **NNS of 87 (6-4200**), whereas studies that used **both TST and CXR** in the primary screen had a mean **NNS of 64 (3-583)**.

Sensitivity Analyses

In low incidence settings, studies using bacteriologic confirmation had a similar mean NNS of 107 compared to all studies (NNS 104). No single study significantly affected the weighted mean. Omitting the two studies with the largest influence on the weighted mean resulted in a weighted mean NNS of 99. In moderate-incidence settings, all studies used bacteriologic confirmation and no single study had a notable influence on the weighted mean.

Health Care Contact-Tracing (Table 7)

Studies that conduct contact-tracing in health-care settings, typically after health care workers or patients have been exposed to a patient discovered to have active TB. These studies may also include family or household contacts, but the primary population screened are health care workers and patient contacts. All but one study was conducted in a low-incidence country. All studies in low-incidence countries included TST in the primary screen. The **overall median NNS** for this setting was **undefined (222-ND) due to the large number of studies detecting zero cases. The weighted mean NNS was 96 (7-223*).** Twelve studies (all in low-incidence countries) detected zero cases of active TB among health-care contacts screened. Among studies in low-incidence countries **using CXR in the primary screen**, NNS was **208 (7-223)**, compared to the one study **not using CXR** in the primary screen, with **NNS=1806 (88-ND*). Culture as a component of the diagnosis** was associated with an **NNS of 380** (88-223*), compared to **NNS=254 (7-22*)** for studies **not employing culture** in the diagnosis.

Sensitivity analysis

Restricting to studies which specified bacteriologic confirmation resulted in a weighted mean NNS of 47. No single study significantly affected the overall mean NNS. Omitting the two studies with the greatest influence resulted in mean NNSes of 214 and 207, respectively, and omitting both resulted in a mean NNS of 145.

Other contact-tracing settings

Four additional studies reported contact-tracing among contacts of active TB cases in settings other than household, community, and health care. Three of the studies were outbreak investigations in military settings, including one on an aircraft carrier, and one was a contact-tracing study after exposures on commercial airplanes. Three did not detect any additional cases of active TB through screening. The NNS in the one study that found additional cases was 198, which was in a Taiwanese military setting.

Pregnancy (Table 8a) & Gynecologic clinic settings (Table 8b)

Studies include screening pregnant women attending antenatal clinics, pregnant women receiving prevention-of-mother-to-child-transmission (PMTCT) care for HIV prevention, and women presenting for delivery. Nine studies were found which screened pregnant women. Among pregnant women screened, the overall **median NNS was 144 (IQR 47-1457)** and the **weighted mean was 169 (25-3847)** (see Table 1 for NNS stratified by background TB incidence). One study did not detect any cases of active TB through active screening. All but one study in medium and high incidence countries used TB culture as a component of the diagnosis. Studies conducted in low-incidence countries tended to screen otherwise high-risk populations, including high proportions of women who were immigrants from high-incidence countries^{14,15,16} and poor urban women^{16,17}. Of note, in four of the 9 studies, (one in the United States, one in India and two in South Africa) screening was conducted in HIV-infected women only. The weighted mean NNS among studies (N=4) focusing on pregnant women with HIV in medium & high incidence countries was **36 (25-88)**. In medium and high-incidence countries, studies **using CXR in either screening step** found **NNS=34 (25-143)**, compared to studies **not using CXR in**

the screening steps, with **NNS=47** (-). Studies using culture in the diagnosis had an NNS of **32** (25-47) vs. **143** in the study not using culture in the diagnosis.

Sensitivity analyses

No single study significantly affected the overall weighted mean. Omitting the study with the greatest influence resulted in an overall weighted mean NNS of 111. Restricting to studies with bacteriological confirmation of disease resulted in a weighted mean NNS of 75.

A total of 4 studies screened 1689 women attending gynecology and infertility clinics for TB. The median NNS was 18 (IQR 6-24) and the overall weighted mean NNS was 14 (5-38).

Sensitivity analyses

No single study significantly affected the overall NNS. Omitting the study with the largest influence resulted in a weighted mean NNS of 11. Restricting to studies with bacteriologic confirmation resulted in a mean NNS of 13.

Drug Users (Table 9)

Studies that screen drug users, some of which include and heavy alcohol users and alcoholics. The majority (N=7 out of 8) studies in this group describe those who primarily use illegal drugs, although there is overlap between this population and heavy drinkers of alcohol. One study¹⁸ reported TB screening among a population of both drug and alcohol users. Major sources of variability include the kinds of drugs used, whether study participants were identified from treatment programs or not, and other major comorbidities (including HIV) that may affect the TB risk of study participants. The **overall median crude NNS was 126 (IQR 11-503).** The **weighted mean NNS was 34 (5-252*).** Two studies found zero cases of TB among persons actively screened. Studies that used **TST as the initial screen** found a mean **NNS of 150 (108-150*)**, compared to studies that did not use TST as the initial screen, with NNS 21 (5-252). Studies that used **culture in the diagnosis** of TB had a mean **NNS of 103, range (5-150*)**, vs. studies that **did not use culture (NNS=22, range (8-252*)**).

Sensitivity analysis

No single study significantly affected the overall mean NNS. Omitting the most influential study resulted in a weighted mean NNS of 27. Restricting calculations to studies with bacteriologic confirmation resulted in a weighted mean NNS of 85 (5-252*)

Homeless populations (Table 10)

All studies in homeless populations took place in low-TB-incidence countries. The **crude median NNS was 83 (IQR 38-196)**, and the **overall mean NNS: 133 (22-1778)**, screening a total of 76,607 people. In studies that used a **primary screen** of **chest Xray alone**, the mean **NNS=67 (33-1778)**, those that used chest Xray among other screening tools in the primary screen had a mean NNS of 70 (33-1778), and those that did not use chest Xray at all in the primary screen had a mean NNS of 455 (22-590). Studies that used a **primary screen of TST alone** had **NNS=504 (310-510)**, those included TST in the primary screen had a mean NNS of 369 (22-590), and those that did not include TST in the primary screen had a mean NNS of 67 (33-1778).

Sensitivity analysis

No single study had a significant effect on the overall weighted mean. Omitting the most influential study resulted in a mean weighted NNS of 86. Restricting studies to those with bacteriologic confirmation shifted the mean weighted NNS to 113.

General Outpatient/Emergency (Table 11)

This section includes 14 studies that report screening patients presenting to outpatient facilities or emergency rooms with undifferentiated complaints. The **median NNS for this category is 246 (IQR 58-573)**, representing the screening of 401,034 individuals. The **mean weighted NNS is 325 (19-30,000)**. In studies taking place in **high and medium-incidence** countries, studies using **symptom screen only** had a mean **NNS of 321 (208-806)** compared to those using an **initial screen other than symptoms** alone: **NNS= 51 (19-58)**. In **low and moderate-incidence countries**, using **symptom screen alone** had an **NNS of 3274 (130-30,000)**, compared to studies using any other initial screening approach, **NNS= 364 (42-628)**. Including **chest X-ray in the primary or secondary screen** (high and medium-incidence countries) resulted in an **NNS= 634 (19-806)**, compared to **studies not including chest X-ray in the screening**, with **NNS= 217 (51-322)**. **Across all incidence groups**, using chest X-ray alone for the primary screen had an **NNS of 42 (-)**, compared to **any other primary screen: NNS 329 (19-30,000)**.

Sensitivity Analysis

A single study dominated the NNS for low and moderate incidence countries. Omitting this study resulted in a weighted mean NNS of 334. No single study significantly affected the mean yield and NNS in medium and high incidence countries.

General Inpatient (Table 12)

Studies included in this category report on screens of hospital inpatients without specific risk factors for TB. The crude median NNS for general inpatients is 9 (IQR 7-23). The **overall mean NNS** for screening hospital inpatients was **794 (6-3364).** All included studies used either chest Xray or symptoms alone as the primary screen.

Sensitivity analysis

One study significantly affected the overall mean NNS. Omitting this study (a study that screened nearly a thousand times as many patients as any of the others) resulted in a weighted mean NNS of 7. Restricting studies to those using bacteriologic confirmation resulted in a weighted mean NNS of 795.

Prisons (Table 13)

This category includes both outbreak investigations in prisons after identification of a known TB patient as well as routine intake screening for TB at entry to jail or prison. **The overall mean NNS for prisons** was **75 (IQR 27-520)**, representing 1,111,628 individuals screened. The **weighted mean NNS** for prisons was **316 (4-2945*)**. Two

studies conducted in USA prisons found no cases of TB in 14,891 inmates screened. In **low and moderate-incidence** countries, **screening with TST alone** yielded an **NNS=1091 (4-2571)** and screening with **chest X-ray alone had an NNS=1709 1364-2945)**. Combining **symptom screen and chest X-ray in the primary screen had an NNS of 162 (19-562)**, and combining **symptoms and TST in the primary screen had an NNS of 557 (4-2945)**. In **medium and high-incidence countries**, a **primary screen of symptoms alone** had an **NNS of 169 (25-2762)** compared to any **other primary screen of symptoms alone** had an **NNS of 75 (17-586)** compared to **not using culture in the diagnosis** had an **NNS of 75 (17-586)** compared to **not using culture** in the diagnosis: **NNS = 175 (7-2762)**. Across **all incidence categories**: **TST included in primary** screen had an **NNS of 859 (4-2751)** vs **TST not in primary screen (NNS 231 (7-2945))**. In **all incidence categories**, when **sputum smear was included in the primary or secondary screen**, the **NNS was 108 (7-2762)**, compared to when **sputum smear was not included in the screening**, **NNS 316 (4-2945)**.

Sensitivity analysis

Restricting analysis to studies that used bacteriological confirmation of TB resulted in a crude mean of 55 (IQR 26-206) and weighted mean NNS of 260 (4-2945). No single study significantly affected the overall weighted mean. Omitting the study with the largest influence on the weighted mean resulted in a weighted mean NNS of 230. Among low-incidence countries, no single study affected the weighted mean. Omitting the most influential study in low-income studies results in a weighted mean NNS of 1161. Omitting the most influential study in moderate-incidence settings yields a mean NNS of 35. In medium and high incidence countries, the mean NNS calculated without the most influential study was 60.

Immigration/Refugees/Border (Table 14)

This category contains studies of active case-finding occurring at the time of immigration (such as visa application) or border-crossing into the destination country. The majority of these studies report screening of immigrants or refugees coming from a high-incidence country to a low-incidence country. Several papers report screening of refugees housed in refugee camps. The **overall median NNS** of immigration screening is **156 (66-320)**. The **weighted mean NNS was 108 (6-1630)**, representing 3,429,573 individuals screened in 38 studies. Two studies found zero cases of TB. Studies that reported screening using TST but not CXR in the primary screen had an NNS of 108 (31-875). Studies using both CXR and TST in the primary screen had an NNS of 100 (6-1630). Studies including sputum smear as a component of either the primary or secondary screen had an NNS of 103 (6-242), compared to studies that did not include smear in either screening step (NNS=244 (15-1630)).

Sensitivity analysis

Restricting studies to those using bacteriologic confirmation resulted in an overall crude median NNS of 124 (31-427) and a weighted mean NNS of 107. No single study significantly affected the weighted mean NNS in low and moderate incidence countries.

Omitting the study with the most influence on the weighted mean NNS resulted in an NNS of 186.

Immigrant communities (Table 15)

This risk category represents studies that screen expatriate immigrant communities. The majority of these studies screen immigrants from high-incidence TB countries living in low-incidence TB countries. The overall **crude median** was **211 (IQR 61-6250)**. The **overall weighted mean NNS=160 (3-6250)** resulted from a combined total of 60,447 screened in 26 studies. Six studies detected zero cases of TB. Studies using **TST in the primary screen** and not chest Xray had an **NNS of 459 (37-1262)**. The NNS of studies using **both TST and chest Xray** in the primary screen was **57 (3-308)**. Among studies that included a **symptom screen** in the primary screen, the **NNS was 246 (25-6250)**, compared to **NNS=265 (3-1137)** among studies **not including a symptom screen in the primary screen**.

Sensitivity analysis

Restricting analysis to studies using bacteriologic confirmation results in a crude overall median NNS of 253 (IQR 136-6250) and a weighted overall mean NNS of 447 (25-6250). In low-incidence settings, no single study significantly affected the overall mean NNS. Without the most influential study included, the weighted mean NNS is 265.

Occupational Settings – Health Care Workers (Table 16)

Studies in this category report results of screening health care workers. These studies are typically annual employment screens and do not include studies of health care workers being screened after exposure to a known TB case; those are described in the "Contact Tracing—Health Care Workers" section. The overall median NNS is undefined (IQR 93-ND), representing 30,145 health care workers screened. The overall mean weighted NNS was 1040 (25-5550*). There were 9 studies that found zero cases of active TB. In studies using **TST alone** in the primary screen, the NNS was **4021 (30-5550**). Studies not using TST alone in the primary screen had a weighted mean NNS of 819 (25-3910). A primary screen including both **chest Xray and TST combined** had an **NNS=121 (25-256)**.

Sensitivity analyses

Restricting studies to those using bacteriologic confirmation only resulted in a weighted mean NNS of 999. No single study significantly influenced the weighted mean NNS in low and moderate incidence settings. Calculating the NNS without the most influential study in this category resulted in a weighted mean NNS of 1310.

Occupational Settings – Miners (Table 17)

The majority of studies from high-incidence were evaluations of annual screening of miners according to company policy. The **crude median NNS was 44 (IQR 31-64).** The **mean weighted NNS** was **41 (21-154).** All high-incidence countries represented in these studies have a known high prevalence of HIV among miners, though the HIV status of screened persons was not always available. All high-incidence country studies utilized chest x-ray in the primary screen. In high and medium-incidence countries, studies with

sputum smear in the primary screen had an NNS of 41 (39-43), compared to studies without smear in the primary screen, with NNS 36 (21-93). In high-incidence country studies with culture in the diagnostic algorithm, NNS= 37 (26-93). One study did not use culture, which had an NNS of 21.

Sensitivity analyses

Restricting studies to those with bacteriologic confirmation resulted in a weighted mean NNS of 42. Among high-incidence countries, no single study significantly affected the weighted mean. Omitting the most influential study resulted in a mean NNS of 36.

Occupational Settings – Military (Table 18)

The overall **median NNS** in this category is **262 (134-1440)**, screening 313,938 individuals. The **weighted mean NNS was 1159 (73-1440*)**. One study found zero TB cases. Studies using chest X-ray alone as the primary screen found an NNS of 1239 (73-1440). All other primary screen approach resulted in an NNS of 254 (179-492).

Occupational Settings – Other (Table 19)

Studies in this category included screening for TB among workers of diverse professions including railroad workers, cotton mill employees, weavers, factory workers, bank employees, and rickshaw cart pullers. The **median overall NNS = 226 (IQR 74-2030)** and the **weighted mean NNS was 850 (4-5235)**. One study found zero cases of TB.

Sensitivity analyses

No single study significantly affected the weighted mean NNS for low-income settings. Omitting the most influential study resulted in a weighted mean NNS of 619. Similarly, in medium-incidence settings, no single study significantly affected the weighted mean NNS. Omitting the most influential study in medium-incidence settings resulted in a mean NNS of 1565. Restricting the studies to those with bacteriologic confirmation of TB resulted in an NNS of 147 in low-incidence settings; all studies in medium-incidence settings used bacteriologic confirmation.

Elder/Nursing Facilities (Table 20)

Seven studies screened residents of nursing homes and elder care facilities. Three studies did not detect any cases of active TB through screening. The crude mean NNS in elder care settings is 137 (68-ND). The overall weighted mean NNS was 73 (7-137*), derived from screening 5686 individuals.

Sensitivity analyses

Restricting studies to those with bacteriologic confirmation resulted in a median NNS of 75 and a weighted mean NNS of 68. No single study significantly affected the weighted mean NNS. Omitting the most influential study from the calculation resulted in a weighted mean NNS of 40.

Psychiatric Facilities (Table 21)

The **overall NNS** in screens conducted in psychiatric or mental health inpatient or residential facilities was **107 (32-1275)**, representing 15,736 individuals screened. All studies included chest X-ray in the primary screen.

Other institutional settings (Table 22)

Other institutional settings included a long-term care facility, a group home for intellectually disabled persons, a university dormitory, a pediatric cancer center, and an orphanage. One study¹⁹ screened persons in drug treatment facilities and correctional facilities, but it was not specified which cases were identified from which settings. Composite NNSes were not calculated due to the diversity of the populations; the individual study NNSes are reported in Table 22.

Diabetes (Table 23)

Six studies reported screening people with diabetes (both Type I and Type II) for TB. The overall **crude median NNS** for people with diabetes is **37 (25-54)**. The **weighted mean NNS** for diabetes is **265 (17-2223)**. Studies in medium and high incidence countries that used chest Xray as a component of screening had a mean NNS of 40, compared to 25 in studies not using chest Xray for screening. In medium and high incidence countries, studies using culture in the diagnosis had a mean NNS of 46, compared to NNS 25 in studies not using culture.

Sensitivity analysis

No single study significantly affected the overall weighted mean. Omitting the study with the largest influence on the overall mean resulted in a weighted **mean NNS of 35**. All studies used bacteriologic confirmation of TB.

Other disease risks (Table 24)

Six studies screened persons with underlying disease risks. These included patients receiving hemodialysis^{20,21}, chronic renal failure patients²², persons with a history of TB, MDR-TB or lung abnormalities on X-ray^{23,24}, and persons with asbestosis²⁵. These results are summarized in Table 24.

Vaccine Trial (Table 25)

Three studies screened candidates as part of baseline eligibility screening for a vaccine trial. These populations were pre-selected on multiple other criteria prior to TB screening. Results are summarized in Table 25.

Other (26)

Four additional studies screened diverse populations consisting of persons who may have fit into one or more other risk categories described here, but the number of persons in each risk category and the risk category of the persons found to have TB were not always specified. However, these NNSes represent a valuable contribution to the understanding of screening yields since in fact persons at risk for TB often have multiple risk factors. These results are reported in Table 26.

Algorithm-Specific NNS

In order to determine if specific screening and diagnostic components were associated with lower NNSes, we calculated overall and incidence-specific NNSes for select screening strategies commonly used in active case-finding. Crude median and weighted mean NNSes are shown in Table 24.

Table 24. Numbers given in table are crude median NNS (IQR) (top row) and weighted mean NNS and (range of NNS) (bottom row) from the studies included in each category. ND=not defined

Screening Algorithm	Overall	Low &	Moderate &
		Moderate	High Incidence
		Incidence	
CXR in primary screen	70 (22-282)	112 (39-573)	27 (9-106)
	148 (2-11019)	127 (3-11019)	204 (2-3189)
No CXR in primary screen	143 (34-1112)	302 (54-61729)	73 (24-285)
	212 (3-30865)	343 (3—30865)	188 (3-6355)
CXR in primary or secondary	94 (27-415)	145 (45-1202)	37 (12-144)
	149 (2-11019)	203 (2-2189)	180 (2-30865)
Symptom screen only as	156 (42-773)	713 (57-30030)	142 (40-601)
primary screen	319 (3-30865)	713 (15-30865)	308 (3-6355)
Sputum smear in primary	30 (9-111)	80 (22-268)	22 (7-57)
screen	25 (2-2298)	63 (5-936)	21 (2-2298)
Sputum smear in primary or	50 (19-214)	55 (23-247)	47 (17-200)
secondary screen	112 (2-30865)	110 (5-30865)	118 (2-6355)
No sputum in primary or	122 (34-742)	180 (51-2031)	58 (20-256)
secondary screen	180 (2-30865)	139 (3-30865)	280 (2-6355)
Culture in diagnosis	82 (25-285)	115 (37-508)	45 (15-155)
	199 (2-11019)	382 (3-11019)	128 (2-6355)
No culture in diagnosis	153 (33-1495)	328 (58-ND)	44 (14-249)
	199 (2-30865)	96 (3-30865)	305 (2-6250)

Discussion & Conclusion

This systematic review summarizes the existing literature documenting active case-finding for TB from 1980-2010. The NNS to detect 1 case of active TB varies widely both within incidence settings, depending on the risk group screened, and across incidence settings, demonstrating the high variability inherent in the heterogenous screening approaches and populations evaluated.

Meaningful comparisons are difficult to make given the variability of the study populations and screening algorithms included, and indeed due to the heterogeneity of the screened

populations even within given risk groups identified in the study. While the variability precludes identifying a single "best" screening method or population to target for screening, the NNSes presented may provide guidance in setting priorities in a local context. For example, in resource –limited settings (often equivalent to high-TB-incidence settings), prioritizing the screening of risk groups with low NNSes may be useful.

For example, setting an arbitrary threshold of NNS=100 for high and medium incidence countries would result in the following risk groups included as priorities for screening: HIV-infected persons (including VCT attendees) (NNS 10-37), elder/nursing homes and other institutions (NNS 7-45), household contacts (NNS 17-25), drug users (NNS=20), persons with diabetes (NNS=35), miners (NNS=36), pregnant women and GYN clinic attendees(NNS=36-39), certain community-wide screening (high-incidence only) (NNS=100). Prisons just barely falls outside this threshold with an NNS of 110, but depending on how the TB epidemic were structured in a given setting, this may also need to be a high-priority group with a high yield expected from screening.

In lower TB incidence settings and higher resource settings, allowing the threshold to be set higher at an NNS of 200 would expand the populations to target to occupational settings including homeless persons, immigration/refugee/border settings, military settings, community contact-tracing; with even more resources available or in very low TB incidence settings, it would be reasonable to use an even higher threshold for NNS.

Based on the NNSes seen in this review, risk groups such as general outpatients, psychiatric facilities in low-incidence settings, health care occupational screens, military occupational screens, and community-wide screens consistently have among the highest NNSes, suggesting that screening these populations is likely to be lower-yield and more resource-intensive than TB programs may desire to undertake.

Similarly, while there was a high degree of variability in the NNS associated with different screening algorithms depending on the setting and risk group, several broad trends emerged. Of the many combinations of components of a screening algorithm, the presence of chest Xray in the algorithm consistently resulted in lower NNSes; it may be advisable to include CXR if resources to do so are available. While symptom screen alone was associated with overall higher NNSes, inclusion of sputum smear in either a primary or secondary screen was associated with lower mean NNSes than algorithms that did not include any sputum smear as a component of the screen. Overall, use of culture in the diagnosis was associated with lower NNSes than algorithms that did not include culture.

Review Limitations

In an effort to be as comprehensive as possible in evaluating the evidence for active casefinding for TB, we included as many papers as met our minimum inclusion criteria as we found. There was substantial heterogeneity among the case-finding approaches and reporting, and a single approach to evaluating the evidence may unintentionally obscure the many differences between the studies. In particular, we included both cross-sectional screens (detecting prevalent cases) as well as papers that described longitudinal follow-up with repeated screening on the same population (detecting incident cases). A single summary statistic obscures the distinction between these two approaches, and the need for multiple rounds of screening when evaluating incident cases. Other categories may have such limited evidence that their applicability outside of the specific studies and study settings may be limited. For example, among the studies evaluating pregnant women for TB, most studies screened only pregnant HIV-infected women, so the findings from this category are likely not representative of the expected NNS for all pregnant women.

Despite these limitations, the strengths of this review lie in its demonstration of the substantial heterogeneity of expected TB cases that can be found by active case finding in different incidence settings. This review, combined with ongoing surveillance of the literature, can serve as a tool for governmental National Tuberculosis Programs, nongovernmental organizations active in TB control, and other relevant programs in assessing the expected yield of programs given an incidence setting and available screening and diagnostic capacities. Because this review differentiated between cases detected actively and those detected passively (and calculated NNS based only on the actively detected cases), the NNSes presented represent what a TB program could expect to achieve beyond an existing program relying on active case-finding (e.g. DOTS) if a given population were targeted for additional screening. The NNSes provided in this review, both individual and composite, provide insight into which settings and populations will result in higher-yield screening, with implications for cost-effectivness in a given setting. This data may also prove useful in establishing point estimates and ranges for costing and cost-effectiveness studies as future interventions are conceived. We anticipate that this review, combined with knowledge of local epidemiology and priorities, can be used as a tool to inform the prioritization of target groups and screening approaches in order to maximize the use of available resources to detect, treat, and cure TB.

References

1. Obermeyer Z, Abbott-Klafter J, Murray CJ. Has the DOTS strategy improved case finding or treatment success? An empirical assessment. *PLoS ONE*. 2008;3(3):e1721.

2. Havlir DV, Getahun H, Sanne I, Nunn P. Opportunities and challenges for HIV care in overlapping HIV and TB epidemics. *JAMA : the journal of the American Medical Association*. 2008;300(4):423.

3. Cock KMD, Chaisson RE. Will DOTS do it? A reappraisal of tuberculosis control in countries with high rates of HIV infection. *The International Journal of Tuberculosis and Lung Disease*. 1999;3(6):457–465.

4. Meintjes G, Schoeman H, Morroni C, Wilson D, Maartens G. Patient and provider delay in tuberculosis suspects from communities with a high HIV prevalence in South Africa: a cross-sectional study. *BMC infectious diseases*. 2008;8:72.

5. Storla DG, Yimer S, Bjune GA. A systematic review of delay in the diagnosis and treatment of tuberculosis. *BMC public health*. 2008;8:15.

6. Mtei L, Matee M, Herfort O, et al. High rates of clinical and subclinical tuberculosis among HIV-infected ambulatory subjects in Tanzania. *Clinical Infectious Diseases*. 2005;40(10):1500–7.

7. Bakari M, Arbeit RD, Mtei L, et al. Basis for treatment of tuberculosis among HIV-infected patients in Tanzania: the role of chest x-ray and sputum culture. *BMC infectious diseases*. 2008;8:32.

8. Program SANTC. Practical Guidelines. 2004.

9. Golub JE, Mohan CI, Comstock GW, Chaisson RE. Active case finding of tuberculosis: historical perspective and future prospects. *The International Journal of Tuberculosis and Lung Disease*. 2005;9(11):1183–1203.

10. Morrison J, Pai M, Hopewell PC. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. *The Lancet infectious diseases*. 2008;8(6):359–368.

11. Ayles HM, Sismanidis C, Beyers N, Hayes RJ, Godfrey-Faussett P. ZAMSTAR, The Zambia South Africa TB and HIV Reduction study: Design of a 2 x 2 factorial community randomized trial. *Trials*. 2008;9:63.

12. Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance. *The New England journal of medicine*. 2010;363(11):1005–15.

13. Agresti A, Coull BA. Approximate is better than "exact" for interval estimation of binomial proportions. *American Statistician*. 1998;52(2):119–126.

14. Schwartz N, Wagner SA, Keeler SM, et al. Universal tuberculosis screening in pregnancy. *American journal of perinatology*. 2009;26(6):447–51.

15. CIRARU-VIGNERON N, NGUYEN TAN LUNG R, BLONDEAU MA, BARRIER J. Incidence de la tuberculose pulmonaire dans une population de femmes enceintes à risques. *Journal de gynécologie obstétrique et biologie de la reproduction*. 15(7):913–917.

16. Metersky ML, Catanzaro A. A rapid tuberculosis screening program for new mothers who have had no prenatal care. *Chest.* 1993;103(2):364–9.

17. Plauché WC, Buechner HA, Diket AL. Tuberculosis prenatal screening and therapy during pregnancy. *The Journal of the Louisiana State Medical Society*. 1983;135(9):13–5.

18. Friedman LN, Sullivan GM, Bevilaqua RP, Loscos R. Tuberculosis screening in alcoholics and drug addicts. *The American Review of Respiratory Disease*. 1987;136(5):1188–92.

19. for Disease Control C, (CDC) P. Tuberculosis prevention in drug-treatment centers and correctional facilities--selected U.S. sites, 1990-1991. *MMWR.Morbidity and mortality weekly report*. 1993;42(11):210–213.

20. Hassine E, Marniche K, Hamida J, et al. Tuberculosis in hemodialysis patients in Tunisia. *Néphrologie*. 2002;23(3):135–40.

21. Dogan E, Erkoc R, Sayarlioglu H, Uzun K. Tuberculin skin test results and the booster phenomenon in twostep tuberculin skin testing in hemodialysis patients. *Renal Failure*. 2005;27(4):425–8.

22. Al Shohaib S. Tuberculosis in chronic renal failure in Jeddah. *International Urology and Nephrology*. 1999;31(4):571–5.

23. Migliori GB, Espinal M, Danilova ID, et al. Frequency of recurrence among MDR-tB cases "successfully" treated with standardised short-course chemotherapy. *The International Journal of Tuberculosis and Lung Disease*. 2002;6(10):858–64.

24. Styblo K, van Geuns HA, Meijer J. The yield of active case-finding in persons with inactive pulmonary tuberculosis or fibrotic lesions. A 5-year study in tuberculosis clinics in Amsterdam, Rotterdam and Utrecht. *Tubercle*. 1984;65(4):237–51.

25. Segarra-Obiol F, Lopez-Ibañez P, Perez Nicolas J. Asbestosis and tuberculosis. *American Journal of Industrial Medicine*. 1983;4(6):755–7.

Appendix A. Database search terms

Database	Terms
PubMed/ Medline	((("Mass Screening"[MeSH Terms] OR "Mass Chest X-Ray"[MeSH Terms] OR "contact tracing"[MeSH Terms] OR "health surveys"[MeSH Terms] OR "Cross-Sectional Studies"[MeSH Terms] OR "Epidemiologic Studies"[MeSH Terms]) OR ("Mass Chest X Ray" OR "Mass Chest X-Rays" OR "Mass Screenings" OR "Mass screening" OR "Screenings" OR "screening" OR "health survey" OR "Cross-Sectional Studies" OR "Case-detection" OR "case finding" OR "active case finding" OR "contact tracing" OR "intensified case-finding" OR "intensified case finding" OR "contact screening" OR "survey" OR "cross-sectional studies" OR "tuberculosis case-finding" OR "population screening" OR "prevalence studies"]) AND (("tuberculosis"[MeSH Terms] OR "tuberculosis" OR "Pulmonary Consumption" OR "Consumption, Pulmonary" OR "Pulmonary Phthisis" OR "Tuberculoses"] OR ("Mycobacterium tuberculosis"[MeSH terms]])) NOT ("animals"[MeSH Terms] NOT ("humans"[MeSH Terms] AND "animals"[MeSH Terms]])
EMBASE	'tuberculosis'/exp OR 'lung tuberculosis'/exp OR 'lung tuberculosis' OR 'tuberculosis' OR 'pulmonary consumption' OR 'consumption, pulmonary' OR 'pulmonary phthisis' OR 'tuberculoses' AND ('tuberculosis control'/exp OR 'case finding'/exp OR 'mass radiography'/exp OR 'mass screening'/exp OR 'contact examination'/exp OR 'screening'/exp OR 'mass radiography' OR 'mass screening' OR 'contact examination' OR 'population screening' OR 'mass roentgenologic screening' OR 'mass chest x ray' OR 'mass chest x-rays' OR 'mass screenings' OR 'screening' OR 'screening' OR 'health survey' OR 'cross-sectional studies' OR 'case-detection' OR 'case finding' OR 'active case finding' OR 'contact tracing' OR 'intensified case-finding' OR 'intensified case finding' OR 'contact screening' OR 'cross-sectional' OR 'tuberculosis case- finding' OR 'prevalence studies') NOT ('animal'/exp NOT ('animal'/exp AND 'human'/exp))
SCOPUS	((KEY(tuberculosis OR phthisis OR (pulmonary consumption))) OR (TITLE(tuberculosis OR phthisis OR (pulmonary consumption)))) AND (TITLE-ABS-KEY((("Mass Chest X Ray") OR ("Mass Chest X-Rays") OR ("Mass Screenings") OR ("Mass screening") OR (screenings) OR (screening) OR ("health survey") OR ("Cross-Sectional Studies") OR ("Case-detection") OR ("case finding") OR ("active case finding") OR ("contact tracing") OR ("intensified case-finding") OR ("intensified case finding") OR ("contact screening") OR ("prevalence survey") OR ("cross-sectional studies") OR ("population screening") OR ("prevalence study"))))

Appendix B. Search terms for conference abstracts

Conference	Year	Search terms	No. hits
IAS/AIDS	2008	Tuberculosis; TB Note: this search retrieved nearly 3500 fewer hits than a search that also included words attempting to limit to active case-finding.	507
IAS	2009	<i>u</i> "	169
IAS/AIDS	2010	<i>u</i> "	483
IUATLD	2008	Case-finding; contact tracing; active	488
IUATLD	2009	Case-finding; contact tracing; active	520
IUATLD	2010	Case-finding; contact tracing; active	573
ATS	2008	tuberculosis	184
ATS	2009	<i>u n</i>	184
ATS	2010	<i>u</i> "	244

IAS/AIDS: International AIDS Society; International AIDS Conference.

IUATLD: International Union Against TB and Lung Diseases; Union World Conference.

ATS: American Thoracic Society International Conference.

Appendix C. Tables 2-26

TB	Year	Author	Country	Age group	No.	Primary	Secondary	Diagnostic Criteria	NNS
Inc.					screened	Screen	Screen		
Low	2008	Ruutel ¹	Estonia	NS	112	TST IGRA		NS	
Low	1994	Kvale ²	USA	Adults	1171	Sm Cx		Sm Cx	391
Low	2002	Schulte ³	USA	Adults	176	TST		Sm Cx	88
Low	1993	Guelar ⁴	Spain	Adults & children	839	CXR TST		CXR Sm Cx NS	37
Low	2003	McLaughlin ⁵	USA	Adults	294	Sx CXR TST	Sm Cx	CXR Sm Cx	19
Low	2010	Jam ⁶	Iran	Adults & children	262	TST		NS	11
Low	1996	Hoffman ⁷	USA	Adults & children	31	TST		CXR Cx	11
Low	2000	Cabarcos ⁸	Spain	NS	233	Sx TST		NS	8
Mod	2008	Saraceni ⁹	Brazil	NS	5357	TST		NS	316
Mod	2008	Wang ¹⁰	China	Adults & children	2550	Sx	CXR Sm	CXR Sm NS	45
Mod	2010	Dembele ¹¹	Burkina Faso	Adults	2383	Sx	Sm	CXR Sm Other	35
Mod	2009	Qian ¹²	China	Adults	195	Sx CXR TST	Sm	CXR Sm	28
Mod	2010	Sun ¹³	China	Adults	340	Sx CXR Sm Cx		CXR Sm Cx	23
Mod	1997	Yoong ¹⁴	Malaysia	Adults	49	Sx CXR		CXR Sm Cx NS	5
Med	2005	Seyler ¹⁵	Cote d'Ivoire	Adults	129	Sx	CXR Sm Cx	CXR Sm Cx Other	·
Med	2008	Mazitov ¹⁶	Russia	NS	360	Sx TST	CXR Sm	CXR Sm	120
Med	1997	Hecker ¹⁷	Uganda	Adults	90	TST		NS	90
Med	2006	Joseph ¹⁸	Haiti	Adults	28261	Sx	CXR Sm	Clinical CXR Sm	86
Med	2010	Turinawe ¹⁹	Rwanda	NS	62835	Other		NS	73
Med	1996	Saenghirun- vattana ²⁰	Thailand	NS	46	Sx CXR	Sm Cx	Clinical CXR Sm Cx Other	46

Med	1998	Halsey ²¹	Haiti	Adults	10521	Sx CXR TST		CXR NS	44
Med	2001	Meleshen- kov ²²	Burundi	NS	80	CXR		CXR Other NS	40
Med	2008	Vandebriel ²³	Rwanda	NS	10362	Sx		NS	39
Med	2008	Shah ²⁴	Vietnam	Adults & children	597	CXR		Clinical CXR Sm	34
Med	2007	Gupta ²⁵	India	Adults	715	Sx TST	CXR Sm Cx	CXR Sm Cx	30
Med	2009	Braitstein ²⁶	Kenya	Children	6535	Sx CXR TST Sm Other		Clinical CXR Sm Other	28
Med	2009	Musa ²⁷	Nigeria	NS	18043	Other		NS	26
Med	2006	Mugisha ²⁸	Uganda	Adults & children	7696	Sx	Sm	Clinical CXR Sm Other	23
Med	2008	Matee ²⁹	Tanzania	Adults	2216	Sx CXR Sm Cx		Clinical CXR Sm Cx Other	22
Med	2005	Elenga ³⁰	Cote d'Ivoire	Children	282	Sx CXR TST	Sm Cx Other	Clinical CXR Sm Cx Other	21
Med	2009	Rajasek- aran ³¹	India	Adults only	5099	Sx	CXR Sm	Clinical CXR Sm Other	20
Med	1995	Aisu ³²	Uganda	Adults	1524	Sx	CXR Sm	Clinical CXR Sm	19
Med	2010	Reddy ³³	Peru	Adults	435	Sx CXR TST Sm Cx Other		CXR Sm Cx	17
Med	1997	Hawken ³⁴	Kenya	Adults & children	684	Sx CXR TST	Sm Cx	Clinical CXR Sm Cx Other	15
Med	2009	Shah ³⁵	Ethiopia	Adults	453	Sx CXR Sm Cx		CXR Sm Cx	15
Med	2010	Yienya ³⁶	Kenya	Children	249	TST		Other	14
Med	1997	Gilks ³⁷	Kenya	Adults	587	TST Sm Cx		CXR Sm Cx	12
Med	2008	Ngowi ³⁸	Tanzania	Adults & children	233	Sx CXR Sm Cx		Clinical CXR Sm Cx Other	12
Med	2010	Sanguli ³⁹	Kenya	Children	485	Sx CXR TST Other		CXR Other	12
Med	2000	Swami-	India						

		nathan ⁴⁰							<u>.</u>
Med	2008	Jittimanee ⁴¹	Thailand	NS	23593	Other		NS	9
Med	2009	Monkong- dee ⁴²	Thailand, Vietnam	Adults	1060	Sx CXR Sm Cx Other		Clinical CXR Sm Cx Other	8
Med	2010	Poudyal ⁴³	Nepal	Adults	86	Sx Sm		Sm	8
Med	2009	Gebi ⁴⁴	Nigeria	NS	1385	CXR		CXR Sm	7
Med	2005	Mtei ⁴⁵	Tanzania	Adults	93	Sx CXR TST IGRA Sm Cx Other		CXR Sm Cx Other	7
Med	2008	Khaw- chaoenpor ⁴⁶	Thailand	Adults	350	CXR TST		Clinical CXR Sm Cx	7
Med	2008	Mahajan ⁴⁷	India	NS	230	Sx CXR	Sm Cx	Clinical Sm Cx Other	7
Med	2008	Melaku ⁴⁸	Ethiopia	NS	1015	Other		NS	6
Med	2001	Merchant ⁴⁹	India	Children	285	Sx CXR TST		Clinical CXR Other NS	4
Med	2002	Awoyemi ⁵⁰	Nigeria	Adults	58	Sx CXR Sm Cx		CXR Sm Cx	4
Med	2010	Subraman- ian ⁵¹	India	Adults	188	Sm		Sm	3
Med	2004	Louie ⁵²	Vietnam	Adults	100	Sx		CXR Sm Cx NS	3
Med	2006	Maniar ⁵³	India	Adults only	8640	CXR TST Sm Cx Other		Clinical CXR Sm Cx Other	2
High	2010	Agizew ⁵⁴	Botswana	Adults	2732	CXR		Clinical CXR Sm cx Other	64
High	2006	Kali ⁵⁵	South Africa	Adults	370	Sx	Sm Cx	Sm Cx	47
High	2009	Gideon ⁵⁶	South Africa	Adults	429	Sx TST IGRA Cx		Сх	27
High	2003	Nachega ⁵⁷	South Africa	Adults	318	TST	CXR	Clinical CXR Sm Cx Other	25
High	2006	Day ⁵⁸	South Africa	Adults	920	Sx CXR Sm Cx		Clinical CXR Sm Cx Other	25

	1005	a 14			a -				1.0
High	1995	Godfrey- Faussett ⁵⁹	Zambia	Adults	95	Sx CXR	Sm Cx	Clinical CXR Sm Cx	19
High	2001	Waddell ⁶⁰	Zambia	Adults & children	862	Other		Other	19
High	2003	Churchyard <s up>61</s 	South Africa	Adults	338	Sx CXR	Sm Cx	CXR Sm Cx Other	13
High	2004	Mohammed ⁶²	South Africa	Adults	129	Sx CXR TST Sm Cx		CXR Sm Cx NS	12
High	2002	Kimerling ⁶³	Cambodia	Adults	441	Sx Sm Cx		Sm Cx	12
High	2006	Lawn ⁶⁴	South Africa	Adults & children	804	Other		Clinical CXR Sm Cx Other	9
High	2010	Cain ⁶⁵	Cambodia, Vietnam, Thailand	Adults & children	1768	Sx CXR Sm Cx Other		CXR Sm Cx	7
High	2009	Chea ⁶⁶	Cambodia	NS	212	Sx CXR Sm Cx Other		Clinical CXR Sm Cx Other	6
High	2010	Bassett ⁶⁷	South Africa	Adults	825	Sx CXR Sm Cx		CXR Sm Cx	6
High	2008	Tiam ⁶⁸	Lesotho	Adults	336	Sx CXR		CXR Sm	5
High	2007	Cain ⁶⁹	Cambodia	Adults	455	Other		CXR sm Other	5
High	2010	Houlihan ⁷⁰	South Africa	Adults	810	Sx CXR Sm		CXR Sm	5
High	2010	Dawson ⁷¹	South Africa	Adults	235	Sx CXR Sm Cx		CXR Sm Cx	5
High	2009	Lawn ⁷²	South Africa	Adults	235	Sx CXR Sm Cx Other		CXR Sm Cx	5
High	2010	Lawn ⁷³	South Africa	NS	241	Sx CXR Sm Cx Other		CXR Sm Cx Other	3

Table 2. HIV-infected populations. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screened	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Med	2008	Shetty ⁷⁴	India	NS	9921	Sx		Clinical CXR Sm Other NS	12
Med	2006	Mugisha ²⁸	Uganda	Adults & children	7696	Sx	Sm	Clinical CXR Sm Other	23
Med	2010	Munseri ⁷⁵	Tanzania	Adults & children	1280	Sx CXR Sm Cx Other		Clinical CXR sm Cx Other	21
High	2008	Chheng ⁷⁶	Cambodia	Adults	496	Sx Sm		Clinical Sm Cx	18
High	2008	Mwangelwa ⁷⁷	Zambia	Adults & children	120	Other		NS	8

Table 3. Voluntary Counseling and HIV Testing Settings. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screene d	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Low	2001	Levitin ⁷⁸	Israel	Children	10133	TST	CXR	CXR NS	
Low	2005	Magkanas ⁷⁹	Greece	Adults	2466	CXR	TST Cx	CXR Cx NS	
Low	1984	Rowlands ⁸⁰	Saudi Arabia	Children	973	Sx TST		CXR NS	
Low	2001	Sebro ⁸¹	Trinidad and Tobago	Adults	12662	CXR		CXR NS	
Low	2006	Garcia-Sancho ⁸²	Mexico	Children	858	Sx		Clinical CXR Sm Cx Other NS	•
Low	1984	Grantland ⁸³	USA	Children	435	TST	CXR	CXR NS	
Low	2008	Rumman ⁸⁴	Jordan	Adults	61730	Sx	Sm	Sm	30865

Low	1987	Hayashi ⁸⁵	Japan	NS	363608	CXR		CXR Sm Cx	11019
Low	1993	Al-Kassimi ⁸⁶	Saudi Arabi	Adults & children	7721	TST		Cx	7721
Low	2002	Bibi ⁸⁷	Israel	Children	27232	TST	CXR	Clinical CXR Sm NS	3891
Low	1998	Pong ⁸⁸	USA	Adults	1645	CXR TST Other		Clinical CXR Other	1646
Low	2006	Alavi ⁸⁹	Iran	Children	3906	Sx TST	CXR Sm Other	Clinical CXR Sm Other	1302
Low	1994	Alperstein ⁹⁰	Australia	Children	2290	TST		Clinical CXR Sm NS	1145
Low	1986	Perez-Stable ⁹¹	USA	Adults & children	1871	CXR TST Sm		CXR Sm	936
Low	1999	Villalbi ⁹²	Spain	Children	11200	TST		NS	862
Low	1989	Beller ⁹³	USA	Adults	3343	CXR		CXR Sm Cx NS	558
Low	1994	Caldwell ⁹⁴	USA	Adults & children	1005	TST		CXR Sm Cx NS	503
Low	2001	Sanchez-Perez ⁹⁵	Mexico	Adults	6140	Sx	Sm Cx	Sm Cx	362
Low	1994	Lodi TB Work Group ⁹⁶	Italy	Adults & children	7087	CXR TST		CXR Other NS	296
Low	2008	Romaszko ⁹⁷	Poland	Adults	3004	Sx CXR		Clinical CXR Sm Cx Other	137
Mod	2001	Kim ⁹⁸	South Korea	Children	1398295	CXR	Sm Cx	CXR Sm Cx	5594
Mod	2010	Miller ⁹⁹	Brazil	Adults & children	23865	Sx		CXR Sm	1989
Mod	2007	Odermatt ¹⁰⁰	Laos	Unknow n	13541	Sx	Sm	Clinical Sm	713
Mod	1992	Zuluaga ¹⁰¹	Colombia	Adults	3731	Sx Sm Cx		Sm Cx	374
Mod	2004	China TB Control Collaboration ¹⁰²	China	Adults & children	365079	Sx CXR TST	CXR Sm Cx	Clinical CXR Sm Cx	273
Mod	2002	Fernandez de Larrea ¹⁰³	Venezuela	Children	502	Sx TST	CXR Sm Cx	Clinical CXR Sm Cx	168
Mod	1993	Hong ¹⁰⁴	South Korea	Adults & children	54870	CXR TST Other		CXR Sm Cx NS	55

Mod 2007 Sandoval ¹⁰⁶ Ecuador Adults & children Sx Sm Sm Sm 15 Med 1981 Patel ¹⁰⁷ India NS 30000 Sx Sm Sm Sm 4286 Med 1993 Shteintsaig ¹⁰⁸ Russia NS 1903400 CXR Other CXR Other NS 3189 Med 1996 Elink Thailand Adults & children 20730 Sx Sm Cx 2304 Med 2006 Kasse ¹¹⁰ Gambia Adults & children 29871 Sx CXR Sm Clinical CXR Sm 2298 Med 2010 Shahed Banglades Adults 63715 Sx Sm Sm Cx Sm Cx 1626 Med 2010 Margeral- Andersen ¹¹³ Guinea- Bissau Adults 2989 Sx Sm CX Sm Cx 1626 Med 2006 Shargie ¹¹⁵ Ethiopia Adults 35832 Sx Sm Sm Sm 1285	Mod	1981	Ng^{105}	Singapore	Adults	5413	CXR	Sm	Clinical CXR Sm	53
	Mod	2007	Sandoval ¹⁰⁶	Ecuador		653	Sx	Sm	Sm	15
Med1996Elink Schuurman ¹⁰⁹ Thailand ChildrenAdults & children20730SxSm Cx2304Med2006Kasse ¹¹⁰ GambiaAdults & Adults & Children29871Sx CXR SmClinical CXR Sm2298Med2010Shahed Hossain ¹¹¹ hBanglades hAdults29871Sx CXR SmSm Cx2124Med2010Amarel ¹¹² EthiopiaAdults29257SxSm CxSm Cx1626Med2010Bjerregaard- Andersen ¹¹³ Guinea- BissauAdults2989SxCXR SmCXR Sm Other1495Med2004Thorson ¹¹⁴ VietnamAdults35832SxCXR SmSm Cx1626Med2009Yimer ¹¹⁶ EthiopiaAdults35832SxCXR SmCXR Sm1434Med2009Yimer ¹¹⁶ EthiopiaAdults & Adults35935SxCXR SmSm1280Med2006Fochsen ¹¹⁸ IndiaAdults45719SxCXR Sm CxCXR Sm Cx NS915Med2006Fochsen ¹¹⁸ IndiaAdults45719SxSm CxSm CxSm Cx593Med2002Fochsen ¹¹⁸ IndiaAdults45719SxSm CxSm CxSm Cx915Med2002Endehlidehl ¹¹²⁹ RwandaNS52844SxSmSm CxSm CxSm CxSm CxSmMed2002 </th <th>Med</th> <th>1981</th> <th>Patel¹⁰⁷</th> <th>India</th> <th>NS</th> <th>30000</th> <th>Sx</th> <th>Sm</th> <th>Sm</th> <th>4286</th>	Med	1981	Patel ¹⁰⁷	India	NS	30000	Sx	Sm	Sm	4286
Schuurman ¹⁰⁹ childrenMed2006Kasse ¹¹⁰ GambiaAdults & Adults & childrenSx CXR SmClinical CXR Sm2298Med2010Shahed Hossain ¹¹¹ hBanglades hAdults63715Sx SmSmSm2124Med2010Mame ¹¹² Ethiopia BissauAdults29257SxSm CxSm CxSm Cx1626Med2010Bjerregaard- Andersen ¹¹³ BissauGuinea- BissauAdults292957SxSmCXR SmCXR Sm Other1495Med2004Thorson ¹¹⁴ Andersen ¹¹³ BissauVietnam AdultsAdults35832 S682SxCXR SmCXR Sm Other1434Med2006Shargie ¹¹⁵ Andersen ¹¹⁶ BissauAdults35832 AdultsSxSmSm1285Med2009Yimer ¹¹⁶ Pimer ¹¹⁶ Ethiopia AdultsAdults35832 S735SxCXR SmCXR Sm Cx NS915Med2006Fochsen ¹¹⁸ Pimer ¹¹⁶ India AdultsAdults45719 S735SxCXR SmCXR Sm Cx NS915Med2002Vandebriel ¹¹⁹ Pimer ¹¹⁹ Rwanda RwandaNS52844 S2844SxSm CxSm CxSm CxSm CxMed1982 Pimer ¹¹⁹ India RwandaAdults67068 S708SxSm SmSm<	Med	1993	Shteintsaig ¹⁰⁸	Russia	NS	1903400	CXR Other		CXR Other NS	3189
Image: Constraint of the second sec	Med		Schuurman ¹⁰⁹			20730				2304
Hossain ¹¹¹ hMed2010Amare ¹¹² EthiopiaAdults29257SxSm CxSm CxIdeaMed2010Bjerregaard- Andersen ¹¹³ Guinea- BissauAdults2989SxCXR SmCXR Sm Other1495Med2004Thorson ¹¹⁴ VietnamAdults35832SxCXR SmCXR Sm1434Med2006Shargie ¹¹⁵ EthiopiaAdults16697SxSmSm1285Med2009Yimer ¹¹⁶ EthiopiaAdults47478SxSmSm1250Med2006Zaman ¹¹⁷ Banglades hAdults59395SxCXR SmClinical CXR Sm1143Med2006Fochsen ¹¹⁸ IndiaAdults45719SxCXR Sm CxCXR Sm CxSTR915Med2006Fochsen ¹¹⁸ IndiaAdults45719SxCXR Sm CxCXR Sm Cx915Med2006Fochsen ¹¹⁸ IndiaAdults45719SxSm CxSm Cx773Med2002Holtedahl ¹¹² IndiaAdults & 114266SxSm CxSm CxSm Cx773Med1982Cassels ¹²¹ NepalAdults & 1249SxSmSm CxSm Sm593Med1982Leasels ¹²³ EthiopiaAdults12149SxSmSmSm593Med1987Kibrik ¹²⁴ RussiaAdults12149Sx	Med	2006	Kasse ¹¹⁰	Gambia		29871	Sx CXR Sm		Clinical CXR Sm	2298
Med 2010 Bjerregaard-Andersen ¹¹³ Guinea-Bissau Adults 2989 Sx CXR Sm CXR Sm Other 1495 Med 2004 Thorson ¹¹⁴ Vietnam Adults 35832 Sx CXR Sm CXR Sm 1434 Med 2006 Shargie ¹¹⁵ Ethiopia Adults 16697 Sx Sm Sm 1285 Med 2009 Yimer ¹¹⁶ Ethiopia Adults 4697 Sx Sm Sm Sm 1285 Med 2009 Yimer ¹¹⁶ Ethiopia Adults 47478 Sx Sm Sm Sm Sm 1285 Med 2006 Zaman ¹¹⁷ Banglades Adults 59395 Sx CXR Sm CXR Sm Cx NS 915 Med 2010 Vandebriel ¹¹⁹ Rwanda NS 52844 Sx Sm Cx Sm Cx <td< th=""><th>Med</th><th>2010</th><th></th><th>-</th><th></th><th>63715</th><th>Sx Sm</th><th></th><th>Sm</th><th>2124</th></td<>	Med	2010		-		63715	Sx Sm		Sm	2124
Andersen ¹¹³ Bissau Med 2004 Thorson ¹¹⁴ Vietnam Adults 35832 Sx CXR Sm CXR Sm 1434 Med 2006 Shargie ¹¹⁵ Ethiopia Adults 16697 Sx Sm Sm 1285 Med 2009 Yimer ¹¹⁶ Ethiopia Adults 47478 Sx Sm Sm Sm 1250 Med 2006 Zaman ¹¹⁷ Banglades Adults 59395 Sx CXR Sm CXR Sm Sm Sm 1250 Med 2006 Fochsen ¹¹⁸ India Adults 45719 Sx CXR Sm Cx CXR Sm Cx NS 915 Med 2010 Vandebriel ¹¹⁹ Rwanda NS 52844 Sx Sm Cx Sm Cx 773 Med 1999 Naragt ²⁰ India Adults & 114266 Sx Sm Cx Sm Cx Sm Cx 773 Med 1982 Cassels ¹²¹ Nepal Adults 67068 Sx Sm Sm CX Sm Sm 593 Si Med 2002	Med	2010	Amare ¹¹²	Ethiopia	Adults	29257	Sx	Sm Cx	Sm Cx	1626
Med2006Shargie ¹¹⁵ EthiopiaAdults16697SxSmSm1285Med2009Yimer ¹¹⁶ EthiopiaAdults & and h47478SxSmSmSm1250Med2006Zaman ¹¹⁷ Banglades hAdults59395SxCXR SmClinical CXR Sm1143Med2006Fochsen ¹¹⁸ IndiaAdults45719SxCXR Sm CxCXR Sm Cx NS915Med2010Vandebriel ¹¹⁹ RwandaNS52844SxNS826Med1999Narang ¹²⁰ IndiaAdults & thildren114266SxSm CxSm Cx773Med1982Cassels ¹²¹ NepalAdults67068SxSmSm605Med2002Demissie ¹²³ EthiopiaAdults12149SxSmSm529Med1987Kibrik ¹²⁴ EthiopiaAdults4512Sx OtherSmSm529Med1987Kibrik ¹²⁴ IndiaAdults5755SxSmSmSm480Med1995Balasub- ramanian ¹²⁵ IndiaAdults5755SxSmSmSm480	Med	2010	, 0		Adults	2989	Sx	CXR Sm	CXR Sm Other	1495
Med2009Yimer' ¹¹⁶ EthiopiaAdults & drut's & childrenSxSmSmSm1250Med2006Zaman ¹¹⁷ Banglades hAdults59395SxCXR SmClinical CXR Sm1143Med2006Fochsen ¹¹⁸ IndiaAdults45719SxCXR Sm CxCXR Sm Cx NS915Med2010Vandebriel ¹¹⁹ RwandaNS52844SxNS826Med1999Narang ¹²⁰ IndiaAdults & 114266SxSm CxSm Cx773Med1982Cassels ¹²¹ NepalAdults67068SxSmSm605Med2002Holtedahl ¹²² CameroonAdults1777SxSmSm593Med2002Demissie ¹²³ EthiopiaAdults12149SxSmSm529Med1987Kibrik ¹²⁴ RussiaAdults4512Sx OtherClinical CXR502Med1995Balasub- ramanian ¹²⁵ IndiaAdults5755SxSmSmSm480	Med	2004	Thorson ¹¹⁴	Vietnam	Adults	35832	Sx	CXR Sm	CXR Sm	1434
Med2006Zaman ¹¹⁷ Banglades hAdults59395SxCXR SmClinical CXR Sm1143Med2006Fochsen ¹¹⁸ IndiaAdults45719SxCXR Sm CxCXR Sm Cx NS915Med2010Vandebriel ¹¹⁹ RwandaNS52844SxNS826Med1999Narang ¹²⁰ IndiaAdults & 114266SxSm CxSm Cx773Med1982Cassels ¹²¹ NepalAdults67068SxSmSm605Med2002Holtedahl ¹²² CameroonAdults & 1777 childrenSxSmSm593Med2002Demissie ¹²³ EthiopiaAdults12149SxSmSm529Med1987Kibrik ¹²⁴ RussiaAdults4512 childrenSx OtherClinical CXR502Med1995Balasub- ramanian ¹²⁵ IndiaAdults5755SxSmSm480	Med	2006	Shargie ¹¹⁵	Ethiopia	Adults	16697	Sx	Sm	Sm	1285
hMed2006Fochsen ¹¹⁸ IndiaAdults45719SxCXR Sm CxCXR Sm Cx NS915Med2010Vandebriel ¹¹⁹ RwandaNS52844SxNS826Med1999Narang ¹²⁰ IndiaAdults & 14266SxSm CxSm Cx773Med1982Cassels ¹²¹ NepalAdults67068SxSm CxSm Cx593Med2002Holtedahl ¹²² CameroonAdults & 1777SxSmSmSm593Med2002Demissie ¹²³ EthiopiaAdults12149SxSmSmSm529Med1987Kibrik ¹²⁴ RussiaAdults & 4512Sx OtherClinical CXR502Med1995Balasub- ramanian ¹²⁵ IndiaAdults5755SxSmSmSm480	Med	2009	Yimer ¹¹⁶	Ethiopia		47478	Sx	Sm	Sm	1250
Med2010VandebrielRwandaNS52844SxNS826Med1999Narang120IndiaAdults & 114266SxSm CxSm Cx773Med1982Cassels121NepalAdults67068SxSmSmSm605Med2002Holtedahl122CameroonAdults & 1777SxCXR Sm NS593Med2002Demissie123EthiopiaAdults12149SxSmSm529Med1987Kibrik124RussiaAdults & 4512Sx OtherClinical CXR502Med1995Balasub- ramanian125IndiaAdults5755SxSmSmSm480	Med	2006	Zaman ¹¹⁷	0	Adults	59395	Sx	CXR Sm	Clinical CXR Sm	1143
Med1999Narang^{120}IndiaAdults & children114266SxSm CxSm Cx773Med1982Cassels^{121}NepalAdults67068SxSmSm605Med2002Holtedahl^{122}CameroonAdults & children1777SxCXR Sm NS593Med2002Demissie^{123}EthiopiaAdults12149SxSmSmSm529Med1987Kibrik^{124}RussiaAdults & children12149Sx OtherClinical CXR502Med1995Balasub- ramanian^{125}IndiaAdults5755SxSmSmSm480	Med	2006	Fochsen ¹¹⁸	India	Adults	45719	Sx	CXR Sm Cx	CXR Sm Cx NS	915
Med1982Cassels^{121}NepalAdults67068SxSmSm605Med2002Holtedahl^{122}CameroonAdults & 1777SxCXR Sm NS593Med2002Demissie^{123}EthiopiaAdults12149SxSmSm529Med1987Kibrik^{124}RussiaAdults & 4512Sx OtherClinical CXR502Med1995Balasub- ramanian^{125}IndiaAdults5755SxSmSm480	Med	2010	Vandebriel ¹¹⁹	Rwanda	NS	52844	Sx		NS	826
Med2002Holtedahl ¹²² CameroonAdults & children1777SxCXR Sm NS593Med2002Demissie ¹²³ EthiopiaAdults12149SxSmSm529Med1987Kibrik ¹²⁴ RussiaAdults & children4512Sx OtherClinical CXR502Med1995Balasub- ramanian ¹²⁵ IndiaAdults5755SxSmSm480	Med	1999	Narang ¹²⁰	India		114266	Sx	Sm Cx	Sm Cx	773
$ \begin{array}{c c c c c c c } \hline Med & 2002 & Demissie^{123} & Ethiopia & Adults & 12149 & Sx & Sm & Sm & 529 \\ \hline Med & 1987 & Kibrik^{124} & Russia & Adults & 4512 & Sx Other & Clinical CXR & 502 \\ \hline Med & 1995 & Balasub- \\ ramanian^{125} & V & V & V & V & V \\ \hline \end{array} $	Med	1982	Cassels ¹²¹	Nepal	Adults	67068	Sx	Sm	Sm	605
Med1987Kibrik^{124}RussiaAdults & 4512 childrenSx OtherClinical CXR502Med1995Balasub- ramanian^{125}IndiaAdults5755SxSmSm480	Med	2002	Holtedahl ¹²²	Cameroon		1777	Sx		CXR Sm NS	593
Med1995Balasub- ramanian125IndiaAdults5755SxSmSm480	Med	2002	Demissie ¹²³	Ethiopia	Adults	12149	Sx	Sm	Sm	529
ramanian ¹²⁵	Med	1987	Kibrik ¹²⁴	Russia		4512	Sx Other		Clinical CXR	502
Med 2010 Hoa ¹²⁶ Vietnam Adults 94179 Sx CXR Sm Cx CXR Sm Cx 351	Med	1995		India	Adults	5755	Sx	Sm	Sm	480
	Med	2010	Hoa ¹²⁶	Vietnam	Adults	94179	Sx CXR	Sm Cx	CXR Sm Cx	351

Med	2008	Gopi ¹²⁷	India	Adults	236010	Sx CXR	Sm Cx	Clinical CXR Sm Cx	354
Med	2004	Balasub- ramanian ¹²⁸	India	Adults	76011	Sx CXR TST	Sm Cx	CXR Sm Cx	330
Med	1995	Chakraborty ¹²⁹	India	Adults & children	29499	TST Sm Cx		Sm Cx	307
Med	2007	Akhtar ¹³⁰	Pakistan	Adults	5479	Sx	Sm Cx	Sm Cx	305
Med	1992	Xavier ¹³¹	India	Adults	11808	Sx		Sm Cx NS	288
Med	2007	Soemantri ¹³²	Indonesia	Adults	50154	Sx	Sm	Clinical Sm Cx	285
Med	2009	Bhat ¹³³	India	Adults	22270	Sx Other	Sm Cx	Sm Cx	269
Med	1993	Mitinskaia ¹³⁴	Russia	Children	701	Sx CXR TST Sm Cx Other		CXR Sm Cx Other	234
Med	2010	Rao ¹³⁵	India	Adults	1390	Sx	Sm Cx	Sm Cx	232
Med	2006	Gopi ¹³⁶	India	Adults	78268	Sx CXR	Sm Cx	Clinical CXR Sm Cx NS	214
Med	2001	Datta ¹³⁷	India	Adults & children	26320	Sx CXR TST		CXR Sm Cx NS	209
Med	2002	Gupta ¹³⁸	India	Adults	5000	Sx	CXR Sm	CXR Sm NS	200
Med	1991	Hafez ¹³⁹	Banglades h	Adults & children	3406	Sx		Sm NS	163
Med	1990	Abramson ¹⁴⁰	Russia	NS	1131	Sx CXR		Clinical CXR Sm Other	162
Med	1994	Berezko ¹⁴¹	Russia	Adults & children	2227	Sm Cx		Sm Cx	160
Med	2009	Tupasi ¹⁴²	Philippine s	Adults & children	22867	Sx CXR	Sm Cx	CXR Sm Cx	152
Med	2004	Murhekar ¹⁴³	India	Adults	10570	Sx	Sm	Sm	138
Med	2010	Sekandi Nabbuye ¹⁴⁴	Uganda	Adults	5103	Sx	Sm	Sm	131
Med	2001	TB Research Center ¹⁴⁵	India	Adults & children	100000	CXR	Sm Cx	Clinical CXR Sm Cx	115
Med	2003	Guwatudde ¹⁴⁶	Uganda	Adults & children	1142	Sx	CXR Sm Cx	Clinical CXR Sm Cx	115
Med	1999	Tupasi ¹⁴⁷	Philippine	Adults &	12850	Sx CXR TST	Sm Cx	Clinical CXR Sm Cx	102

			S	children					
Med	1982	Aluoch ¹⁴⁸	Kenya	Adults & children	577	Sm Cx		Sm Cx	83
Med	1984	Mayurnath ¹⁴⁹	India	Adults & children	18311	Sx CXR TST		CXR Cx	82
Med	2010	Rao ¹⁵⁰	India	Adults	11116	Sx	Sm Cx	Sm Cx	67
Med	1982	Aluoch ¹⁴⁸	Kenya	Adults & children	1006	Sx	Sm Cx	Sm Cx	46
Med	1998	Alvi ¹⁵¹	Pakistan	Adults & children	1077	Sx	CXR Sm	Clinical CXR Sm	40
Med	1981	Nsanzu- muhire ¹⁵²	Kenya	Adults & children	1074	Sx	Sm Cx	Sm Cx	40
Med	2009	Sekandi ¹⁵³	Uganda	Adults & children	930	Sx	Sm	Sm	29
Med	2008	Mapue ¹⁵⁴	Philippine s	Children	15000	Sx TST Other		NS	25
High	2001	Pronyk ¹⁵⁵	South Africa	Adults & children	38127	Sx	Sm Cx	Sm Cx	6355
High	2010	Phuanu- koonnon ¹⁵⁶	Papua New Guinea	NS	7211	Sx	Sm	Sm	601
High	2007	Corbett ¹⁵⁷	Zimbabwe	Adults	4668	Sx Sm Cx		Clinical CXR Sm Cx	173
High	2010	Middelkoop ¹⁵⁸	South Africa	Adults	1250	Sx Sm Cx		Sm Cx	157
High	2007	Den Boon ¹⁵⁹	South Africa	Adults	3483	CXR	Sm Cx	CXR Sm Cx	152
High	2010	Corbett ¹⁶⁰	Zimbabwe	Adults	110432	Sx	Sm	Clinical CXR Sm Cx NS	131
High	2010	Corbett ¹⁶¹	Zimbabwe	Adults	8979	Sx Sm Cx		Clinical CXR Sm Cx Other	114
High	2009	Corbett ¹⁶²	Zimbabwe	Adults	10236	Sx Sm Cx	CXR Sm Cx Other	Clinical CXR Sm Cx Other	113
High	2009	Ayles ¹⁶³	Zambia	Adults	8044	Sx Sm Cx		CXR Sm Cx	102

High	2005	Marais ¹⁶⁴	South Africa	Children	1415	Sx CXR TST	Sm Cx Other	CXR Sm Cx	79
High	2006	Den Boon ¹⁶⁵	South Africa	Adults	2068	Sx CXR Sm Cx		CXR Sm Cx	72
High	2008	Williams ¹⁶⁶	Cambodia	Adults	22160	Sx CXR TST Sm		CXR Sm Cx	39
High	2007	Wood ¹⁶⁷	South Africa	Adults	762	Sx Sm Cx		Sm Cx	34
High	1980	Gatner ¹⁶⁸	South Africa	Adults	5477	CXR Sm Cx		CXR Sm Cx	32
High	2002	Kelly ¹⁶⁹	Zambia	Adults	261	Sx		Clinical CXR Sm Other	29
High	1981	Fourie ¹⁷⁰	South Africa	Adults	1386	Sx CXR Sm Cx		CXR Sm Cx	29
High	1980	Fourie ¹⁷¹	South Africa	Adults	2230	CXR Sm Cx		CXR Sm Cx	24
High	2008	Geldenhuys ¹⁷²	South Africa	Children	2393	Sx	CXR Sm Cx Other	CXR Sm Cx	16

Table 4. Community or population-wide screens. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB	Year	Author	Country	Age group	No.	Primary	Secondary	Diagnostic Criteria	NNS
Inc.					screened	Screen	Screen		
Low	1999	Soren ¹⁷³	USA	Adults & children	659	Sx TST		NS	
Low	2001	Vall Mayans ¹⁷⁴	Spain	Children	415	TST		NS	
Low	2010	Goodburn ¹⁷⁵	United Kingdom	Adults	16	Sx TST IGRA		Clinical CXR Sm Cx Other	
Low	1983	Kameda ¹⁷⁶	Japan	Adults & children	189	CXR TST		CXR	

Low	1980	Kameda ¹⁷⁷	Japan	Adults &	430	NS		NS	430
				children					
Low	2010	Zunic ¹⁷⁸	France	Adults & children	3027	Other		NS	337
Low	2002	Driver ¹⁷⁹	USA	Adults & children	980	Sx TST	CXR	Clinical CXR Sm Cx	327
Low	1986	Sullam ¹⁸⁰	USA	Adults & children	831	TST	CXR	Clinical CXR Sm Cx Other	277
Low	1981	Kameda ¹⁸¹	Japan	Adults & children	180	NS		NS	180
Low	1993	Ormerod ¹⁸²	United Kingdom	Adults & children	7017	CXR TST Other		CXR Sm Cx Other	141
Low	2008	Bakir ¹⁸³	Turkey	Children	908	Sx CXR TST IGRA		Clinical CXR Sm Cx Other	114
Low	2007	Salinas ¹⁸⁴	Spain	Adults & children	4356	CXR TST		CXR Sm Cx NS	109
Low	1982	Uhari ¹⁸⁵	Finland	Children	83	Sx CXR TST		Clinical CXR Cx	83
Low	1989	Sherif ¹⁸⁶	Egypt	Adults & children	281	TST		CXR NS	71
Low	1984	Capewell ¹⁸⁷	United Kingdom	Adults & children	4445	CXR TST		CXR Sm NS	57
Low	1994	Fernandez Revuelta ¹⁸⁸	Spain	Adults & children	640	TST		CXR Sm Cx	54
Low	2010	Garcia- Garcia ¹⁸⁹	Spain	NS	159	Sx CXR TST IGRA		CXR NS	53
Low	1990	Ahiko ¹⁹⁰	Japan	NS	405	Sx CXR TST		CXR Sm Cx	45
Low	2004	Remacha Esteras ¹⁹¹	Spain	Adults & children	2350	CXR TST		CXR NS	38
Low	2009	Kilicaslan ¹⁹²	Turkey	Adults	2210	Sx CXR	Sm	Clinical CXR Sm Cx Other	36
Low	2000	Dasgupta ¹⁹³	Canada	Adults & children	220	TST	CXR	Clinical CXR Sm Cx	34
Low	2000	Solsona ¹⁹⁴	Spain	Adults &	1176	Sx CXR TST		CXR Sm Cx	31

				children					
Low	2010	Kouw ¹⁹⁵	Netherla nds	NS	193	TST Sm Cx Other		Sm Cx NS	22
Low	1991	Matutano ¹⁹⁶	Spain	Adults & children	714	TST		CXR Sm Cx	19
Low	1997	Vidal ¹⁹⁷	Spain	Adults & children	3071	Sx CXR TST Sm	n CX	CXR Sm Cx Other	18
Low	2006	Khalilzadeh ¹⁹⁸	Iran	Adults & children	224	CXR TST Sm		CXR Sm	14
Low	2002	Madhi ¹⁹⁹	France	Children	91	CXR TST		Clinical CXR Sm Cx Other	12
Low	2006	Gendrel ²⁰⁰	France	Children	69	CXR TST Sm Cx		CXR Sm Cx Other	5

Table 5. Household contact-tracing (low-incidence countries). (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

ТВ	Year	Author	Country	Age group	No.	Primary	Secondary	Diagnostic Criteria	NNS
Inc.					screened	Screen	Screen		
Mod	2002	Mohammad ²⁰¹	Malaysia	Adults & children	129	TST		NS	•
Mod	2008	Lin ²⁰²	China	Adults & children	1773	CXR TST		CXR Sm NS	355
Mod	2008	Lee ²⁰³	Hong Kong	Adults & children	4661	Sx CXR TST		Clinical CXR Sm Cx	151
Mod	2009	Nguyen ²⁰⁴	Laos	Adults & children	317	Sx TST Sm	CXR	Clinical CXR Sm Other NS	80
Mod	2001	Carvalho ²⁰⁵	Brazil	Adults & children	360	Sx CXR TST		Clinical CXR Sm Cx	60
Mod	2002	Noertjojo ²⁰⁶	Hong Kong	Adults & children	2381	Sx CXR		Clinical CXR Sm Cx	59
Mod	1981	Chen ²⁰⁷	Singapore	Adults &	6450	Sx CXR TST	Sm	Clinical CXR Sm	45

				children					
				children					
Mod	2009	Ottomani ²⁰⁸	Morocco	Adults & children	787683	Sx CXR TST	Sm	Clinical CXR Sm	40
Mod	2004	Lemos ²⁰⁹	Brazil	Adults & children	269	Sx CXR TST	Sm Cx	Clinical CXR Sm Cx Other	39
Mod	2009	Maciel ²¹⁰	Brazil	Children	155	Sx CXR TST		Clinical CXR Sm Cx Other	31
Mod	2010	Cavalcante ²¹¹	Brazil	Adults & children	699	Sx CXR TST	Sm	Clinical CXR Sm Cx	27
Mod	2001	Teixeira ²¹²	Brazil	Adults & children	408	Sx TST	CXR Sm Cx	CXR Sm Cx	24
Mod	2000	Espinal ²¹³	Dominican Republic	Adults & children	803	Sx TST	CXR Sm	Clinical CXR Sm Cx NS	18
Mod	2009	Leimane ²¹⁴	Latvia	Children	60	Other		NS	15
Mod	2004	Caldeira ²¹⁵	Brazil	Children	184	Sx CXR TST Sm		Clinical CXR Sm Cx	8
Mod	2003	Al Kubaisy ²¹⁶	Iraq	Adults & children	1039	Sx TST	CXR Sm	Clinical CXR Sm	7

Table 5 cont'd. Household contact-tracing (moderate-incidence countries). (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screened	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Med	2009	Chen ²¹⁷	Taiwan	Adults & children	78	CXR TST IGRA		CXR NS	•
Med	2010	Madhavi ²¹⁸	India	Children	172	Other		NS	
Med	2010	Delawer ²¹⁹	Afghanista n	Adults	2837	Sx	Sm	Sm	568
Med	2005	Becerra ²²⁰	Peru	Adults &	3347	Sx	Sm Cx	Sm Cx NS	305

				children					
Med	2000	Wares ²²¹	Nepal	Adults & children	2298	Sm		Sm	165
Med	2010	Sanchez- Lofranco ²²²	Philippine s	Adults & children	771	Sx CXR	Sm Cx	CXR Sm Cx	155
Med	2010	Schumacher ²² 3	Peru	NS	12581	Sx		Sm Cx Other	112
Med	1981	Aluoch ²²⁴	Kenya	Adults & children	598	Sm Cx		Sm Cx	86
Med	2007	Jackson- Sillah ²²⁵	Gambia	Adults & children	2381	Sx TST	CXR	Clinical CXR Sm Cx Other	73
Med	2003	Zachariah ²²⁶	Malawi	Adults & children	461	Sx	Sm	Sm	58
Med	1981	Nsanzumu- hire ²²⁴	Kenya	Adults & children	345	Sm Cx		Sm Cx	50
Med	2010	Mangi ²²⁷	Pakistan	Adults & children	17247	Sm Cx		Sm Cx	50
Med	2008	Jong ²²⁸	Gambia	Adults & children	1808	Sx		NS	48
Med	1984	Akenzua ²²⁹	Nigeria	Children	332	TST	CXR	CXR Sm Other	42
Med	2008	Achakzai ²³⁰	Pakistan	Adults & children	1118	Sx CXR TST Sm		CXR Sm NS	30
Med	2010	Fojo ²³¹	Kenya	NS	72	Sx		Sm	36
Med	2010	Amanullah ²³²	Pakistan	Children	117	CXR TST Other		CXR NS	30
Med	2003	Guwatudde ¹⁴⁶	Uganda	Adults & children	1206	Sx CXR TST	Sm CX	Clinical CXR Sm Cx	29
Med	2003	Suggaravet- siri ²³³	Thailand	Adults & children	1200	Sx	CXR TST Sm	CXR Sm Cx	27
Med	2003	Bayona ²³⁴	Peru	Adults & children	945	Sx	Sm	Sm Cx Other	20
Med	2000	Wang ²³⁵	Taiwan	Adults & children	4595	CXR		CXR Sm Cx	17
Med	2008	Taran ²³⁶	Russia	Adults &	23	Other		NS	12

				children					
Med	2010	Chemutai ²³⁷	Kenya	NS	102	Other		NS	11
Med	1996	Kuaban ²³⁸	Cameroon	Adults & children	416	Sx CXR TST		CXR Sm	9
Med	2000	Eckhoff ²³⁹	Haiti	Adults	61	Sx CXR Sm		Clinical CXR Sm	7
Med	2010	Sia ²⁴⁰	Philippine s	Adults & children	897	Sx CXR TST	Sm Cx	Clinical CXR Sm Cx	7
Med	2009	Duenas ²⁴¹	Philippine s	Adults & children	112	Sm		Sm	7
Med	1987	Bokhari ²⁴²	Pakistan	Adults & children	1000	CXR TST		Clinical CXR	7
Med	2002	Claessens ²⁴³	Malawi	Children	33	Sx CXR TST		Clinical CXR	6
Med	2006	Sinfield ²⁴⁴	Malawi	Children	195	Sx TST	CXR Sm	Clinical CXR Sm Other	5
Med	2004	Tkhabisi- mova ²⁴⁵	Russia	Children	113	Other		Other NS	5
Med	1996	Topley ²⁴⁶	Malawi	Children	282	Sx CXR TST		Clinical CXR Other	3

Table 5 cont'd. Household contact-tracing (medium-incidence countries). (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screened	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
High	2008	Den Boon ²⁴⁷	South Africa	Adults	3484	Sx CXR Sm		CXR Sm Cx	129
High	1987	Gilpin ²⁴⁸	South Africa	Adults	132	Sm		Sm	33
High	1993	Klausner ²⁴⁹	DR Congo	Adults & children	1258	Sx CXR TST		CXR Cx NS	24
High	2010	Bisuta Fueza ²⁵⁰	DR Congo	Adults & children	296	CXR Sm Cx		CXR Sm Cx	22

High1984Saunders251South AfricaAdults & children3047CXR TSTCXR NSHigh2010Shapiro252South AfricaAdults & children2771Sx Sm CxSm Cx NSHigh2009Song253CambodiaAdults & Africa2639 childrenSx CXR TSTSmClinical CXR Sm NSHigh1997Beyers254South AfricaAdults & children664 otherSx CXR TST Cx OtherClinical CXR Sm CxHigh1999Schaaf255SouthChildren128Sx CXR TST SmClinical CXR Sm Cx	19 16 14
High2009Song253CambodiaAdults & 2639 childrenSx CXR TSTSmClinical CXR Sm NSHigh1997Beyers254South AfricaAdults & 664 childrenSx CXR TST Cx OtherClinical CXR Sm Cx	14
children High 1997 Beyers ²⁵⁴ South Africa Adults & 664 Sx CXR TST Cx Clinical CXR Sm Cx Other Other Other Other Other	
Africa children Other	10
High1999Schaaf255SouthChildren128Sx CXR TST SmClinical CXR Sm Cx	13
Africa Cx Other Other	9
High2002Schaaf256SouthChildren119Sx CXR TST SmClinical CXR Sm CxAfricaCx OtherOther	9
High2009MaraisSouthChildren261Sx CXR TSTClinical CXR CxAfricaOther	8
High 2008 Kruk ²⁵⁸ South Children 261 Sx CXR TST Clinical CXR Africa Africa Africa Africa Africa Africa Africa	8
High2002Mtombeni259ZimbabweChildren174Sx CXR TSTClinical CXR Other	2

Table 5 cont'd. Household contact-tracing (high-incidence countries). (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screene d	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Low	1999	Cardona ²⁶⁰	Australia	Adults & children	270	TST		NS	•
Low	2001	Kanra ²⁶¹	Turkey	Children	341	TST	CXR	CXR Sm Cx NS	
Low	1996	Rodriguez ²⁶²	USA	Adults & children	1804	TST		CXR Sm Cx NS	
Low	2000	Smith ²⁶³	USA	Adults & children	173	CXR TST		Clinical CXR	•
Low	1997	Askew ²⁶⁴	USA	Adults & children	1263	CXR TST		CXR	•
Low	2003	Kobayashi ²⁶⁵	Japan	Children	106	Sx CXR TST		CXR	•
Low	2001	Trnka ²⁶⁶	Czech Republic	Adults	775	Sx CXR TST Sm Cx		CXR Sm Cx NS	•
Low	2001	Fitzpatrick ²⁶⁷	USA	NS	445	TST	CXR	CXR Sm Cx NS	•
Low	2009	Higuchi ²⁶⁸	Japan	Children	307	Sx CXR TST IGRA		CXR NS	•
Low	2001	Golub ²⁶⁹	USA	Adults	51	TST		CXR Sm Cx NS	
Low	2010	Marienau ²⁷⁰	USA	NS	4550	TST IGRA		NS	
Low	2008	CDC ²⁷¹	USA	NS	210	CXR TST		Clinical CXR Sm Cx Other NS	
Low	2005	Koster ²⁷²	Netherlands	Adults & Children	21000	TST	CXR	CXR Sm NS	4200
Low	1983	Jones ²⁷³	United Kingdom	Adults & children	726	CXR	CXR	CXR NS	726
Low	1980	Rao ²⁷⁴	United Kingdom	Adults & children	4081	CXR TST		Clinical CXR NS	583
Low	1999	Curtis ²⁷⁵	USA	Adults & children	552	Sx CXR TST		Clinical CXR Sm Cx Other	552
Low	1982	Jones ²⁷⁶	United Kingdom	Adults & children	500	TST	CXR	Clinical CXR NS	500
Low	2008	Ferrer ²⁷⁷	Spain	Children	470	TST		Sm Cx NS	470

Low	2008	Langen- skiold ²⁷⁸	Switzerland	Adults & children	3582	CXR TST		CXR NS	448
Low	2009	Castilla ²⁷⁹	Spain	Adults	692	CXR TST Sm Cx		CXR Sm Cx	346
Low	1998	Washko ²⁸⁰	USA	Adults & children	1021	TST	Сх	Cx NS	341
Low	2010	Person ²⁸¹	USA	Adults	312	Sx TST IGRA		NS	312
Low	1998	Pang ²⁸²	Australia	Adults & children	456	CXR TST		CXR Cx NS	228
Low	2005	Hadjichristod oulou ²⁸³	Greece	Adults & children	642	Sx TST	CXR	CXR Other NS	214
Low	2003	Roberts ²⁸⁴	United Kingdom	Children	804	TST	CXR	Clinical CXR Sm	201
Low	1986	Bosley ²⁸⁵	United Kingdom	Adults & children	2317	Sx CXR TST		CXR Sm	166
Low	2010	Nduaguba ²⁸⁶	USA	NS	33334	Sx CXR TST	CXR	Clinical CXR Sm Cx	158
Low	1993	Liippo ²⁸⁷	Finland	Adults & children	609	CXR TST		CXR	153
Low	2004	Phillips ²⁸⁸	USA	Adults & children	591	TST		CXR Sm Cx NS	148
Low	2006	Kirkpatrick ²⁸⁹	United Kingdom	NS	137	CXR TST IGRA		CXR Other	137
Low	1997	Kiers ²⁹⁰	Netherlands	Adults & children	6519	CXR TST Sm Cx		CXR Sm Cx Other	134
Low	2008	Aissa ²⁹¹	France	Adults & children	1955	Sx CXR TST		Clinical CXR NS	131
Low	1989	Selby ²⁹²	United Kingdom	Adults & children	860	CXR TST		CXR NS	123
Low	2008	Calder ²⁹³	New Zealand	Adults & children	1828	CXR TST		Clinical CXR Sm Cx Other	122
Low	2002	CDC ²⁹⁴	USA	NS	121	TST	CXR	CXR Sm Cx NS	121
Low	2000	Calder ²⁹⁵	New Zealand	Adults & children	566	TST	CXR	Clinical CXR Sm NS	114
Low	2008	Ozkara ²⁹⁶	Turkey	Adults &	300129	Sx CXR TST	Sm	CXR Sm NS	107

				children					
Low	1998	Behr ²⁹⁷	USA	NS	11211	Sx TST		CXR Sm Cx NS	104
Low	2008	Paranjothy ²⁹⁸	United Kingdom	Children	206	SX CXR TST IGRA	Sm Cx Other	Clinical CXR Sm Cx Other	101
Low	1998	Ansari ²⁹⁹	United Kingdom	Adults & children	707	CXR TST		CXR NS	101
Low	2003	Jereb ³⁰⁰	USA	Adults & children	56100	Sx TST Other	Other	Sm Cx NS	100
Low	2002	Reichler ³⁰¹	USA	Adults & children	2095	TST	CXR	Clinical CXR Sm Cx	88
Low	2008	Duthie ³⁰²	United Kingdom	Adults & children	394	CXR TST		CXR NS	79
Low	2008	Muller ³⁰³	Sweden	Children	216	TST IGRA		Clinical CXR Other	72
Low	2007	Alvarez- Castillo ³⁰⁴	Spain	Children	398	CXR TST		CXR	67
Low	2005	Toivgoogiin ³⁰⁵	Japan	Children	566	CXR TST	CXR	CXR Sm Cx NS	63
Low	2007	Alseda ³⁰⁶	Spain	Adults & children	2083	TST		Clinical CXR Sm Cx Other	62
Low	2001	Zangger ³⁰⁷	Switzerland	Adults & children	53	TST	CXR	CXR Sm Cx	53
Low	2008	Goris- Pereiras ³⁰⁸	Spain	Adults & children	712	TST		Sm	51
Low	2000	Marks ³⁰⁹	USA	Adults & children	6225	TST	CXR	CXR Sm Cx NS	47
Low	2007	Andre ³¹⁰	USA	NS	860	TST	CXR	CXR	46
Low	1996	Hortoneda ³¹¹	Spain	Adults & children	1570	TST		CXR Sm	45
Low	1991	Teale ³¹²	United Kingdom	Adults & children	400	Sx CXR TST		CXR Sm	40
Low	2000	Leung ³¹³	United Kingdom	Adults & children	199	CXR TST		CXR Sm	40
Low	2003	Seki ³¹⁴	Japan	Adults	39	Sx CXR TST		CXR	39
Low	1999	Del Castillo	Spain	Adults &	1228	CXR TST		Clinical CXR Sm Cx	30

		Ortero ³¹⁵		children				Other	
Low	2002	Andoh ³¹⁶	Japan	Adults & children	227	TST	CXR	CXR Sm Cx	29
Low	1995	Dutt ³¹⁷	USA	Adults & children	184	Sx TST	CXR	CXR Sm Cx NS	27
Low	2003	Funk ³¹⁸	USA	Adults & children	682	TST		Sm Cx	27
Low	2003	Sanchez ³¹⁹ Marenco	Spain	Children	387	TST		CXR NS	25
Low	2009	Reichler ³²⁰	USA	Adults & children	3124	TST		NS	23
Low	2001	De Zoysa ³²¹	New Zealand	Adults	762	TST		CXR Sm Cx NS	22
Low	2004	McElnay ³²²	New Zealand	Adults & children	397	TST		Clinical CXR Sm Cx Other NS	21
Low	2001	Mukerjee ³²³	United Kingdom	NS	84	TST Other		Clinical CXR Sm Cx NS	12
Low	1994	Hoge ³²⁴	USA	Children	343	CXR TST		CXR	11
Low	2008	Gillman ³²⁵	Sweden	Adults & children	246	Sx TST	CXR	CXR NS	11
Low	1994	Jimenez Luque ³²⁶	Spain	Adults & children	231	NS		NS	8
Low	2006	Dewan ³²⁷	USA	Adults & children	71	Sx TST	CXR Sm Cx	CXR Sm Cx	7
Low	2000	Hill ³²⁸	New Zealand	Adults & children	160	TST		Clinical CXR Sm Cx Other	6
Low	2005	Pina ³²⁹	Spain	Adults & children	150	CXR TST	Other	CXR Sm Cx Other NS	6
Low	2007	Fukazawa ³³⁰	Japan	Adults & children	198	Sx CXR TST IGRA		CXR	5
Low	2008	Yoshiyama ³³¹	Japan	Adults	22	Other		Clinical Sm Cx Other	3
Low	2006	Voss ³³²	New	Children	50	CXR TST		Clinical CXR Cx	3

			Zealand					Other NS	
Mod	2005	Chee ³³³	Singapore	NS	2729	TST	CXR	Clinical CXR Sm Cx	137
Mod	2004	Chee ³³⁴	Singapore	Adults & children	5699	Sx TST	CXR	CXR Sm Cx NS	108
Mod	2006	Gazetta ³³⁵	Brazil	Adults & children	166	CXR		CXR Sm Cx	56
Mod	2009	Lew ³³⁶	South Korea	Adults & children	1044	CXR TST IGRA Other		Clinical CXR Sm Cx Other	50
Mod	2010	Lee ³³⁷	South Korea	Adults	92	Sx CXR TST IGRA Sm Cx		CXR Sm Cx Other	6

Table 6. Community contact-tracing. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified

TB	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic	NNS
Inc.	0007	N. 1. 220		group	screened	Screen	Screen	Criteria	_
Low	2007	Nania ³³⁸	USA	Adults & children	413	Sx TST		Clinical CXR	·
Low	1998	Moore ³³⁹	USA	Children	606	Sx TST	CXR	CXR NS	
Low	2006	Piana ³⁴⁰	Italy	Adults	138	TST IGRA		Clinical CXR NS	
Low	2005	Carbonne ³⁴¹	France	Adults & children	1478	CXR TST		CXR NS	
Low	2005	Lee ³⁴²	USA	Adults & children	228	Sx TST	CXR	CXR NS	•
Low	2004	Mouchet ³⁴³	Belgium	Adults & children	416	CXR TST		CXR Cx	•
Low	2008	Ohno ³⁴⁴	Japan	Adults & children	332	TST IGRA		Clinical CXR Sm Cx Other	•
Low	1991	345	United Kingdom	Adults & children	250	CXR TST Other		CXR Other NS	
Low	2008	Berlioz ³⁴⁶	France	NS	1656	Sx CXR TST IGRA		Clinical CXR Other	•
Low	2002	Laartz ³⁴⁷	USA	Children	36	CXR TST		Clinical CXR	
Low	2002	Linquist ³⁴⁸	USA	Adults	94	CXR TST		CXR NS	
Low	1996	Cockerill ³⁴⁹	USA	Adults	15	CXR TST Sm Cx Other		CXR Sm Cx Other NS	
Low	1986	George ³⁵⁰	United Kingdom	Adults & children	668	CXR TST		CXR Sm Cx Other	223
Low	2004	Richeldi ³⁵¹	Italy	Adults & children	88	TST IGRA		Clinical CXR Sm Cx Other	88
Low	1997	Gentry ³⁵²	France	Adults	86	Sx CXR TST		CXR Other	22
Low	2002	Munoz ³⁵³	USA	Adults	105	Sx CXR		CXR	7
Med	2004	MMWR ³⁵⁴	Taiwan	Adults	1463	CXR		CXR Sm Cx	25

 Table 7. Health care setting contact-tracing. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic	NNS
Inc.				group	screened	Screen	Screen	Criteria	
Low	1983	Plauche ³⁵⁵	USA	Adults	935	TST	CXR	Clinical CXR NS	
Low	2009	Schwartz ³⁵⁶	USA	Adults	3847	Sx TST	CXR	Clinical CXR Sm Cx	3847
Low	1993	Metersky ³⁵⁷	USA	Adults	1456	Sx		CXR NS	1456
Low	1986	Ciraru-	France	Adults	2697	Sx CXR TST		Clinical CXR Sm Cx	208
		Vigneron ³⁵⁸				Other		Other	
Low	2002	Schulte ³⁵⁹	USA	Adults	176	TST		Sm Cx	88
Mod	2009	Sheriff ³⁶¹	Tanzania	Adults	286	Sx TST	CXR Sm	CXR Sm Other	143
Mod	2007	Gupta ²⁵	India	Adults	715	Sx TST	CXR Sm Cx	CXR Sm Cx	30
High	2006	Kali ³⁶⁵	South	Adults	370	Sx	Sm Cx	Sm Cx	47
			Africa						
High	2003	Nachega ⁵⁷	South	Adults	318	TST	CXR	Clinical CXR Sm Cx	25
			Africa					Other	

Table 8a. Pregnant women. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screened	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Low	2009	Nezar ³⁶⁰	Egypt	Adults	420	Other		Other	18
Mod	1997	Parikh ³⁶²	India	Adults	300	TST IGRA Other		Сх	38
Mod	1980	Padubidri ³⁶³	India	NS	200	Sx Other		Sm Cx	24
Mod	1993	Emembolu ³⁶⁴	Nigeria	Adults	114	Cx		Cx NS	6
High	1990	Oosthuizen ³⁶⁶	South	Adults	109	Sm Cx		Sm Cx NS	5
			Africa						

Table 8b. Gynecology clinic setttings. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic	NNS
Inc.				group	screened	Screen	Screen	Criteria	
Low	2008	Ruutel ¹	Estonia	NS	112	TST IGRA		NS	
Low	2004	Brassard ³⁶⁷	Canada	Adults	262	TST	CXR	CXR Sm Cx NS	
Low	2010	Garfein ³⁶⁸	Mexico	Adults	503	Sx IGRA	CXR Sm	CXR Sm	252
Low	1998	Sadeghi- Hassanabadi ³⁶⁹	Iran	Adults	2093	TST	CXR	Clinical CXR Sm Cx	150
Low	1987	Friedman ³⁷⁰	USA	Adults	970	Sx CXR TST		CXR Sm Cx NS	108
Mod	1997	Yoong ¹⁴	Malaysia	Adults	49	Sx CXR		CXR Sm Cx NS	5
Med	2010	Kiria ³⁷¹	Georgia	Adults	3459	Sx		NS	20
Med	2010	Poudyal ⁴³	Nepal	Adults	86	Sx Sm		Sm	8

Table 9. Drug users. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

ТВ	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic	NNS
Inc.				group	screened	Screen	Screen	Criteria	
Low	1997	Lau ³⁷²	Australia	Adults	3555	CXR		CXR Sm Cx	1778
Low	2002	Kong ³⁷³	USA	Adults	10027	Sx TST	CXR	CXR Sm Cx	590
Low	2009	McAdam ³⁷⁴	USA	NS	32108	TST		NS	510
Low	2003	McElroy ³⁷⁵	USA	Adults	620	TST	CXR	Clinical CXR Sm CX NS	310
Low	1986	Barry ³⁷⁶	USA	Adults	586	Sx CXR TST		CXR Sm Cx	196
Low	1999	Southern ³⁷⁷	USA	Adults & children	1943	Sx CXR TST		Clinical CXR Sm Cx	195
Low	2009	Badiaga ³⁷⁸	France	Adults & children	221	Sx CXR Sm Cx		CXR Sm Cx	111
Low	1986	Capewell ³⁷⁹	United Kingdom	Adults	8956	CXR		CXR Sm Cx	94
Low	2001	Solsona ³⁸⁰	Spain	Adults	447	CXR TST	Sm Cx	Clinical CXR Sm Cx	90
Low	2006	De Vries ³⁸¹	Netherland s	NS	380	CXR		CXR Sm Cx	76
Low	1985	Patel ³⁸²	United Kingdom	Adults	9132	CXR		CXR Sm Cx	69
Low	2006	Yagi ³⁸³	Japan	Adults	1057	CXR		CXR Sm Cx	63
Low	2008	Kaguraoka ³⁸⁴	Japan	Adults	1065	CXR		CXR	39
Low	2005	Valin ³⁸⁵	France	Adults	1360	CXR		Clinical CXR Sm Cx NS	38
Low	2006	Lofy ³⁸⁶	USA	NS	425	Sx CXR TST Sm Cx		CXR Sm Cx	33
Low	2007	Takatorige ³⁸⁷	Japan	Adults	4400	CXR		CXR	33
Low	1999	Kimerling ³⁸⁸	USA	Adults	127	Sx TST Sm Cx		Sm Cx	32
Low	1984	Glicksman ³⁸⁹	USA	Adults	198	Sx TST		NS	22

Table 10. Homeless (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screened	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Low	2000	Sokolove ³⁹⁰	USA	Adults	10,674	Sx Other	CXR	CXR Sm Cx	628
Low	1997	Serwint ³⁹¹	USA	Children	573	TST		CXR	573
Low	2000	Sanchez- Perez ³⁹²	Mexico	Adults	2203	Sx		Sm Cx	130
Low	2007	Nakata ³⁹³	Japan	Adults	538	CXR		CXR	42
Mod	2005	Siqueira- Batista ³⁹⁴	Brazil	Adults & children	60000	Sx		Sm	3000 0
Mod	1980	Arantes ³⁹⁵	Brazil	Adults	32225	Sx CXR		Clinical CXR Sm	359
Med	1985	Aluoch ³⁹⁶	Kenya	Adults & children	87845	Sx	CXR Sm Cx	CXR Sm Cx	806
Med	2008	Thomas ³⁹⁷	India	Adults	69209	Sx	Sm	Sm NS	322
Med	1990	Seetha ³⁹⁸	India	Adults & children	6221	Sx		Sm	249
Med	2009	Ngadaya ³⁹⁹	Tanzania	Adults & children	65530	Sx	Sm	Sm	242
Med	2005	Santha ⁴⁰⁰	India	Adults	55561	Sx	Sm	Sm	209
Med	2010	Escombe ⁴⁰¹	Peru	NS	8773	Other	Sm Cx	Sm Cx	58
Med	1980	Tsymbalar ⁴⁰²	Moldova	NS	1055	Sx Other		Clinical CXR Sm Other	51
High	1998	Houwert ⁴⁰³	South Africa	Children	627	Sx Other	CXR TST Sm Cx Other	Clinical CXR Sm Cx	19

Table 11. General outpatient & emergency department medical settings. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screened	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Med	2010	Lin ⁴⁰⁴	Taiwan	Adults & children	181,613	Sx		Clinical CXR Sm Cx	3364
Med	2001	Willingham ⁴⁰⁵	Peru	Adults	250	Sx TST Sm Cx		Sm Cx	7
Med	2002	Beare ⁴⁰⁶	Malawi	Adults	634	Sx	CXR Sm Cx Other	Clinical CXR Sm Cx Other NS	6
High	2010	Ferrand ⁴⁰⁷	Zimbabwe	Adults & children	301	Sx	Sm Cx	CXR Sm Cx Other	12

Table 12. General inpatient medical settings. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

ТВ	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic Criteria	NNS
Inc.				group	screened	Screen	Screen		
Low	1989	Spencer ⁴⁰⁸	USA	Adults	2240	Sx TST		Sm Cx	
Low	2005	Risser ⁴⁰⁹	USA	Children	12651	CXR TST		CXR NS	
Low	1996	Puisis ⁴¹⁰	USA	Adults	126608	CXR		CXR Sm Cx NS	2945
Low	2004	Baillargeon ⁴¹¹	USA	Adults	336668	TST		Clinical CXR Sm Cx NS	2571
Low	1998	Tulsky ⁵	USA	Adults	3352	Sx TST		CXR NS	1676
Low	2001	White ⁴¹²	USA	Adults	14680	Sx TST	CXR	CXR NS	1468
Low	2008	Erkens ⁴¹³	Netherlands	Adults	209967	CXR		CXR NS	1364
Low	1997	Layton ⁴¹⁴	USA	Adults	3933	Sx CXR TST	Sm Cx	CXR Sm Cx	562
Low	2001	Saunders ⁴¹⁵	USA	Adults	25707	Sx TST	CXR	Clinical CXR Sm Cx	525
								Other	
Low	2001	Martin ⁴¹⁶	Spain	NS	3081	TST	CXR	CXR Sm Cx	514

Low	2003	Kiter ⁴¹⁷	Turkey	Adults	3067	Sx CXR		Clinical CXR sm cx	384
Low	2005	Carbonara ⁴¹⁸	Italy	Adults	448	TST	CXR	CXR Sm Cx NS	224
Low	2008	Mor ⁴¹⁹	Israel	Adults	368	Sx TST	CXR	Clinical CXR Sm Cx Other	184
Low	1996	Bergmire- Sweat ⁴²⁰	USA	Adults	686	Sx TST	CXR	CXR Sm Cx	69
Low	1994	Martin ⁴²¹	Spain	Adults	702	TST	CXR	CXR Sm Cx	37
Low	2003	McLaughlin ⁴²²	USA	Adults	294	Sx CXR TST	Sm Cx	CXR Sm Cx	19
Low	1991	Carbajal ⁴²³	Spain	Adults	136	CXR Sm Cx Other		CXR Sm Cx	8
Low	1999	Arranz- Alcalde ⁴²⁴	Spain	Adults	530	TST		CXR Sm Cx	4
Mod	2008	Wong ⁴²⁵	Hong Kong	Adults	159017	Sx CXR		Clinical CXR Sm Cx	191
Mod	2005	Chee ³³³	Singapore	Adults	704	Sx TST	CXR	CXR Sm Cx	88
Mod	2005	Leung ⁴²⁶	Hong Kong	Adults	814	Sx CXR	Sm Cx	Clinical CXR Sm Cx Other	82
Mod	2010	Vieira ⁴²⁷	Brazil	Adults	397	Sx	Sm Cx	Sm Cx	57
Mod	2006	Abrahao ⁴²⁸	Brazil	Adults	1052	Sx TST Sm Cx		Sm Cx	51
Mod	2009	Lemos ⁴²⁹	Brazil	Adults	237	Sx TST		Clinical CXR Sm Cx Other	40
Mod	2009	Sanchez ⁴³⁰	Brazil	Adults	1696	Sx CXR	Sm Cx	Clinical CXR Sm Cx Other	37
Mod	2005	Sanchez ⁴³¹	Brazil	Adults	1078	Sx CXR TST	Sm Cx	Clinical CXR Sm Cx Other	34
Mod	2006	Fournet ⁴³²	Brazil	Adults	1633	Sx CXR	Sm Cx	CXR Sm Cx Other	22
Mod	2010	Sanchez ⁴³³	Brazil	Adults	622	Sx CXR		CXR Sm Cx	19
Med	2004	Harries ⁴³⁴	Malawi	Adults	93877	Sx	Sm	Sm	2762
Med	2002	Chiang ⁴³⁵	Taiwan	Adults	51494	CXR	CXR Sm Cx	Clinical CXR Sm Cx	586
Med	2004	Rao ⁴³⁶	Pakistan	Adults	4870	Sx	CXR Sm	Clinical CXR Sm	153
Med	2009	Banda ⁴³⁷	Malawi	Adults	7661	Sx	Sm	Sm	142
Med	2009	Okaru ⁴³⁸	Kenya	Adults	3650	Sx	CXR Sm	Clinical CXR Sm cx	108
Med	2002	Sretrirut-	Thailand	Adults	4751	Sx	CXR	CXR Sm Cx	97
Heu	1001	breennue	Thununu	maulto	1701	BA	GAIR		71

		chai ⁴³⁹							
Med	2010	Kazi ⁴⁴⁰	Pakistan	Adults	364	Sx		Sm Cx	52
Med	2010	Banu ⁴⁴¹	Bangladesh	Adults	11000	Sx	Sm Cx	Clinical Sm Cx	45
Med	2006	Noeske ⁴⁴²	Cameroon	Adults	2474	Sx	Sm	Clinical Sm Cx Other	42
Med	1997	Nyangulu ⁴⁴³	Malawi	Adults & children	914	Sx	Sm	CXR Sm	28
Med	2003	Shah ⁴⁴⁴	Pakistan	Adults & children	386	Sx	Sm	Clinical Sm Other	26
Med	2000	Aerts ⁴⁴⁵	Georgia	Adults	7473	Sx Other	Sm Cx	Sm Cx	17
Med	1997	Koffi ⁴⁴⁶	Cote d'Ivoire	Adults	1861	Sx CXR Sm		CXR Sm	14
Med	2008	Kosmak ⁴⁴⁷	Russia	Adults & children	750	Sx CXR Other		Clinical CXR Sm	8
Med	2010	Mbondi Mfondih ⁴⁴⁸	Cameroon	Adults	1617	Sm Other		Sm	7
High	2007	Habeenzu ⁴⁴⁹	Zambia	Adults & children	6118	Sx	Sm Cx	Sm Cx	25

Table 13. Prisons. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

ТВ	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic	NNS
Inc.				group	screened	Screen	Screen	Criteria	
Low	2008	Trehan ⁴⁵⁰	USA	Children	549	Sx TST	CXR	CXR NS	
Low	2002	Pedemonte ⁴⁵¹	Italy	Children	45	Sx Other	CXR	CXR NS	
Low	1993	Blum ⁴⁵²	USA	Adults & children	6520	CXR TST		CXR Cx 1630	
Low	2002	Fernandez Sanfrancisco ⁴⁵³	Spain	Adults	2223	TST	CXR	CXR Sm Cx	1112
Low	2001	King ⁴⁵⁴	Australia	Adults & children	7000	CXR		CXR Sm Cx	875
Low	2000	Dasgupta ¹⁹³	Canada	Adults & children	12898	CXR		Clinical CXR Sm Cx NS	759

Low	2007	Schoch ⁴⁵⁵	Switzerland	Adults	25000	CXR		Clinical CXR Sm Cx	758
Low	1992	Bonvin ⁴⁵⁶	Switzerland	Adults	48741	CXR		CXR Sm Cx	440
Low	2000	Callister ⁴⁵⁷	United Kingdom	Adults	41470	CXR		Clinical CXR Sm Cx Other NS	415
Low	2005	Bakker ⁴⁵⁸	Netherlands	Children	1598	CXR TST		Clinical CXR Other NS	320
Low	2008	Kaguraoka ³⁸⁴	Japan	Adults	27918	CXR		CXR	297
Low	1988	Godue ⁴⁵⁹	Canada	NS	879	TST		CXR	293
Low	2002	Hobbs ⁴⁶⁰	New Zealand	Adults & children	869	CXR TST		CXR NS	218
Low	2008	Winje ⁴⁶¹	Norway	Adults	1000	TST IGRA		Clinical CXR Sm Cx	200
Low	2003	Rysstad ⁴⁶²	Norway	Adults & children	800	CXR TST	Sm Cx Other	CXR Sm Cx Other	200
Low	2009	Liu ⁴⁶³	USA	Adults & children	2092729	Sx CXR	Xm	Clinical CXR Sm	104
Low	1997	Lavender ⁴⁶⁴	United Kingdom	NS	99	CXR TST		CXR NS	99
Low	2009	Saracino ⁴⁶⁵	Italy	Adults	283	CXR TST IGRA Sm		CXR Sm NS	95
Low	2008	Harstad ⁴⁶⁶	Norway	NS	2258	CXR TST IGRA		CXR NS	91
Low	1983	Sutherland ⁴⁶⁷	USA	Adults & children	426	CXR TST		CXR Other NS	86
Low	1996	Duran ⁴⁶⁸	Spain	Adults & children	1489	TST		NS	83
Low	2002	Bothamley ⁴⁶⁹	United Kingdom	Adults & children	235	Sx TST		CXR Sm Cx	79
Low	2008	Bodenmann ⁴⁷⁰	Switzerland	NS	131	IGRA Other		NS	66
Low	2009	Chaves ⁴⁷¹	Australia	Adults	156	NS		NS	52
Low	1997	Truong ⁴⁷²	USA	Adults	191	Sx CXR TST	Sm Cx	Clinical CXR Sm Cx	32
Low	2002	Kelly ⁴⁷³	Australia	Adults & children	1863	Sx CXR		CXR Sm Cx	31
Low	1997	Wells ⁴⁷⁴	USA	NS	1086	Sx CXR TST	Sm Cx	CXR Sm Cx	23

Low	2008	Villanueva ⁴⁷⁵	USA	Adults & children	353	Sx CXR TST	Sm Cx	CXR Sm Cx	18
Low	2004	LoBue ⁴⁷⁶	USA	Adults & children	571	CXR TST		CXR Sm Cx	15
Low	1998	DeRiemer ⁴⁷⁷	USA	Adults & children	745	Sx CXR TST		Clinical CXR Sm Cx NS	15
Low	2003	Marras ⁴⁷⁸	Canada	Adults & children	181	CXR TST	CXR Sm Cx Other	Clinical CXR Sm Cx Other	6
Mod	2006	Al Marri ⁴⁷⁹	Qatar	Adults	32134	Sx CXR	Sm Cx	Clinical CXR Sm Cx	242
Med	2010	Mor ⁴⁸⁰	Ethiopia	Adults & children	13379	CXR		CXR NS	291
Med	2004	Wu ⁴⁸¹	Taiwan	Adults	493	CXR		CXR	165
Med	1995	Keane ⁴⁸²	Vietnam	Adults & children	50249	CXR		CXR Sm	157
Med	2010	Gorbacheva ⁴⁸³	Nepal, Bhutan	NS	23459	Sx CXR TST		CXR Sm Cx	156
Med	2006	Maloney ⁴⁸⁴	Vietnam	Adults	14098	Sx CXR	Sm Cx	CXR Sm Cx	78
Med	2008	Oeltmann ⁴⁸⁵	Laos, Thailand	Adults & children	15455	Sx CXR	Sm	Clinical CXR Sm Cx Other	57

Table 14. Immigrant, Refugee, and Border Screening. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic	NNS
Inc.				group	screened	Screen	Screen	Criteria	
Low	2001	Casas Garcia ⁴⁸⁶	Spain	Adults & children	222	CXR TST		CXR NS	•
Low	1989	Lange ⁴⁸⁷	USA	Children	873	TST		NS	
Low	2001	Saraiya ⁴⁸⁸	USA	Adults & children	5739	TST	CXR	Clinical CXR Sm Cx	
Low	2005	Magkanas ⁷⁹	Greece	Adults	1872	CXR	TST Cx	CXR Cx	
Low	2002	Huerga ⁴⁸⁹	Spain	Children	125	Sx CXR TST		CXR NS	
Low	1987	Jacobson ⁴⁹⁰	USA	Adults & children	813	TST		Clinical Cx	
Low	2006	Brassard ⁴⁹¹	Canada	Children	2524	Sx TST		Clinical CXr Sm Cx	1262
Low	1990	0rr ⁴⁹²	Canada	Adults & children	21586	CXR Other		CXR Cx	1137
Low	2002	Chang ⁴⁹³	USA	Children	706	TST	CXR	CXR Sm Cx	706
Low	2008	Manzardo ⁴⁹⁴	Spain	Adults & children	2464	Sx CXR TST		CXR NS	308
Low	1997	Van den Brande ⁴⁹⁵	Belgium	Adults & children	4794	CXR		CXR Sm	253
Low	1998	Ormerod ⁴⁹⁶	United Kingdom	Adults & children	2242	Sm Cx		Clinical Sm Cx	225
Low	1990	Ormerod ⁴⁹⁷	United Kingdom	Adults & children	2033	TST		CXR	185
Low	2003	Garcia de Olalla ⁴⁹⁸	Spain	Adults & children	546	Sx TST	CXR	Clinical CXR Other	182
Low	2004	Alcaide Megias ⁴⁹⁹	Spain	Adults	3151	NS		CXR Sm Cx	176
Low	2001	El-Hamad ⁵⁰⁰	Italy	NS	483	Sx CXR TST		CXR NS	161
Low	2002	Salinas Solano ⁵⁰¹	Spain	Adults & children	406	Sx CXR TST	Sm Cx	Clinical CXR Sm Cx	136
Low	1991	Hostetter ⁵⁰²	USA	Children	241	TST		Cx NS	61
Low	2009	Sheikh ⁵⁰³	Australia	Children	239	CXR TST		CXR Other	60

Low	2009	Kik ⁵⁰⁴	Netherlands	Adults	812	CXR TST		CXR NS	58
Low	1999	Rivas Clemente ⁵⁰⁵	Spain	NS	218	Sx TST		CXR Sm Cx	37
Low	1999	Scolari ⁵⁰⁶	Italy	Adults & children	721	Sx CXR TST		Clinical CXR Sm Cx	25
Low	2008	Moradi ⁵⁰⁷	Iran	Adults	300	Other		Other	9
Low	1997	Nelson ⁵⁰⁸	USA	Adults	99	CXR TST		CXR	3
Med	1988	Toscani ⁵⁰⁹	Sudan	Adults & children	6250	Sx	Sm	Sm	6250
Med	2001	Weinstock ⁵¹⁰	Georgia	Adults & children	988	Sx TST	CXR Sm Cx	Clinical CXR Sm Cx	198

Table 15. Immigrants and refugees in community settings. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not

ТВ	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic	NNS
Inc.				group	screened	Screen	Screen	Criteria	
Low	1998	Zahnow ⁵¹¹	USA	Adults	1014	TST		NS	
Low	1996	Manusov ⁵¹²	USA	Adults	501	TST		NS	
Low	2008	Thijsen ⁵¹³	Netherlands	NS	246	TST		NS	
Low	2009	Tripodi ⁵¹⁴	France	Adults	148	TST IGRA		CXR NS	
Low	2009	Ringshausen	Germany	Adults	143	Sx TST IGRA	CXR	CXR NS	
Low	2001	Garcia- Garcia ⁵¹⁶	Mexico	NS	823	Sx	CXR Sm Cx	CXR Sm Cx NS	
Low	1998	LoBue ⁵¹⁷	USA	Adults	5550	TST	CXR	CXR NS	5550
Low	2010	Migueres ⁵¹⁸	France	NS	11730	NS		Clinical CXR Sm Cx Other	3910
Low	2010	Torres Costa ⁵¹⁹	Portugal	Adults	1682	Sx TST IGRA		Sm Cx Other	187
Mod	2002	Silva ⁵²⁰	Brazil	Adults	414	TST	CXR	CXR NS	
Mod	2002	Tan ⁵²¹	Malaysia	Adults	287	TST	CXR	CXR Sm Cx NS	
Mod	2009	Rodrigues ⁵²²	Brazil	Adults	30	TST		NS	30
Med	2002	Ali ⁵²³	Pakistan	Adults	207	Sx CXR TST Other		Clinical CXR Sm Cx	•
Med	2006	Wang ⁵²⁴	Taiwan	Adults	6734	CXR		Clinical CXR Sm Cx Other	842
Med	2000	Kassim ⁵²⁵	Cote d'Ivoire	Adults	512	CXR TST		CXR Sm Other	256
Med	2008	Bhatta- charya ⁵²⁶	India	Adults	124	Sx CXR TST		CXR NS	25

Table 16. Health Care Workers. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screened	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Low	1994	Mosquera ⁵²⁷	Spain	Adults	53753	CXR Sm Cx Other		CXR Sm Cx	48
Mod	2010	Leung ⁵²⁸	China	Adults	308	CXR TST IGRA Sm Cx		CXR Sm Cx Other	154
High	2008	Churchyard ⁵²⁹	South Africa	Adults	11077	Sx CXR		CXR sm cx NS	93
High	2008	Fielding ⁵³⁰	South Africa	Adults	13482	Sx CXR	Sm Cx	CXR Sm Cx	49
High	2004	Corbett ⁵³¹	South Africa	Adults	1978	Sx CXR Sm Cx		Clinical CXR Sm Cx NS	43
High	2009	Lewis ⁵³²	South Africa	Adults	1955	Sx CXR Sm Cx		CXR Sm Cx	39
High	2010	Calver ⁵³³	South Africa	Adults	25541	Sx CXR		Clinical CXR Sm Cx	26
High	2008	Park ⁵³⁴	Lesotho	Adults	624	Sx CXR Other		CXR NS	21

Table 17. Miners. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screened	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Low	2008	Nevin ⁵³⁵	USA	Adults	92	TST		Clinical Sm Cx	
Low	1984	Ferraris ⁵³⁶	USA	Adults	2458	Sx TST		CXR Sm Cx	492
Low	2003	LaMar ⁵³⁷	USA	Adults	3028	Sx TST	Other	CXR Sm Cx	179
Low	1991	Lescreve ⁵³⁸	Belgium	NS	1199	CXR		CXR	134
Med	2002	Chiang ⁵³⁹	Taiwan	Adults	305140	CXR	CXR Sm Cx	Clinical CXR Sm NS	1440
Med	1981	Johnston ⁵⁴⁰	Nepal	Adults	2021	CXR		CXR NS	73

Table 18. Military. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screened	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Low	1999	Parmet ⁵⁴¹	USA	Adults	47	TST	CXR	Clinical CXR NS	
Low	1985	Shigenobu ⁵⁴²	Japan	Adults	214611	CXR		CXR	5235
Low	1981	Kitazawa ⁵⁴³	Japan	Adults	44276	NS		NS	3406
Low	1983	Judson ⁵⁴⁴	USA	Adults	6090	TST	CXR	CXR NS	2030
Low	2002	Cappabianca ⁵⁴⁵	Italy	Adults	2292	CXR	CXR TST Sm Cx Other	Clinical CXR Sm Cx	764
Low	1987	Nakamura ⁵⁴⁶	Japan	NS	43656	CXR		CXR	383
Low	2002	Kimura ⁵⁴⁷	Japan	Adults	382	Sx CXR	CXR	CXR Sm Cx Other	96
Low	2008	Gray ⁵⁴⁸	Australia	Adults & children	1471	Sx CXR	Sm Cx	Clinical CXR Sm Cx	74
Low	1994	Ciesielski ⁵⁴⁹	USA	Adults	94	CXR TST Cx		CXR Cx	47
Med	2007	Su ⁵⁵⁰	Taiwan	Adults	17105	Sx CXR	CXR Sm Cx	Clinical CXR Sm Cx Other	778
Med	1999	Tiwari ⁵⁵¹	India	NS	319	Sx	CXR Sm	CXR Sm NS	160
Med	2005	Hassan ⁵⁵²	Bangladesh	Adults	2281	Sx	CXR TST Sm	CXR Sm	104
Med	1995	Aungkasuva- pala ⁵⁵³	Thailand	Adults	676	CXR Sm		CXR Sm	52
Med	1983	Marga ⁵⁵⁴	Russia	Adults & children	527	CXR		Clinical CXR Sm Cx Other	4

Table 19. Other occupational settings. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

ТВ	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic	NNS
Inc.				group	screened	Screen	Screen	Criteria	
Low	1996	Vega ⁵⁵⁵	USA	Adults	91	TST		CXR NS	
Low	2006	Forssman ⁵⁵⁶	Australia	Adults	100	Sx CXR TST	CXR Other	Clinical CXR NS	
Low	2006	Ohmori ⁵⁵⁷	Japan	Adults	212	Sx CXR		CXR	
Low	1988	Morris ⁵⁵⁸	United Kingdom	Adults	809	CXR TST Other		CXR Sm Cx Other NS	68
Mod	2006	Chan- Yeung ⁵⁵⁹	Hong Kong	Adults	3682	TST		Clinical CXR Sm Cx Other	137
Mod	1996	Woo ⁵⁶⁰	China	Adults	587	TST		CXR Sm Cx	84
High	1991	Morris ⁵⁶¹	South Africa	Adults	205	Sx	Sm	CXR Sm Cx Other	7

Table 20. Nursing and elderly facility/institutional settings. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

ТВ	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic	NNS
Inc.				group	screened	Screen	Screen	Criteria	
Low	1998	Fortuin ⁵⁶²	Belgium	NS	11473	CXR		CXR NS	1275
Low	2008	Harada ⁵⁶³	Japan	Adults	63	CXR		CXR NS	1275
Med	2007	Huang ⁵⁶⁴	Taiwan	Adults	4200	CXR	Sm Cx	CXR Sm Cx	111

Table 21. Psychiatric facility/institutional settings. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screened	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Low	1998	Chanmugam 565	USA	Adults	42	TST	CXR	Clinical CXR NS	•
Low	1993	CDC ⁵⁶⁶	USA	Adults	38350	TST		NS	1475
Low	1993	Beser ⁵⁶⁷	Turkey	Adults	7405	Sx CXR TST		Clinical CXR Sm Cx Other	674
Low	2007	Gauchon ⁵⁶⁸	France	Adults & children	80	Sx CXR TST		Clinical CXR Sm Cx	80
Mod	2010	Lee ³³⁷	South Korea	Adults & children	246	CXR		CXR Sm Cx NS	13
Med	2002	Francis ⁵⁶⁹	Haiti	Children	445	TST		Clinical CXR	45

Table 22. Other institutional settings. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

ТВ	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic	NNS
Inc.				group	screened	Screen	Screen	Criteria	
Mod	1995	Kim ⁵⁷⁰	South Korea	Adults	8015	CXR		CXR Sm Cx	2223
Med	1984	Lester ⁵⁷¹	Ethiopia	Adults	427	CXR		CXR Sm Cx	54
Med	2002	Ezung ⁵⁷²	India	Adults	100	Sx CXR Sm		CXR Sm	38
Med	1984	Tripathy ⁵⁷³	India	Adults	219	Sm		Sm	25
High	2009	Webb ⁵⁷⁴	South Africa	Children	258	Sx CXR TST	Sm Cx Other	CXR Sm Cx	37
High	1984	Gill ⁵⁷⁵	South Africa	Adults	66	CXR		CXR Sm	17

Table 23. Diabetes. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB Inc.	Year	Author	Country	Age group	No. screened	Primary Screen	Secondary Screen	Diagnostic Criteria	NNS
Low	1999	Al Shohaib ⁵⁷⁶	Saudi Arabia	Adults only	80	CXR TST		CXR Sm Cx	
Low	2005	Dogan ⁵⁷⁷	Turkey	Adults & children	124	TST	CXR	CXR	
Low	1983	Segarra- Obiol ⁵⁷⁸	Spain	Adults	2846	Sx CXR		Clinical CXR Sm Other	2846
Low	1984	Styblo ⁵⁷⁹	Netherlands	Adults	13667	CXR Sm Cx		CXR Sm Cx	268
Low	2002	Hassine ⁵⁸⁰	Tunisia	Adults	60	Sx CXR TST Sm Cx		Clinical CXR Sm Cx Other	10
Med	2002	Migliori ⁵⁸¹	Russia	Adults	18	Sx	CXR Sm Cx	Clinical CXR Sm Cx	4

Table 24. Persons with underlying diseases or illnesses. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB	Year	Author	Country	Age	No.	Primary Screen	Secondary	Diagnostic	NNS
Inc.				group	screened		Screen	Criteria	
Low	2008	Katoch ⁵⁸²	India	Adults & children	23648	Sx	CXR Sm Cx Other	Clinical CXR Sm Cx Other	343
Low	2008	Matee ²⁹	Tanzania	Adults	2216	Sx CXR Sm Cx		Clinical CXR Sm Cx Other	22
Low	2005	Mtei ⁴⁵	Tanzania	Adults	93	Sx CXR TST IGRA Sm Cx Other		CXR Sm Cx Other	7

Table 25. Vaccine trial settings (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified)

TB	Year	Author	Country	Age	No.	Primary	Secondary	Diagnostic	NNS
Inc.				group	screened	Screen	Screen	Criteria	
Low	1999	Schluger ⁵⁸³	USA	Adults &	3526	Sx TST		Clinical CXR Sm Cx	177
				children				NS	
Low	2007	De Vries ⁵⁸⁴	Netherlands	Adults	3248	CXR		CXR Sm Cx	116
Low	2006	Moonan ⁵⁸⁵	USA	Adults &	3645	Sx CXR TST		Clinical CXR Sm Cx	83
				children				NS	
Low	1997	Schluger ⁵⁸⁶	USA	Adults	591	TST		Clinical CXR	54

 Table 26. Other risk groups. (CXR=Chest X-ray. Sm=sputum smear. Cx=TB culture. NS=Not specified

References for Appendix C

1. Ruutel K, Uuskula A, Loit H.-M. Pilot program for tuberculosis control among methadone substitution treatment patients in Estonia. XVIII International AIDS Conference, Vienna 18-23 July. 2010:Abstr. CDB0594.

2. Kvale PA, Hansen NI, Markowitz N, et al. Routine analysis of induced sputum is not an effective strategy for screening persons infected with human immunodeficiency virus for Mycobacterium tuberculosis or Pneumocystis carinii. Pulmonary Complications of HIV Infection Study Group. *Clinical Infectious Diseases*. 1994;19(3):410–416.

3. Schulte JM, Bryan P, Dodds S, et al. Tuberculosis skin testing among HIV-infected pregnant women in Miami, 1995 to 1996. Journal of Perinatology. 2002;22(2):159-62.

Guelar A, Gatell JM, Verdejo J, et al. A prospective study of the risk of tuberculosis among HIV-infected patients. *AIDS*. 1993;7(10):1345–9.
 Tulsky JP, White MC, Dawson C, et al. Screening for tuberculosis in jail and clinic follow-up after release. *American Journal of Public Health*. 1998;88(2):223–6.

6. Jam S, Sabzvari D, SeyedAlinaghi S, et al. Frequency of Mycobacterium tuberculosis infection among Iranian patients with HIV/AIDS by PPD test. *Acta Medica Iranica*. 2010;48(1):67–71.

7. Hoffman ND, Kelly C, Futterman D. Tuberculosis infection in human immunodeficiency virus-positive adolescents and young adults: a New York City cohort. *Pediatrics*. 1996;97(2):198–203.

8. Cabarcos Ortíz de Barrón A, Barrio Gómez E, Lado Lado FL, Lorenzo Zúñiga V. Risk of tuberculosis in a cohort of HIV positive IVDA patients in relation to the degree of immunodeficiency and tuberculosis skin test. *Anales de Medicina Interna*. 2000;17(9):465–70.

9. Saraceni V, King BS, Arduini D, et al. Ruling out tuberculosis to start preventive therapy in HIV co-infected patients as an opportunity to find TB. *The International Journal of Tuberculosis and Lung Diseases*. 2008;12(11 (Suppl 2)):S56.

10. Wang N, Liu JJ, Lai YJ, et al. Enhancing TB case-finding among people living with HIV/AIDS in China: pilot experience. *The International Journal of Tuberculosis and Lung Disease*. 2008;12(11 (Suppl 2)):S128.

11. Dembélé M, Saleri N, Carvalho ACC, et al. Incidence of tuberculosis after HAART initiation in a cohort of HIV-positive patients in Burkina Faso. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(3):318–23.

12. Qian H-Z, Li Q, Yao H, et al. Tuberculosis co-morbidity and perceptions about health care among HIV-infected plasma donors in rural China. *The Southeast Asian journal of tropical medicine and public health*. 2009;40(1):108–12.

13. Sun K, Zhang Y, Chen R, et al. Diagnosis of pulmonary tuberculosis among asymptomatic HIV+ patients in Guangxi, China. *AIDS 2010 - XVIII International AIDS Conference, 18-23 July, Vienna.* 2010:Abstract no. MOPE0135.

14. Yoong KY, Cheong I. A study of Malaysian drug addicts with human immunodeficiency virus infection. *International Journal of STD & AIDS*. 1997;8(2):118–23.

15. Seyler C, Toure S, Messou E, et al. Risk factors for active tuberculosis after antiretroviral treatment initiation in Abidjan. *American journal of respiratory and critical care medicine*. 2005;172(1):123–7.

16. Mazitov R, Chernov A, Mukerji J. Program for screening HIV positive persons for TB in Tomsk, Russia. AIDS 2008 - XVII International AIDS Conference, 3-8 August, Mexico City. 2008:Abstr. CDB0022.

17. Hecker MT, Johnson JL, Whalen CC, et al. Two-step tuberculin skin testing in HIV-infected persons in Uganda. *American Journal of Respiratory and Critical Care Medicine*. 1997;155(1):81–6.

18. Joseph P, Severe P, Ferdinand S, et al. Multidrug-resistant tuberculosis at an HIV testing center in Haiti. AIDS. 2006;20(3):415-418.

19. Turinawe K, Vandebriel V, Ruyonga J, et al. Implementation of monitoring and evaluation system for TB screening in HIV-infected people in Rwanda. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S291.

20. Saenghirunvattana S. Effect of isoniazid prophylaxis on incidence of active tuberculosis among Thai HIV-infected individuals. *Journal of the Medical Association of Thailand = Chotmaihet thangphaet*. 1996;79(5):285–7.

21. Halsey NA, Coberly JS, Desormeaux J, et al. Randomised trial of isoniazid versus rifampicin and pyrazinamide for prevention of tuberculosis in HIV-1 infection. *Lancet.* 1998;351(9105):786–92.

22. Meleshenkov BA, Trutnev P, Ndaisaba V. X-ray pulmonary manifestations in patients infected with the human immunodeficiency virus. *Vestnik Rentgenologii i Radiologii*. 1991;1991(3):34–39.

23. Vandebriel G, Turinawe K, Ruyonga J, et al. Monitoring TB screening, diagnosis and treatment in HIV care and treatment settings: lessons learnt in Rwanda. *The International Journal of Tuberculosis and Lung Disease*. 2008;12(11):S28.

24. Shah NS, Anh MH, Thuy TT, et al. Population-based chest X-ray screening for pulmonary tuberculosis in people living with HIV/AIDS, An Giang, Vietnam. *The International Journal of Tuberculosis and Lung Disease*. 2008;12(4):404–10.

25. Gupta A, Nayak U, Ram M, et al. Postpartum tuberculosis incidence and mortality among HIV-infected women and their infants in Pune, India, 2002-2005. *Clinical Infectious Diseases*. 2007;45(2):241–9.

26. Braitstein P, Nyandiko W, Vreeman R, et al. The clinical burden of tuberculosis among human immunodeficiency virus-infected children in Western Kenya and the impact of combination antiretroviral treatment. *The Pediatric infectious disease journal*. 2009;28(7):626–32.

27. Musa BM, Gebi U, Falayajo K, et al. HIV related TB: Prospects and challenges in a high burden area, a case study of isoniazid prophylaxis (IPT) utilization. *Journal of Acquired Immune Deficiency Syndromes*. 2009;51:182.

28. Mugisha B, Bock N, Mermin J, et al. Tuberculosis case finding and preventive therapy in an HIV voluntary counseling and testing center in Uganda. *The International Journal of Tuberculosis and Lung Disease*. 2006;10(7):761–7.

29. Matee M, Mtei L, Lounasvaara T, et al. Sputum microscopy for the diagnosis of HIV-associated pulmonary tuberculosis in Tanzania. *BMC Public Health.* 2008;8:68.

30. Elenga N, Kouakoussui KA, Bonard D, et al. Diagnosed tuberculosis during the follow-up of a cohort of human immunodeficiency virusinfected children in Abidjan, Côte d'Ivoire: ANRS 1278 study. *The Pediatric infectious disease journal*. 2005;24(12):1077–82.

31. Rajasekaran S, Raja K, Jeyaseelan L, et al. Post-HAART tuberculosis in adults and adolescents with HIV in India: incidence, clinical and immunological profile. *The Indian journal of tuberculosis*. 2009;56(2):69–76.

32. Aisu T, Raviglione MC, van Praag E, et al. Preventive chemotherapy for HIV-associated tuberculosis in Uganda: an operational assessment at a voluntary counselling and testing centre. *AIDS*. 1995;9(3):267–73.

33. Reddy KP, Brady MF, Gilman RH, et al. Microscopic observation drug susceptibility assay for tuberculosis screening before isoniazid preventive therapy in HIV-infected persons. *Clinical Infectious Diseases*. 2010;50(7):988–96.

34. Hawken MP, Meme HK, Elliott LC, et al. Isoniazid preventive therapy for tuberculosis in HIV-1-infected adults: results of a randomized controlled trial. *AIDS*. 1997;11(7):875–82.

35. Shah S, Demissie M, Lambert L, et al. Intensified tuberculosis case finding among HIV-Infected persons from a voluntary counseling and testing center in Addis Ababa, Ethiopia. *Journal of Acquired Immune Deficiency Syndromes*. 2009;50(5):537–45.

36. Yienya N, Bukusi E, Cettomai D, et al. Utilisation of tuberculin skin testing in tuberculosis intensive case finding in HIV-infected children. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S320.

37. Gilks CF, Godfrey-Faussett P, Batchelor BI, et al. Recent transmission of tuberculosis in a cohort of HIV-1-infected female sex workers in Nairobi, Kenya. *AIDS*. 1997;11(7):911–8.

38. Ngowi BJ, Mfinanga SG, Bruun JN, Morkve O. Pulmonary tuberculosis among people living with HIV/AIDS attending care and treatment in rural northern Tanzania. *BMC Public Health*. 2008;8:341.

39. Sanguli L, Mwachari C, Cohen C, Kidiga K, Dillabaugh L. Tools to improve case finding of pulmonary tuberculosis in HIV-infected children. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S181.

40. Swaminathan S, Ramachandran R, Baskaran G, et al. Risk of development of tuberculosis in HIV-infected patients. *The International Journal of Tuberculosis and Lung Disease*. 2000;4(9):839–44.

41. Jittimanee S. Monitoring and evaluation of TB-HIV collaborative activities in Thailand. *The International Journal of Tuberculosis and Lung Disease*. 2008;12(11 (Suppl 2)):S29.

42. Monkongdee P, McCarthy KD, Cain KP, et al. Yield of acid-fast smear and mycobacterial culture for tuberculosis diagnosis in people with human immunodeficiency virus. *American journal of respiratory and critical care medicine*. 2009;180(9):903–8.

43. Poudyal N, Amatya R, Gurung R, Khanal B, Thapa LJ. Pulmonary tuberculosis among HIV seropositive intravenous drug users attending tertiary care centers in Eastern Nepal. XVIII International AIDS Conference, Vienna 18-23 July, 2010. 2010: Abstr. MOPE0130.

44. Gebi UL, Musa B, Alfred N, et al. Opportunity for Scale –Up; Mobile X-ray Technology- Strengthening TB Diagnosis in HIV+ve Patients; ACTION Experience in Zaria, rural Northern Nigeria. *Journal of Acquired Immune Deficiency Syndromes*. 2009;51:154.

45. Mtei L, Matee M, Herfort O, et al. High rates of clinical and subclinical tuberculosis among HIV-infected ambulatory subjects in Tanzania. *Clinical Infectious Diseases*. 2005;40(10):1500–1507.

46. Khawcharoenporn T, Apisarnthanarak A, Mundy LM. Assessment of risk for pulmonary tuberculosis after non-reactive tuberculin skin testing among patients with HIV infection in a resource-limited setting. *International journal of STD & AIDS*. 2008;19(12):843–7.

47. Mahajan A, Tandon VR, Verma S, Singh JB, Sharma M. Prevalence of tuberculosis, hepatitis B, hepatitis C and syphilis co-infections among HIV/AIDS patients. *Indian Journal of Medical Microbiology*. 2008;26(2):196–7.

48. Melaku Z, Shimeles E, Girma S, et al. Routine TB screening among new HIV positive clients: experience from ICAP-Ethiopia. XVII International AIDS Conference, Mexico City 3-8 August. 2008:Abstr. WEPE0146.

49. Merchant RH, Oswal JS, Bhagwat RV, Karkare J. Clinical profile of HIV infection. *Indian Pediatrics*. 2001;38(3):239–46.

50. Awoyemi OB, Ige OM, Onadeko BO. Pattern of active pulmonary tuberculosis in human immunodeficiency virus seropositive adult patients in University College Hospital, Ibadan, Nigeria. *African Journal of Medicine and Medical Sciences*. 2002;31(1):25–31.

51. Subramanian J. Prevalence of co-infection of TB, hepatitis B, C and syphilis among HIV/AIDS patients in a district of India. XVIII International AIDS Conference, Vienna 18-23 July. 2010:Abstr CDB0092.

52. Louie JK, Chi NH, Thao LTT, et al. Opportunistic infections in hospitalized HIV-infected adults in Ho Chi Minh City, Vietnam: a cross-sectional study. *International Journal of STD & AIDS*. 2004;15(11):758–61.

53. Maniar JK, Kamath RR, Mandalia S, Shah K, Maniar A. HIV and tuberculosis: partners in crime. *Indian journal of dermatology, venereology* and leprology. 72(4):276-82.

54. Agizew TB, Arwady MA, Yoon JC, et al. Tuberculosis in asymptomatic HIV-infected adults with abnormal chest radiographs screened for tuberculosis prevention. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(1):45–51.

55. Kali PBN, Gray GE, Violari A, et al. Combining PMTCT with active case finding for tuberculosis. *Journal of acquired immune deficiency* syndromes (1999). 2006;42(3):379-81.

56. Gideon HP, du Toit E, Maartens G, et al. Evaluation of IGRA for detection of prevalent tuberculosis (TB) amongst asymptomatic HIV-1 infected adults on combined antiretroviral treatment (ART) being screened for a TB prevention study in Khayelitsha, South Africa . *5th IAS Conference on HIV Pathogenesis and Treatment*. 2009:Abstract no. TUPEB154 .

57. Nachega J, Coetzee J, Adendorff T, et al. Tuberculosis active case-finding in a mother-to-child HIV transmission prevention programme in Soweto, South Africa. *AIDS*. 2003;17(9):1398–400.

58. Day JH, Charalambous S, Fielding KL, et al. Screening for tuberculosis prior to isoniazid preventive therapy among HIV-infected gold miners in South Africa. *The International Journal of Tuberculosis and Lung Disease*. 2006;10(5):523–529.

59. Godfrey-Faussett P, Baggaley R, Mwinga A, et al. Recruitment to a trial of tuberculosis preventive therapy from a voluntary HIV testing centre in Lusaka: relevance to implementation. *Transactions of the Royal Society of Tropical Medicine and Hygiene*. 1995;89(4):354–8.
 60. Waddell RD, Lishimpi K, von Reyn CF, et al. Bacteremia due to Mycobacterium tuberculosis or M. bovis, Bacille Calmette-Guérin (BCG) among HIV- positive children and adults in Zambia. *AIDS*. 2001;15(1):55–60.

61. Churchyard GJ, Fielding K, Charalambous S, et al. Efficacy of secondary isoniazid preventive therapy among HIV-infected Southern Africans: time to change policy? *AIDS*. 2003;17(14):2063–70.

62. Mohammed A, Ehrlich R, Wood R, Cilliers F, Maartens G. Screening for tuberculosis in adults with advanced HIV infection prior to preventive therapy. *The International Journal of Tuberculosis and Lung Disease*. 2004;8(6):792–5.

63. Kimerling ME, Schuchter J, Chanthol E, et al. Prevalence of pulmonary tuberculosis among HIV-infected persons in a home care program in Phnom Penh, Cambodia. *The International Journal of Tuberculosis and Lung Disease*. 2002;6(11):988–94.

64. Lawn SD, Myer L, Bekker L-G, Wood R. Burden of tuberculosis in an antiretroviral treatment programme in sub-Saharan Africa: impact on treatment outcomes and implications for tuberculosis control. *AIDS*. 2006;20(12):1605–12.

65. Cain KP, McCarthy KD, Heilig CM, et al. An algorithm for tuberculosis screening and diagnosis in people with HIV. *The New England journal of medicine*. 2010;362(8):707–16.

66. Chea V, Sculier D, Pe R, et al. Performance of abdominal ultrasound for diagnosis of tuberculosis in HIV-infected persons living in Cambodia . *5th IAS Conference on HIV Pathogenesis and Treatment*. 2009:Abstract no. TUPEB138 .

67. Bassett IV, Wang B, Chetty S, et al. Intensive tuberculosis screening for HIV-infected patients starting antiretroviral therapy in Durban, South Africa. *Clinical Infectious Diseases*. 2010;51(7):823–9.

68. Tiam A, Abdulrahman H, Malimabe M. Tuberculosis diagnosis, using symptoms and CXR in patients on HAART at Senkatana Centre in Lesotho . *AIDS 2008 - XVII International AIDS Conference, 3-8 August, Mexico City.* 2008:Abstract no. CDB0105 .

69. Cain KP, Kanara N, Laserson KF, et al. The epidemiology of HIV-associated tuberculosis in rural Cambodia. *The International Journal of Tuberculosis and Lung Disease*. 2007;11(9):1008–1013.

70. Houlihan CF, Mutevedzi PC, Lessells RJ, et al. The tuberculosis challenge in a rural South African HIV programme. *BMC infectious diseases*. 2010;10:23.

71. Dawson R, Masuka P, Edwards DJ, et al. Chest radiograph reading and recording system: evaluation for tuberculosis screening in patients with advanced HIV. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(1):52–8.

72. Lawn SD, Edwards DJ, Kranzer K, et al. Urine lipoarabinomannan assay for tuberculosis screening before antiretroviral therapy diagnostic yield and association with immune reconstitution disease. *AIDS*. 2009;23(14):1875–80.

73. Lawn SD, Kranzer K, Edwards DJ, et al. Tuberculosis during the first year of antiretroviral therapy in a South African cohort using an intensive pretreatment screening strategy. *AIDS*. 2010;24(9):1323–8.

74. Shetty PVD, Granich RM, Patil AB, et al. Cross-referral between voluntary HIV counselling and testing centres and TB services, Maharashtra, India, 2003-2004. *The International Journal of Tuberculosis and Lung Disease*. 2008;12(3 Suppl 1):26–31.

75. Munseri PJ, Bakari M, Pallangyo K, Sandstrom E. Tuberculosis in HIV voluntary counselling and testing centres in Dar es Salaam, Tanzania. *Scandinavian Journal of Infectious Diseases*. 2010;42(10):767–74.

76. Chheng P, Tamhane A, Natpratan C, et al. Pulmonary tuberculosis among patients visiting a voluntary confidential counseling and testing center, Cambodia. *The International Journal of Tuberculosis and Lung Disease*. 2008;12(3 Suppl 1):54–62.

77. Mwangelwa B, Ayles H, Muyoyeta M, Mkandawire R. Challenges of reducing burden of tuberculosis in people living with HIV. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S125.

78. Levitin Y, Baum GL, Wartski SA. Mantoux testing of 7th graders in Tel Aviv, Israel. Public Health Reviews. 2001;29(1):63-9.

79. Magkanas E, Drakonaki EE, Voloudaki A, Nerantzoulakis I, Gourtsoyiannis N. Chest radiography and tuberculosis case-finding in

asymptomatic native and immigrant populations in Greece. The International Journal of Tuberculosis and Lung Disease. 2005;9(8):5.

80. Rowlands DF. Tuberculin sensitivity in a Saudi military school population. Saudi Medical Journal. 1984;5:183–189.

81. Sebro K, Rolle S, Gray S, et al. Are routine chest X-rays for students entering university worthwhile? *Journal of Quality in Clinical Practice*. 2001;21(4):154–6.

82. Garcia-Sancho F MC, Garcia-Garcia L, Jimenez-Corona ME, et al. Is tuberculin skin testing useful to diagnose latent tuberculosis in BCG-vaccinated children? *International Journal of Epidemiology*. 2006;35(6):1447–1454.

83. Grantland R. Contact investigation of tuberculosis in schools. *Alabama Medicine : Journal of the Medical Association of the State of Alabama*. 1984;54(1):20, 22.

84. Rumman KA, Sabra NA, Bakri F, Seita A, Bassili A. Prevalence of tuberculosis suspects and their healthcare-seeking behavior in urban and rural Jordan. *The American Journal of Tropical Medicine and Hygiene*. 2008;79(4):545–51.

85. Hayashi A, Nagao K, Uchiyama H, et al. Some considerations on increasing the effectiveness of screening for tuberculosis and lung cancer. *Kekkaku*. 1987;62(8):409–17.

86. al-Kassimi FA, Abdullah AK, al-Hajjaj MS, et al. Nationwide community survey of tuberculosis epidemiology in Saudi Arabia. *Tubercle and Lung Disease*. 1993;74(4):254–60.

87. Bibi H, Weiler-Ravell D, Shoseyov D, et al. Compliance to treatment of latent tuberculosis infection in a region of Israel. *The Israel Medical Association Journal*. 2002;4(1):13–6.

88. Pong AL, Anders BJ, Moser KS, et al. Tuberculosis screening at 2 San Diego high schools with high-risk populations. Archives of Pediatrics & Adolescent Medicine. 1998;152(7):646-50.

89. Alavi SM, Sefidgaran GH. Tuberculin survey among school-aged children in Ahvaz, Iran, 2006. International Journal of Infectious Diseases . 2008;12(4):406-9.

90. Alperstein G, Fett MJ, Reznik R, Thomas M, Senthil M. The prevalence of tuberculosis infection among Year 8 schoolchildren in inner Sydney in 1992. *The Medical Journal of Australia*. 1994;160(4):197–201.

91. Perez-Stable EJ, Slutkin G, Paz EA, Hopewell PC. Tuberculin reactivity in United States and foreign-born Latinos: results of a communitybased screening program. *American Journal of Public Health*. 1986;76(6):643–6.

92. Villalbí JR, Galdós-Tangüís H, Caylà JA, et al. Tuberculosis infection and disease among schoolchildren: the influence of the HIV epidemic and of other factors. *Journal of Epidemiology and Community Health*. 1999;53(2):112–7.

93. Beller M, Middaugh JP. Surveillance for tuberculosis in Alaska, 1986. Alaska Medicine. 1989;31(1):4-8.

94. Caldwell GG, Lee J, Hammarsten JE, Cox J, Hicks P. Tuberculosis in a Tulsa high school. *The Journal of the Oklahoma State Medical Association*. 1994;87(2):56–8.

95. Sánchez-Pérez H, Flores-Hernández J, Jansá J, Caylá J, Martín-Mateo M. Pulmonary tuberculosis and associated factors in areas of high levels of poverty in Chiapas, Mexico. *International Journal of Epidemiology*. 2001;30(2):386–93.

96. The Lodi Tuberculosis Working Group. A school- and community-based outbreak of Mycobacterium tuberculosis in northern Italy, 1992-3. The Lodi Tuberculosis Working Group. *Epidemiology and Infection*. 1994;113(1):83–93.

97. Romaszko J, Buciński A, Wasiński R, Rosłan A, Bednarski K. Incidence and risk factors for pulmonary tuberculosis among the poor in the northern region of Poland. *The International Journal of Tuberculosis and Lung Disease*. 2008;12(4):430–5.

98. Kim SJ, Bai GH, Lee H, et al. Transmission of Mycobacterium tuberculosis among high school students in Korea. *The International Journal of Tuberculosis and Lung Disease*. 2001;5(9):824–30.

99. Miller AC, Golub JE, Cavalcante SC, et al. Controlled trial of active tuberculosis case finding in a Brazilian favela. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(6):7.

100. Odermatt P, Nanthaphone S, Barennes H, et al. Improving tuberculosis case detection rate with a lay informant questionnaire: an experience from the Lao People's Democratic Republic. *Bulletin of the World Health Organization*. 2007;85(9):727–31.

101. Zuluaga L, Betancur C, Abaunza M, Londoño J. Prevalences of tuberculosis and other respiratory diseases among people over age 15 in the northeast sector of Medellín, Colombia. *Bulletin of the Pan American Health Organization*. 1992;26(3):247–55.

102. China Tuberculosis Control Collaboration. The effect of tuberculosis control in China. Lancet. 2004;364(9432):417-22.

103. Fernández de Larrea C, Fandiño C, López D, et al. Tuberculosis in subjects under 15 years of age in the population of Warao in Venezuela. *Investigación Clínica*. 2002;43(1):35–48.

104. Hong YP, Kim SJ, Kwon DW, et al. The sixth Nationwide Tuberculosis Prevalence Survey in Korea, 1990. *Tubercle and Lung Disease*. 1993;74(5):323–31.

105. Ng YK, Chen CH, Goh EH, et al. Selective area tuberculosis surveys in Singapore 1978. Annals of the Academy of Medicine, Singapore. 1981;10(1):50–5.

106. Romero-Sandoval NC, Flores-Carrera OF, Sánchez-Pérez HJ, Sánchez-Pérez I, Mateo MM. Pulmonary tuberculosis in an indigenous community in the mountains of Ecuador. *The International Journal of Tuberculosis and Lung Disease*. 2007;11(5):6.

107. Patel AG, Patel RB. Case detection by symptomatic survey and treatment through multipurpose health workers. *Indian Journal of Tuberculosis*. 1981;28(2):107.

108. Shteintsaig AI, Neishtadt AS. Effectiveness of fluorography in the prevention and diagnosis of pulmonary tuberculosis and cancer. *Vestnik Rentgenologii i Radiologii*. 1983;(1):15–8.

109. Elink Schuurman MW, Srisaenpang S, Pinitsoontorn S, et al. The rapid village survey in tuberculosis control. *Tubercle and Lung Disease*. 1996;77(6):549–54.

110. Kasse Y, Jasseh M, Corrah T, et al. Health seeking behaviour, health system experience and tuberculosis case finding in Gambians with cough. *BMC Public Health*. 2006;6:143.

111. Shahed Hossain SA, Zaman K, Quaiyum MA, et al. Case detection under the national tuberculosis prevalence survey in Bangladesh. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S384.

112. Amare D, Abebe G, Apers L, et al. Prevalence of pulmonary TB and HIV among TB suspects in rural community in Southwest Ethiopia. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S182.

113. Bjerregaard-Andersen M, da Silva ZJ, Ravn P, et al. Tuberculosis burden in an urban population: a cross sectional tuberculosis survey from Guinea Bissau. *BMC Infectious Diseases*. 2010;10:96.

114. Thorson A, Hoa NP, Long NH, Allebeck P, Diwan VK. Do women with tuberculosis have a lower likelihood of getting diagnosed? Prevalence and case detection of sputum smear positive pulmonary TB, a population-based study from Vietnam. *Journal of Clinical Epidemiology*. 2004;57(4):398–402.

115. Shargie EB, Yassin MA, Lindtjørn B. Prevalence of smear-positive pulmonary tuberculosis in a rural district of Ethiopia. *The International Journal of Tuberculosis and Lung Disease*. 2006;10(1):6.

116. Yimer S, Holm-Hansen C, Yimaldu T, Bjune G. Evaluating an active case-finding strategy to identify smear-positive tuberculosis in rural Ethiopia. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(11):6.

117. ZAMAN K, YUNUS M, ARIFEEN SE, et al. Prevalence of sputum smear-positive tuberculosis in a rural area in Bangladesh. *Epidemiology* and Infection. 2006;134(05):1052–1059.

118. Fochsen G, Deshpande K, Diwan V, et al. Health care seeking among individuals with cough and tuberculosis: a population-based study from rural India. *The International Journal of Tuberculosis and Lung Disease*. 2006;10(9):6.

119. Vandebriel G, Turinawe K, Ingabire E, et al. Peer educators' involvement in scaling up intensified TB case finding among persons living with HIV. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S54.

120. Narang P, Tyagi NK, Mendiratta DK, et al. Prevalence of sputum-positive pulmonary tuberculosis in tribal and non-tribal populations of the Ashti and Karanja tahsils in Wardha district, Maharashtra State, India. *The International Journal of Tuberculosis and Lung Disease*. 1999;3(6):478–82.

121. Cassels A, Heineman E, LeClerq S, Gurung PK, Rahut CB. Tuberculosis case-finding in Eastern Nepal. *Tubercle*. 1982;63(3):175–85. 122. Holtedahl K, Hurum H. Cross-sectional study of morbidity, morbidity-associated factors and cost of treatment in Ngaoundere, Cameroon, with implications for health policy in developing countries and development assistance policy. *BMC International Health and Human Rights*. 2002;2(1):2.

123. Demissie M, Zenebere B, Berhane Y, Lindtjorn B. A rapid survey to determine the prevalence of smear-positive tuberculosis in Addis Ababa. *The International Journal of Tuberculosis and Lung Disease*. 2002;6(7):580–4.

124. Kibrik BS, Solov'ev EO. [Use of automated screening for detecting pulmonary tuberculosis patients and persons with residual tuberculous changes]. *Problemy tuberkuleza*. 1987;(5):16–9.

125. Balasubramanian R, Sadacharam K, Selvaraj R, et al. Feasibility of involving literate tribal youths in tuberculosis case-finding in a tribal area in Tamil Nadu. *Tubercle and Lung Disease*. 1995;76(4):355–9.

126. Hoa NB, Sy DN, Nhung NV, et al. National survey of tuberculosis prevalence in Viet Nam. *Bulletin of the World Health Organization*. 2010;88(4):273-80.

127. Gopi PG, Subramani R, Narayanan PR. Evaluation of different types of chest symptoms for diagnosing pulmonary tuberculosis cases in community surveys. *Indian Journal of Tuberculosis*. 2008;44:116–21.

128. Balasubramanian R, Garg R, Santha T, et al. Gender disparities in tuberculosis: report from a rural DOTS programme in south India. Int J Tuberc Lung Dis. 2004;8(3):323–32.

129. Chakraborty AK, Suryanarayana HV, Murthy VV, Murthy MS, Shashidhara AN. Prevalence of tuberculosis in a rural area by an alternative survey method without prior radiographic screening of the population. *Tubercle and Lung Disease*. 1995;76(1):20–4.

130. Akhtar S, White F, Hasan R, et al. Hyperendemic pulmonary tuberculosis in peri-urban areas of Karachi, Pakistan. BMC Public Health. 2007;7:70.

131. Xavier T. Strategies to improve case-finding in tuberculosis programme. Indian Journal of Tuberculosis. 1992;39:125-126.

132. Soemantri S, Senewe FP, Tjandrarini DH, et al. Three-fold reduction in the prevalence of tuberculosis over 25 years in Indonesia. *The International Journal of Tuberculosis and Lung Disease*. 2007;11(4):398–404.

133. Bhat J, Rao VG, Gopi PG, et al. Prevalence of pulmonary tuberculosis amongst the tribal population of Madhya Pradesh, central India. *International Journal of Epidemiology*. 2009;38(4):1026–1032.

134. Mitinskaia LA, Ivanova ES, Kufakova GA. Tuberculosis in children and adolescents in orphanage and boarding schools and optimization of its prevention. *Problemy tuberkuleza*. 1993;(5):2–4.

135. Rao VG, Bhat J, Yadav R, et al. Prevalence of pulmonary tuberculosis among the Bharia, a primitive tribe of Madhya Pradesh, central India [Short communication]. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(3):3.

136. Gopi PG, Subramani R, Narayanan PR. Trend in the prevalence of TB infection and ARTI after implementation of a DOTS programme in south India. *The International Journal of Tuberculosis and Lung Disease*. 2006;10(3):346–8.

137. Datta M, Radhamani MP, Sadacharam K, et al. Survey for tuberculosis in a tribal population in North Arcot District. *The International Journal of Tuberculosis and Lung Disease*. 2001;5(3):240–9.

138. Gupta RK, Gupta A, Jamwal DS, Suri SP. A socio-epidemiological study of tuberculosis in a rural area. *JK Science*. 2002;4(3):119–122. 139. Hafez MA, Mazumder A, Begum J, Tarafder MA. A study on the prevalence of tuberculosis in a rural community of Bangladesh. *Bangladesh Medical Research Council bulletin*. 1991;17(1):23–8.

140. Abramson EZ, Galkin VB, Stepanova GI. Detection of respiratory tract diseases among rural population during the team-work mass screening. *Problemy tuberkuleza*. 1990;(12):11–3.

141. Berezko AP, Grib II, Medvedeva GV. Organization of early detection of tuberculosis in the population of radiation polluted regions. *Problemy tuberkuleza*. 1994;(2):19–22.

142. Tupasi TE, Radhakrishna S, Chua JA, et al. Significant decline in the tuberculosis burden in the Philippines ten years after initiating DOTS. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(10):1224–30.

143. Murhekar, M.V., Kolappan C, Gopi PG, Chakraborty AK, Sehgal SC. Tuberculosis situation among tribal population of Car Nicobar, India, 15 years after intensive tuberculosis control project and implementation of a national tuberculosis programme. *Bulletin of the World Health Organization*. 2004;82(11):836–843.

144. Sekandi Nabbuye J, List J, Mugerwa M, et al. Community-basedcasefinding of TB-HIV patients in Kampala, Uganda. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S201.

145. Tuberculosis Research Centre Chetput Chennai India. Trends in the prevalence and incidence of tuberculosis in South India. The International Journal of Tuberculosis and Lung Disease. 2001;5(2):16.

146. Guwatudde D, Nakakeeto M, Jones-Lopez EC, et al. Tuberculosis in household contacts of infectious cases in Kampala, Uganda. American journal of epidemiology. 2003;158(9):887-98.

147. Tupasi TE, Radhakrishna S, Rivera AB, et al. The 1997 Nationwide Tuberculosis Prevalence Survey in the Philippines. *The International Journal of Tuberculosis and Lung Disease*. 1999;3(6):471–7.

148. Aluoch JA, Edwards EA, Stott H, Fox W, Sutherland I. A fourth study of case-finding methods for pulmonary tuberculosis in Kenya. *Transactions of the Royal Society of Tropical Medicine and Hygiene*. 1982;76(5):679–91.

149. Mayurnath S, Anantharaman DS, Baily GV, et al. Tuberculosis prevalence survey in Kashmir valley. *The Indian Journal of Medical Research*. 1984;80:129–40.

150. Rao VG, Gopi PG, Bhat J, et al. Pulmonary tuberculosis: a public health problem amongst the Saharia, a primitive tribe of Madhya Pradesh, Central India. *International Journal of Infectious Diseases*. 2010;14(8):e713–e716.

151. A.R. Alvi, S.F. Hussain, M.A. Shah, M. Khalida, M. Shamsudin. Prevalence of pulmonary tuberculosis on the roof of the world. *The International Journal of Tuberculosis and Lung Disease*. 1998;2(11):5.

152. Nsanzumuhire H, Aluoch JA, Karuga WK, et al. A third study of case-finding methods for pulmonary tuberculosis in Kenya, including the use of community leaders. *Tubercle*. 1981;62(2):79–94.

153. Sekandi JN, Neuhauser D, Smyth K, Whalen CC. Active case finding of undetected tuberculosis among chronic coughers in a slum setting in Kampala, Uganda. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(4):6.

154. Mapue M, Cabral C. Achieving results through the childhood TB programme: City of Velenzuela, Philippines, 2007. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S95.

155. Pronyk PM, Joshi B, Hargreaves JR, et al. Active case finding: understanding the burden of tuberculosis in rural South Africa. *The International Journal of Tuberculosis and Lung Disease*. 2001;5(7):611–618.

156. Phuanukoonnon S, Mueller I, Usurup J, Siba P. Burden of tuberculosis and health seeking behaviours of people with prolonged cough in rural PNG. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S386.

157. Corbett EL, Bandason T, Cheung YB, et al. Epidemiology of tuberculosis in a high HIV prevalence population provided with enhanced diagnosis of symptomatic disease. *PLoS Medicine*. 2007;4(1):e22.

158. Middelkoop K, Bekker L-G, Myer L, et al. Antiretroviral program associated with reduction in untreated prevalent tuberculosis in a South African township. *American Journal of Respiratory and Critical Care Medicine*. 2010;182(8):1080–5.

159. den Boon S, van Lill SWP, Borgdorff MW, et al. High prevalence of tuberculosis in previously treated patients, Cape Town, South Africa. *Emerging Infectious Diseases*. 2007;13(8):1189–94.

160. Corbett EL, Bandason T, Duong T, et al. Comparison of two active case-finding strategies for community-based diagnosis of symptomatic smear-positive tuberculosis and control of infectious tuberculosis in Harare, Zimbabwe (DETECTB): a cluster-randomised trial. *Lancet*. 2010;376(9748):1244–1253.

161. Corbett EL, Zezai A, Cheung YB, et al. Provider-initiated symptom screening for tuberculosis in Zimbabwe: diagnostic value and the effect of HIV status. *Bulletin of the World Health Organization*. 2010;88(1):13–21.

162. Corbett EL, Bandason T, Cheung Y-B, et al. Prevalent infectious tuberculosis in Harare, Zimbabwe: burden, risk factors and implications for control. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(10):1231–7.

163. Ayles H, Schaap A, Nota A, et al. Prevalence of tuberculosis, HIV and respiratory symptoms in two Zambian communities: implications for tuberculosis control in the era of HIV. *PloS One*. 2009;4(5):e5602.

164. Marais BJ, Obihara CC, Gie RP, et al. The prevalence of symptoms associated with pulmonary tuberculosis in randomly selected children from a high burden community. *Archives of Disease in Childhood*. 2005;90(11):1166–70.

165. den Boon S, White NW, van Lill SWP, et al. An evaluation of symptom and chest radiographic screening in tuberculosis prevalence surveys. *The International Journal of Tuberculosis and Lung Disease*. 2006;10(8):876–82.

166. Williams B, Gopi PG, Borgdorff MW, Yamada N, Dye C. The design effect and cluster samples: optimising tuberculosis prevalence surveys. *The International Journal of Tuberculosis and Lung Disease*. 2008;12(10):1110–5.

167. Wood R, Middelkoop K, Myer L, et al. Undiagnosed tuberculosis in a community with high HIV prevalence: implications for tuberculosis control. *American Journal of Respiratory and Critical Care Medicine*. 2007;175(1):87–93.

168. Gatner EMS, Burkhardt KR. Correlation of the results of X-ray and sputum culture in tuberculosis prevalence surveys. *Tubercle*. 1980;61(1):27–31.

169. Kelly P, Zulu I, Amadi B, et al. Morbidity and nutritional impairment in relation to CD4 count in a Zambian population with high HIV prevalence. *Acta Tropica*. 2002;83(2):151–8.

170. Fourie PB, Austoker LH. Tuberculosis prevalence survey in the Daveyton (Benoni) urban black community. *South African Medical Journal*. 1981;60(2):64–7.

171. Fourie PB, Gatner EMS, Glatthaar E, Kleeberg HH. Follow-up tuberculosis prevalence survey of Transkei. *Tubercle*. 1980;61(2):71–79. 172. Geldenhuys H, Moyo S, Hatherill H, et al. Tuberculosis symptom screening in young children in a TB vaccine trial setting in South Africa. Abstract PS-81853-19. *Int J Tuberc Lung Dis*. 2008;12(11, Suppl. 2):S231.

173. Soren K, Saiman L, Irigoyen M, et al. Evaluation of household contacts of children with positive tuberculin skin tests. *The Pediatric Infectious Disease Journal*. 1999;18(11):949–55.

174. Vall Mayans M, Besora R, Estabanell A, Abril E, Cruz C. High rates of tuberculosis infection among children from Ciutat Vella District, Barcelona, 1996-1997. *The International Journal of Tuberculosis and Lung Disease*. 2001;5(1):92–5.

175. Goodburn A, Lipman M. "Inform and advise" in TB contact tracing: what constitutes success? *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S354.

176. Kameda K, Kuchii N, Horii F, et al. A study on the family contacts examination of tuberculosis patients. (Sixth report). *Kekkaku*. 1983;58(1):33–7.

177. Kameda K, Kuchii N, Horii F, et al. A study on the family contact examination of tuberculosis patients (Fourth report) (author's transl). *Kekkaku*. 1980;55(9):415–21.

178. Zunic L, Medjahed A. Advances in the control of tuberculosis in a suburban district of Paris, France, 2008. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S270.

179. Driver CR, Cordova IM, Munsiff SS. Targeting tuberculosis testing: the yield of source case investigations for young children with reactive tuberculin skin tests. *Public Health Reports*. 2002;117(4):366–72.

180. Sullam PM, Slutkin G, Hopewell PC. The benefits of evaluating close associates of child tuberculin reactors from a high prevalence group. *American Journal of Public Health*. 1986;76(9):1109–11.

181. Kameda K, Yano K, Kuchii N, et al. A study on the family contact examination of tuberculosis patients (fifth report) (author's transl). *Kekkaku*. 1981;56(11):525–30.

182. Ormerod LP. Results of tuberculosis contact tracing: Blackburn 1982-90. Respiratory Medicine. 1993;87(2):127-31.

183. Bakir M, Millington KA, Soysal A, et al. Prognostic value of a T-cell-based, interferon-gamma biomarker in children with tuberculosis contact. *Annals of Internal Medicine*. 2008;149(11):777–87.

184. Salinas C, Capelastegui A, Altube L, et al. [Longitudinal incidence of tuberculosis in a cohort of contacts: factors associated with the disease]. *Archivos de Bronconeumología*. 2007;43(6):317–23.

185. Uhari M, Linna O. Close contact with tuberculosis in childhood. *European Journal of Respiratory Diseases*. 1982;63(6):579–83. 186. Sherif AA, Hasab AA, Mahfouz AA, Hassan MM, Mohamed AG. Efficiency of tuberculin as a tool to determine the prevalence of tuberculosis. *The Journal of the Egyptian Public Health Association*. 1989;64(5-6):417–29.

187. Capewell S, Leitch AG. The value of contact procedures for tuberculosis in Edinburgh. *British Journal of Diseases of the Chest*. 1984;78(4):317–29.

188. Fernández Revuelta A, Arazo Garcés P, Aguirre Errasti JM, Arribas Llorente JL. The study of contacts of tuberculosis patients. *Anales de Medicina Interna*. 1994;11(2):62–6.

189. Garcia-Garcia JM, Gonzalez B, Fernadez-Quiroga A, et al. Study Of Contacts Of Tuberculosis. Pilot Programme Through The Coordination Of The Different Assistance Levels In The 3rd Sanitary Area Of Asturias, Spain. *American Journal of Respiratory and Critical Care Medicine*. 2010;181:A4763.

Ahiko T. Family contact examination for tuberculosis--the current situations and perspective. *Kekkaku*. 1990;65(11):739–46.
 Remacha Esteras MA, Esteban Martín A, Rodríguez Robles JC, Remacha Esteras T. Study of contacts of tubercular cases in León. *Atencion Primaria*. 2004;34(4):212–3.

192. Kilicaslan Z, Kiyan E, Kucuk C, et al. Risk of active tuberculosis in adult household contacts of smear-positive pulmonary tuberculosis cases. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(1):93–8.

193. Dasgupta K, Schwartzman K, Marchand R, et al. Comparison of cost-effectiveness of tuberculosis screening of close contacts and foreignborn populations. *American Journal of Respiratory and Critical Care Medicine*. 2000;162(6):2079–86.

194. Solsona J, Caylà JA, Bedia M, Mata C, Claveria J. Diagnostic efficacy of the study of contacts of tuberculosis patients in a high prevalence urban area. *Revista Clínica Española*. 2000;200(8):412–9.

195. Kouw P, Keizer S, Mensen M, Deutekom HV, Schim van der Loeff M. Incidence of latent tuberculous infection among household contacts of patients with smear-positive tuberculosis. *American Journal of Respiratory and Critical Care Medicine*. 2010;181:A4759.

196. Casanova Matutano C, González Monte C, Pérez Martín M, et al. The investigation of the contacts of the tuberculous pediatric patient. *Medicina Clínica*. 1991;97(13):486–90.

197. Vidal R, Miravitlles M, Caylà JA, et al. Increased risk of tuberculosis transmission in families with microepidemics. *The European Respiratory Journal*. 1997;10(6):1327–31.

198. Khalilzadeh S, Masjedi H, Hosseini M, Safavi A, Masjedi M-R. Transmission of Mycobacterium tuberculosis to households of tuberculosis patients: A comprehensive contact tracing study. *Archives of Iranian Medicine*. 2006;9(3):208–212.

199. Madhi F, Fuhrman C, Monnet I, et al. Transmission of tuberculosis from adults to children in a Paris suburb. *Pediatric Pulmonology*. 2002;34(3):159–63.

200. Gendrel D, Nguyen Y, Lorrot M, et al. Tuberculose de l'enfant après contage familial : une expérience en pédiatrie générale. Archives de Pédiatrie. 2006;13(11):1379–1385.

201. Mohammad Z, Naing NN, Salleh R, et al. A preliminary study of the influence of HIV infection in the transmission of tuberculosis. *The Southeast Asian Journal of Tropical Medicine and Public Health*. 2002;33(1):92–8.

202. Lin X, Chongsuvivatwong V, Lin L, Geater A, Lijuan R. Dose-response relationship between treatment delay of smear-positive tuberculosis patients and intra-household transmission: a cross-sectional study. *Transactions of the Royal Society of Tropical Medicine and Hygiene*. 2008;102(8):797–804.

203. Lee MS-N, Leung C-C, Kam K-M, et al. Early and late tuberculosis risks among close contacts in Hong Kong. *The International Journal of Tuberculosis and Lung Disease*. 2008;12(3):281–7.

204. Nguyen TH, Odermatt P, Slesak G, Barennes H. Risk of latent tuberculosis infection in children living in households with tuberculosis patients: a cross sectional survey in remote northern Lao People's Democratic Republic. *BMC Infectious Diseases*, 2009;9:96.

205. Carvalho AC, DeRiemer K, Nunes ZB, et al. Transmission of Mycobacterium tuberculosis to contacts of HIV-infected tuberculosis patients. *American Journal of Respiratory and Critical Care Medicine*. 2001;164(12):2166–71.

206. Noertjojo K, Tam CM, Chan SL, Tan J, Chan-Yeung M. Contact examination for tuberculosis in Hong Kong is useful. *The International Journal of Tuberculosis and Lung Disease*. 2002;6(1):19–24.

207. Chen CH, Goh EH. The management of household contacts of active pulmonary tuberculosis in Singapore. Annals of the Academy of Medicine, Singapore. 1981;10(2):242-7.

208. Ottomani S, Zignol M, Bencheikh N, et al. TB contact investigations: 12 years of experience in the National TB Programme, Morocco 1993–2004. *Eastern Mediterranean Health Journal*. 2009;15(3):494–503.

209. Lemos AC, Matos ED, Pedral-Sampaio DB, Netto EM. Risk of tuberculosis among household contacts in Salvador, Bahia. *Brazilian Journal of Infectious Diseases*. 2004;8(6):424–430.

210. Maciel ELN, Prado TN do, Fávero JL, Moreira TR, Dietze R. Tuberculose em profissionais de saúde: um novo olhar sobre um antigo problema. *Jornal Brasileiro de Pneumologia*. 2009;35(1):83–90.

211. Cavalcante SC, Durovni B, Barnes GL, et al. Community-randomized trial of enhanced DOTS for tuberculosis control in Rio de Janeiro, Brazil. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(2):203–9.

212. Teixeira L, Perkins MD, Johnson JL, et al. Infection and disease among household contacts of patients with multidrug-resistant tuberculosis. *The International Journal of Tuberculosis and Lung Disease*. 2001;5(4):321–8.

213. Espinal MA, Peréz EN, Baéz J, et al. Infectiousness of Mycobacterium tuberculosis in HIV-1-infected patients with tuberculosis: a prospective study. *Lancet*. 2000;355(9200):275–80.

214. Leimane V, Ozere I. Challenges of managing a child with MDR-TB. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(12 (Suppl 1)):S52.

215. Caldeira ZMR, Sant'Anna CC, Aidé MA. Controle de crianças e adolescentes comunicantes de tuberculosos, Rio de Janeiro, RJ. *Revista de Saúde Pública*. 2004;38(3):339–345.

216. Al Kubaisy W, Al Dulayme A, Hashim DS. Active tuberculosis among Iraqi schoolchildren with positive skin tests and their household contacts. *Eastern Mediterranean Health Journal* . 2003;9(4):675–88.

217. Chen C-M, Huang Y-W, Shen G-H, Lee J-J, Yang W-T. Latent tuberculous infection among close contacts of MDR-TB patients. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(11 (Suppl 1)):S63.

218. Madhavi P, Sharath B, Santosha K, et al. Evaluation of the implementation of IPT amongs contacts of TB cases in a district in South India. Abstract PC-100506-14. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11, Suppl2):S190.

219. Delawer F, Habib H, Rasooli S, Ayoubi K, Seddiq KH. Impact of active case finding among household contacts of TB patients on case detection rate in Afghanistan. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S356.

220. Becera MC, Pachao-Torreblanca IF, Bayona J, et al. Expanding tuberculosis case detection by screening household contacts. *Public Health Reports*. 1995;120(3):271–7.

221. Wares DF, Akhtar M, Singh S, Luitel H. Is TB contact screening relevant in a developing country setting? Experiences from eastern Nepal, 1996-1998. *The International Journal of Tuberculosis and Lung Disease*. 2000;4(10):920–4.

222. Sanchez-Lofranco V, Espena J, Rubio J. Contac tinvestigation experience: tertiary government hospital in Metro Manila, Philippines. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S309.

223. Schumacher SG, Valencia T, Montoya R, et al. Operational effectiveness of TB culture and drug susceptibility testing in a high-prevalence setting. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S72.

224. Nsanzumuhire H, Aluoch JA, Karuga WK, et al. A third study of case-finding methods for pulmonary tuberculosis in kenya, including the use of community leaders. *Tubercle*. 1981;62(2):79–94.

225. Jackson-Sillah D, Hill PC, Fox A, et al. Screening for tuberculosis among 2381 household contacts of sputum-smear-positive cases in The Gambia. *Transactions of the Royal Society of Tropical Medicine and Hygiene*. 2007;101(6):594–601.

226. Zachariah R, Spielmann MP, Harries AD, et al. Passive versus active tuberculosis case finding and isoniazid preventive therapy among household contacts in a rural district of Malawi. *The International Journal of Tuberculosis and Lung Disease*. 2003;7(11):1033–9.

227. Mangi R, Pfau R, Ahmad S, et al. Incidence of child tuberculosis among household contacts of all types of TB patients: a 4-year study. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S58.

228. de Jong BC, Hill PC, Aiken A, et al. Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. *The Journal of infectious diseases*. 2008;198(7):1037–43.

229. Akenzua G, Oviawe O. Cost-benefit of contact-tracing in a tuberculosis programme. *Nigerian Journal of Paediatrics*. 1984;11(3):81–85. 230. Achakzai K, Siddiqui L. Increasing case detection of NSS. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S92.

231. Fojo T, Kisorio S, Kamule L, et al. Does contact tracing as part of intensified case finding increase TB case- finding in Western Kenya? *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S177.

232. Amanullah F, Ashfaque M, Khowaja S, et al. Contact screening of children of DR-TB patients in Karachi, Pakistan. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S181.

233. Suggaravetsiri P, Yanai H, Chongsuvivatwong V, Naimpasan O, Akarasewi P. Integrated counseling and screening for tuberculosis and HIV among household contacts of tuberculosis patients in an endemic area of HIV infection: Chiang Rai, Thailand. *The International Journal of Tuberculosis and Lung Disease*. 2003;7(12 Suppl 3):S424–31.

234. Bayona J, Chavez-Pachas AM, Palacios E, et al. Contact investigations as a means of detection and timely treatment of persons with infectious multidrug-resistant tuberculosis. *The International Journal of Tuberculosis and Lung Disease*. 2003;7(12 Suppl 3):S501–9.

235. Wang PD, Lin RS. Tuberculosis transmission in the family. *The Journal of Infection*. 2000;41(3):249–51.

236. Taran D, Gelmanova IY, Golubkov A, et al. Contact investigation by nurses of the Sputnik initiative in Tomsk, Russia. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S304.

237. Chemutai J, Kimani J, Akollo M, Musyimi A. Prevention with positives (PWP): TB screening of household contacts at Pumwani Hospital Comprehensive Care MCH Clinic. XVIII AIDS International Conference, Vienna 18-23 July 2010. 2010:WEPE0366.

238. C K, S K-S, T LA, P H. [Tuberculosis screening of patient contacts in 1993 and 1994 in Yaounde, Cameroon]. Medecine tropicale : revue du Corps de sante colonial. 1996;56(2):156.

239. Eckhoff CT. Evaluation of a clinical index among adult contacts of children with tuberculosis in rural Haiti. *The International Journal of Tuberculosis and Lung Disease*. 2000;4(12):1143–8.

240. Sia IG, Orillaza RB, St Sauver JL, et al. Tuberculosis attributed to household contacts in the Philippines. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(1):122–5.

241. Duenas E, Sanchez M, De La Eva R, Putulin A, Mendoza A. Household TB Case Finding Results and CLinical Improvement of Children with Endobronchial Tuberculosis. *Respirology*. 2009;14(Suppl. 3):A145.

242. Bokhari SY, Ahmad A, Shaikh MY, Ahmad I. A study of tuberculosis contacts. *JPMA. The Journal of the Pakistan Medical Association*. 1987;37(2):48–52.

243. Claessens NJM, Gausi FF, Meijnen S, et al. Screening childhood contacts of patients with smear-positive pulmonary tuberculosis in Malawi. *The International Journal of Tuberculosis and Lung Disease*. 2002;6(4):362–4.

244. Sinfield R, Nyirenda M, Haves S, Molyneux EM, Graham SM. Risk factors for TB infection and disease in young childhood contacts in Malawi. *Annals of tropical paediatrics*. 2006;26(3):205–13.

245. Tkhabisimova IK. Primary infection with Mycobacterium tuberculosis and its carriage in children and adolescents from familial foci of tuberculosis infection. *Problemy tuberkuleza i bolezneĭ legkikh*. 2004;(1):11–3.

246. Topley JM, Maher D, Mbewe LN. Transmission of tuberculosis to contacts of sputum positive adults in Malawi. Archives of disease in childhood. 1996;74(2):140–3.

247. den Boon S, Verver S, Lombard CJ, et al. Comparison of symptoms and treatment outcomes between actively and passively detected tuberculosis cases: the additional value of active case finding. *Epidemiology and infection*. 2008;136(10):1342–9.

248. Gilpin TP, Hammond M. Active case-finding--for the whole community or for tuberculosis contacts only? South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde. 1987;72(4):260–2.

249. Klausner JD, Ryder RW, Baende E, et al. Mycobacterium tuberculosis in household contacts of human immunodeficiency virus type 1seropositive patients with active pulmonary tuberculosis in Kinshasa, Zaire. *The Journal of infectious diseases*. 1993;168(1):106–11.

250. Bisuta Fueza S, Kashongwe MZ, Kabedi Bajani MJ, Malenga S, Muyembe JJ. Household case contacts of patients with multiresistant tuberculosis in Kinshasa. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S353.

251. Saunders LD, Irwig LM, Wilson TD, Kahn A, Groeneveld H. Tuberculosis management in Soweto. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde. 1984;66(9):330–3.

252. Shapiro AE, Rakgokong MH, Chaisson RE, et al. Targeting at-risk households: intensified case-finding for TB and HIV in contacts of TB patients in South Africa. XVIII International AIDS Conference (Vienna, 2010). 2010:Abstr. FRLBC106.

253. Song R. TB-HIV contact investigation study in Cambodia. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(12 (Suppl 1)):S30.

254. Beyers N, Gie RP, Schaaf HS, et al. A prospective evaluation of children under the age of 5 years living in the same household as adults with recently diagnosed pulmonary tuberculosis. *The International Journal of Tuberculosis and Lung Disease*. 1997;1(1):38–43.

255. Schaaf HS, Vermeulen HA, Gie RP, Beyers N, Donald PR. Evaluation of young children in household contact with adult multidrug-resistant pulmonary tuberculosis cases. *The Pediatric infectious disease journal*. 1999;18(6):494–500.

256. Schaaf HS, Gie RP, Kennedy M, et al. Evaluation of young children in contact with adult multidrug-resistant pulmonary tuberculosis: a 30-month follow-up. *Pediatrics*. 2002;109(5):765–71.

257. Marais BJ, Hesseling AC, Schaaf HS, et al. Mycobacterium tuberculosis transmission is not related to household genotype in a setting of high endemicity. *Journal of clinical microbiology*. 2009;47(5):1338–43.

258. Kruk A, Gie RP, Schaaf HS, Marais BJ. Symptom-based screening of child tuberculosis contacts: improved feasibility in resource-limited settings. *Pediatrics*. 2008;121(6):e1646–52.

259. Mtombeni S, Mahomva A, Siziya S, et al. A clinical evaluation of children under the age of five years who are household contacts of adults with sputum positive tuberculosis in Harare, Zimbabwe. *The Central African Journal of Medicine*. 2002;48(3-4):28–32.

260. Cardona M, Bek MD, Mills K, Isaacs D, Alperstein G. Transmission of tuberculosis from a seven-year-old child in a Sydney school. *Journal of Paediatrics and Child Health*. 1999;35(4):375–8.

261. Kanra G, Göçmen A, Işik P, et al. Screening for tuberculosis in a primary school in Ankara. *The Turkish Journal of Pediatrics*. 2001;43(3):211–4.

262. Rodriguez EM, Steinbart S, Shaulis G, Bur S, Dwyer DM. Pulmonary tuberculosis in a high school student and a broad contact investigation: lessons relearned. *Maryland Medical Journal*. 1996;45(12):1019–22.

263. Smith KC. Tuberculosis exposure in a day-care center: recommended management. Southern Medical Journal. 2000;93(9):877-80.

264. Askew GL, Finelli L, Hutton M, et al. Mycobacterium tuberculosis transmission from a pediatrician to patients. *Pediatrics*. 1997;100(1):19–23.

265. Kobayashi H, Iriyama M, Amano T. Minor outbreak of Tuberculosis infection in a junior high school--infection from a preventable case. *Kekkaku*. 2003;78(10):619–27.

266. Trnka L, Danková D, Krejbich F, et al. Screening of TB contacts by tuberculin skin tests in a low-incidence community by BCG vaccination. *Central European Journal of Public Health*. 2001;9(1):26–9.

267. Fitzpatrick LK, Hardacker JA, Heirendt W, et al. A preventable outbreak of tuberculosis investigated through an intricate social network. *Clinical Infectious Diseases*. 2001;33(11):1801–6.

268. Higuchi K, Kondo S, Wada M, et al. Contact investigation in a primary school using a whole blood interferon-gamma assay. *The Journal of Infection*. 2009;58(5):352–7.

269. Golub JE, Cronin WA, Obasanjo OO, et al. Transmission of Mycobacterium tuberculosis through casual contact with an infectious case. *Archives of Internal Medicine*. 2001;161(18):2254–8.

270. Marienau KJ, Burgess GW, Cramer E, et al. Tuberculosis investigations associated with air travel: U. S. Centers for Disease Control and Prevention, January 2007-June 2008. *Travel Medicine and Infectious Disease*. 2010;8(2):104–12.

271. Centers for Disease Control and Prevention. Workplace-based investigation of contacts of a patient with highly infectious tuberculosis--Maryland, District of Columbia, and Virginia, 2006. *MMWR. Morbidity and Mortality Weekly Report.* 2008;57(4):94–8.

272. Koster B, Borgen K, Meijer H, van der Plas S, Kuyvenhoven V. Large scale contact tracing after a case of open tuberculosis in a supermarket, the Netherlands, January-February 2005 [corrected]. *Euro Surveillance* . 2005;10(2):E050224.1.

273. Jones JS. Tuberculosis case-finding in coastal south-east Kent, 1977--81. Lancet. 1983;1(8318):232-3.

274. Rao VR, Joanes RF, Kilbane P, Galbraith NS. Outbreak of tuberculosis after minimal exposure to infection. *British Medical Journal*. 1980;281(6234):187–9.

275. Curtis AB, Ridzon R, Vogel R, et al. Extensive transmission of Mycobacterium tuberculosis from a child. *The New England Journal of Medicine*. 1999;341(20):1491–5.

276. Jones JS. A tuberculosis outbreak in Deal, Kent. Lancet. 1982;1(8280):1060-1.

277. Ferrer A, Pina JM, Sala MR. Contact tracing in adolescents at risk for tuberculosis. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S107.

278. Langenskiold E, Herrmann FR, Luong BL, Rochat T, Janssens J-P. Contact tracing for tuberculosis and treatment for latent infection in a low incidence country. *Swiss Medical Weekly*. 2008;138:78–84.

279. Castilla J, Palmera R, Navascués A, et al. Population-based contact investigation of a cluster of tuberculosis cases in a small village. *Epidemiology and Infection*. 2009;137(10):1426–35.

280. Washko R, Robinson E, Fehrs LJ, Frieden TR. Tuberculosis transmission in a high school choir. *The Journal of School Health*. 1998;68(6):256–9.

281. Person AK, Goswami ND, Bissette DJ, et al. Pairing QuantiFERON gold in-tube with opt-out HIV testing in a tuberculosis contact investigation in the Southeastern United States. *AIDS Patient Care and STDs*. 2010;24(9):539–43.

282. Pang SC. Chest radiography and tuberculosis case-finding in Western Australia. Respiratory Medicine. 1998;92(2):198-202.

283. Hadjichristodoulou C, Vasilogiannakopoulos A, Spala G, et al. Mycobacterium tuberculosis transmission among high school students in Greece. *Pediatrics International*. 2005;47(2):180–4.

284. Roberts CM, Musiska M. Results of an extended tuberculosis screening programme among sixth formers in a London school--more questions than answers. *Communicable disease and public health / PHLS*. 2003;6(1):22–5.

285. Bosley AR, George G, George M. Outbreak of pulmonary tuberculosis in children. Lancet. 1986;1(8490):1141-3.

286. Nduaguba P, Brannan G, Shubrook J. Evaluation of identifying tuberculosis infection and disease in a rural institutionalized population. 2010;2(1):10–13.

287. Liippo KK, Kulmala K, Tala EO. Focusing tuberculosis contact tracing by smear grading of index cases. The American Review of Respiratory Disease. 1993;148(1):235-6.

288. Phillips L, Carlile J, Smith D. Epidemiology of a tuberculosis outbreak in a rural Missouri high school. *Pediatrics*. 2004;113(6):e514–9. 289. Kirkpatrick A, Bell C, Petrovic M, et al. Investigation of a tuberculosis cluster at a job centre in Manchester, United Kingdom. *Euro Surveillance*. 2006;11(11):273–5.

290. Kiers A, Drost AP, van Soolingen D, Veen J. Use of DNA fingerprinting in international source case finding during a large outbreak of tuberculosis in The Netherlands. *The International Journal of Tuberculosis and Lung Disease*. 1997;1(3):239–45.

291. Aissa K, Madhi F, Ronsin N, et al. Evaluation of a model for efficient screening of tuberculosis contact subjects. *American Journal of Respiratory and Critical Care Medicine*. 2008;177(9):1041–7.

292. Selby CD, Allen MB, Leitch AG. Optimal duration of radiological follow-up for tuberculosis contacts. *Respiratory Medicine*. 1989;83(4):353–5.

293. Calder L, Rivers J, Hayhurst M, et al. A school and community outbreak of tuberculosis in Palmerston North, New Zealand. *The New Zealand Medical Journal*. 2008;121(1278):50–61.

294. Centers for Disease Control and Prevention. Tuberculosis outbreak on an American Indian reservation--Montana, 2000-2001. *MMWR*. *Morbidity and Mortality Weekly Report*. 2002;51(11):232–4.

295. Calder L, Hampton L, Prentice D, et al. A school and community outbreak of tuberculosis in Auckland. *The New Zealand Medical Journal*. 2000;113(1105):71–4.

296. Ozkara S, Gumuslu F, Gullu U, Baykal F, Ozkan S. Contact tracing and preventive therapy: experience of Turkey. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S108.

297. Behr MA, Hopewell PC, Paz EA, et al. Predictive value of contact investigation for identifying recent transmission of My cobacterium tuberculosis. *American Journal of Respiratory and Critical Care Medicine*. 1998;158(2):465–9.

298. Paranjothy S, Eisenhut M, Lilley M, et al. Extensive transmission of Mycobacterium tuberculosis from 9 year old child with pulmonary tuberculosis and negative sputum smear. *BMJ* . 2008;337:a1184.

299. Ansari S, Thomas S, Campbell IA, Furness L, Evans MR. Refined tuberculosis contact tracing in a low incidence area. *Respiratory Medicine*. 1998;92(9):1127–31.

300. Jereb J, Etkind SC, Joglar OT, Moore M, Taylor Z. Tuberculosis contact investigations: outcomes in selected areas of the United States, 1999. *TheInternational Journal of Tuberculosis and Lung Disease*. 2003;7(12 Suppl 3):S384–90.

301. Reichler MR, Reves R, Bur S, et al. Evaluation of investigations conducted to detect and prevent transmission of tuberculosis. *JAMA*. 2002;287(8):991–5.

302. Duthie S, Black C, Douglas G, Jackson AD, Webster D. Tuberculosis outbreak associated with a mosque: challenges of large scale contact tracing. *Euro Surveillance* . 2008;13(51).

303. Muller LL, Bennet R, Gaines H, Zedenius I, Berggren I. Complexity in estimating recent tuberculosis transmission among predominantly immigrant school children in Stockholm, Sweden 2006. *Scandinavian Journal of Infectious Diseases*. 2008;40(9):709–14.

304. Alvarez-Castillo MC, Cano Escudero S, Taveira Jiménez JA. Microepidemics of tuberculosis in schools. How should we select contacts?. *Gaceta Sanitaria* . 21(6):465–70.

305. Toivgoogiin A, Toyota M, Yasuda N, Ohara H. Validity of using tuberculin skin test erythema measurement for contact investigation during a tuberculosis outbreak in schoolchildren previously vaccinated with BCG. *Journal of Epidemiology*. 2005;15(2):56–64.

306. Alsedà M, Godoy P. [Tuberculin reaction size in tuberculosis patient contacts]. *Archivos de bronconeumología*. 2007;43(3):161–4. 307. Zangger E, Gehri M, Krähenbühl J, Zuberbühler D, Zellweger J. Epidemiological and economical impact of tuberculosis in an adolescent girl in Lausanne (Switzerland). *Swiss Med Wkly*. 2001;131:418–21.

308. Gorís-Pereiras A, Fernández-Villar A, Chouciño-Garrido N, Otero-Baamonde M, Vázquez-Gallardo R. Factores predictores de la aparición de nuevos casos de infección tuberculosa y de viraje tuberculínico en un estudio de contactos. *Enfermería Clínica*. 2008;18(4):183–189. 309. Marks SM, Taylor Z, Qualls NL, et al. Outcomes of contact investigations of infectious tuberculosis patients. *American Journal of Respiratory and Critical Care Medicine*. 2000;162(6):2033–8.

310. Andre M, Ijaz K, Tillinghast JD, et al. Transmission network analysis to complement routine tuberculosis contact investigations. *American Journal of Public Health*. 2007;97(3):470–7.

311. Hortoneda M, Saiz C, Alfonso JI, et al. Prevention and early detection of tuberculosis. *European Journal of Epidemiology*. 1996;12(4):413–419.

312. Teale C, Cundall DB, Pearson SB. Outbreak of tuberculosis in a poor urban community. The Journal of Infection. 1991;23(3):327-9.

Leung W-C, Tregoning D. Issues arising from two related cases of childhood tuberculous meningitis. *Public Health*. 2000;114(1):57–59.
 Seki N. A suspected case of mass outbreak of tuberculosis infection in a small company separated into two floors. *Kekkaku*. 2003;78(5):395–9.

315. del Castillo Otero D, Peñafiel Colás M, Álvarez Gutiérrez F, et al. Investigation of Tuberculosis Contacts in a Nonhospital Pneumology Practice. European Journal of Clinical Microbiology & Infectious Diseases. 1999;18(11):790–795.

316. Andoh K, Yamanaka K, Akashi T. The significance of tuberculin skin test in the investigation of mass outbreak of tuberculosis in schools. *Kekkaku*. 2002;77(9):589–95.

317. Dutt AK, Mehta JB, Whitaker BJ, Westmoreland H. Outbreak of tuberculosis in a church. Chest. 1995;107(2):447-52.

318. Funk EA. Tuberculosis contact investigations in rural Alaska: a unique challenge. *The International Journal of Tuberculosis and Lung Disease*. 2003;7(12 Suppl 3):S349–52.

319. Sánchez Marenco A, Borja Pérez C, Rubio Luengo MA, et al. Epidemic outbreak of tuberculosis in a primary and secondary school in Granada (Spain). *Anales de Pediatría*. 2003;58(5):432–7.

320. Reichler MR, Tapia J, Chavez-Lindell T, et al. Results of a Prospective Evaluation of Tuberculosis (TB) Contact Investigations Conducted in the United States and Canada. *American Journal of Respiratory and Critical Care Medicine*. 2009;179:A2202.

321. De Zoysa R, Shoemack P, Vaughan R, Vaughan A. A prolonged outbreak of tuberculosis in the North Island. *New Zealand Public Health Report*. 2001;8(1):1–3.

322. McElnay C, Thornley C, Armstrong R. A community and workplace outbreak of tuberculosis in Hawke's Bay in 2002. *The New Zealand Medical Journal*. 2004;117(1200):U1019.

323. Mukerjee A, Butler CC. Outbreak of tuberculosis linked to a source case imprisoned during treatment. Should the courts tell GPs about prison sentences and should GPs tell prison doctors about medical diagnoses? *The British Journal of General Practice*. 2001;51(465):297–8. 324. Hoge CW, Fisher L, Donnell HD, et al. Risk factors for transmission of Mycobacterium tuberculosis in a primary school outbreak: lack of racial difference in susceptibility to infection. *American Journal of Epidemiology*. 1994;139(5):520–30.

325. Gillman A, Berggren I, Bergström S-E, Wahlgren H, Bennet R. Primary tuberculosis infection in 35 children at a Swedish day care center. *The Pediatric Infectious Disease Journal*. 2008;27(12):1078–82.

326. Jiménez Luque JM, Herrera Morcillo E, Lora Cerezo N, Pérula de Torres LA, Gascón FJ. Yield of active search of tuberculosis in a marginal population. *Atencion Primaria*. 1994;13(8):432–3, 435–6.

327. Dewan PK, Banouvong H, Abernethy N, et al. A tuberculosis outbreak in a private-home family child care center in San Francisco, 2002 to 2004. *Pediatrics*. 2006;117(3):863–9.

328. Hill P, Calder L. An outbreak of tuberculosis in an Auckland church group. *New Zealand Public Health Report*. 2000;7(9/10):41–43. 329. Pina JM, Rodés A, Alcaide JM, Plasència E, Dominguez A. Outbreak of tuberculosis in a Catalonian nursery school affects 27 children. *Euro Surveillance*. 2005;10(5):E050512.1.

330. Fukazawa K. Application and problems of quantiFERON TB-2G for tuberculosis control programs--(1) tuberculosis outbreak in a Cram School. *Kekkaku* . 2007;82(1):53–9.

331. Yoshiyama T, Ogata H. CT screening before treatment of latent tuberculous infection for the diagnosis of clinical TB among contacts. *Kekkaku* . 2008;83(5):411–6.

332. Voss L, Campbell M, Tildesley C, et al. Paediatric tuberculosis in a Pacific Islands community in New Zealand. Journal of Paediatrics and Child Health. 2006;42(3):118–22.

333. Chee CBE, Teleman MD, Boudville IC, Wang YT. Contact screening and latent TB infection treatment in Singapore correctional facilities. *The International Journal of Tuberculosis and Lung Disease*. 2005;9(11):1248–52.

334. Chee CBE, Teleman MD, Boudville IC, Do SE, Wang YT. Treatment of latent TB infection for close contacts as a complementary TB control strategy in Singapore. *The International Journal of Tuberculosis and Lung Disease*. 2004;8(2):226–31.

335. Gazetta CE, Ruffino-Netto A, Pinto Neto JM, et al. Investigation of tuberculosis contacts in the tuberculosis control program of a mediumsized municipality in the southeast of Brazil in 2002. *Jornal Brasileiro de Pneumologia*. 2006;32(6):559–65.

336. Lew WJ, Jung YJ, Song J-W, et al. Combined use of QuantiFERON-TB Gold assay and chest computed tomography in a tuberculosis outbreak. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(5):633–9.

337. Lee SH, Lew WJ, Kim HJ, et al. Serial interferon-gamma release assays after rifampicin prophylaxis in a tuberculosis outbreak. *Respiratory medicine*. 2010;104(3):448–53.

338. Nania JJ, Skinner J, Wilkerson K, et al. Exposure to pulmonary tuberculosis in a neonatal intensive care unit: unique aspects of contact investigation and management of hospitalized neonates. *Infection Control and Hospital Epidemiology* . 2007;28(6):661–5.

339. Moore M, Schulte J, Valway SE, et al. Evaluation of transmission of Mycobacterium tuberculosis in a pediatric setting. *The Journal of Pediatrics*. 1998;133(1):108–12.

340. Piana F, Codecasa LR, Cavallerio P, et al. Use of a T-cell-based test for detection of tuberculosis infection among immunocompromised patients. *The European Respiratory Journal*. 2006;28(1):31–4.

341. Carbonne A, Poirier C, Antoniotti G, et al. Investigation of patient contacts of heath care workers with infectious tuberculosis: 6 cases in the Paris area. *The International Journal of Tuberculosis and Lung Disease*. 2005;9(8):848–52.

342. Lee EH, Graham PL, O'Keefe M, Fuentes L, Saiman L. Nosocomial transmission of Mycobacterium tuberculosis in a children's hospital. *The International Journal of Tuberculosis and Lung Disease*. 2005;9(6):689–92.

343. Mouchet F, Hansen V, Van Herreweghe I, et al. Tuberculosis in healthcare workers caring for a congenitally infected infant. *Infection Control and Hospital Epidemiology*. 2004;25(12):1062–6.

344. Ohno H, Ikegami Y, Kishida K, et al. A contact investigation of the transmission of Mycobacterium tuberculosis from a nurse working in a newborn nursery and maternity ward. *Journal of Infection and Chemotherapy*. 2008;14(1):66–71.

345. [none]. Tuberculosis in hospital staff. Communicable Disease Report (Lond Engl Wkly). 1991;1(33).

346. Berlioz M, del Mar Corcostegui M, Dalfin M, Saos J, Albertini M. Expérience du dépistage à large échelle de la transmission de

Mycobacterium tuberculosis par un pédiatre libéral à ses patients. Archives de Pédiatrie. 2008;15(11):1637–1642.

347. Laartz BW, Narvarte HJ, Holt D, Larkin JA, Pomputius WF. Congenital tuberculosis and management of exposures in a neonatal intensive care unit. *Infection Control and Hospital Epidemiology*. 2002;23(10):573–9.

348. Linquist JA, Rosaia CM, Riemer B, Heckman K, Alvarez F. Tuberculosis exposure of patients and staff in an outpatient hemodialysis unit. *American Journal of Infection Control*. 2002;30(5):307–10.

349. Cockerill FR, Williams DE, Eisenach KD, et al. Prospective evaluation of the utility of molecular techniques for diagnosing nosocomial transmission of multidrug-resistant tuberculosis. *Mayo Clinic Proceedings*. 1996;71(3):221–9.

350. George RH, Gully PR, Gill ON, et al. An outbreak of tuberculosis in a children's hospital. *The Journal of Hospital Infection*. 1986;8(2):129–42.

351. Richeldi L, Ewer K, Losi M, et al. T cell-based tracking of multidrug resistant tuberculosis infection after brief exposure. *American Journal of Respiratory and Critical Care Medicine*. 2004;170(3):288–95.

352. Gentry A, De Rekeneire N, Donnarel G. On a case of tuberculosis in a long-term care unit. Revue de Geriatrie. 1997;22(9):623-8.

353. Munoz FM, Ong LT, Seavy D, et al. Tuberculosis among adult visitors of children with suspected tuberculosis and employees at a children's hospital. *Infection Control and Hospital Epidemiology*. 2002;23(10):568–72.

354. MMWR. Nosocomial transmission of Mycobacterium tuberculosis found through screening for severe acute respiratory syndrome--Taipei, Taiwan, 2003. *MMWR. Morbidity and mortality weekly report*. 2004;53(15):321–2.

355. Plauché WC, Buechner HA, Diket AL. Tuberculosis prenatal screening and therapy during pregnancy. *The Journal of the Louisiana State Medical Society*. 1983;135(9):13–5.

356. Schwartz N, Wagner SA, Keeler SM, et al. Universal tuberculosis screening in pregnancy. *American journal of perinatology*. 2009;26(6):447–51.

357. Metersky ML, Catanzaro A. A rapid tuberculosis screening program for new mothers who have had no prenatal care. *Chest.* 1993;103(2):364–9.

358. CIRARU-VIGNERON N, NGUYEN TAN LUNG R, BLONDEAU MA, BARRIER J. Incidence de la tuberculose pulmonaire dans une population de femmes enceintes à risques. *Journal de gynécologie obstétrique et biologie de la reproduction*. 15(7):913–917.

359. Schulte JM, Bryan P, Dodds S, et al. Tuberculosis skin testing among HIV-infected pregnant women in Miami, 1995 to 1996. *Journal of Perinatology*. 2002;22(2):159–162.

360. Nezar M, Goda H, El-Negery M, et al. Genital tract tuberculosis among infertile women: an old problem revisited. *Archives of Gynecology* and Obstetrics. 2009;280(5):787–91.

361. Sheriff FG, Manji KP, Manji MP, et al. Latent tuberculosis among pregnant mothers in a resource poor setting in Northern Tanzania: a cross-sectional study. *BMC infectious diseases*. 2010;10:52.

362. Parikh FR, Nadkarni SG, Kamat SA, et al. Genital tuberculosis--a major pelvic factor causing infertility in Indian women. *Fertility and Sterility*. 1997;67(3):497–500.

363. Padubidri V, Baijal L, Prakash P, Chandra K. The detection of endometrial tuberculosis in cases of infertility by uterine a spiration cytology. *Acta Cytologica*. 1980;24(4):319–24.

364. Emembolu JO, Anyanwu DO, Ewa B. Genital tuberculosis in infertile women in northern Nigeria. *West African Journal of Medicine*. 1993;12(4):211–2.

365. Kali PB, Gray GE, Violari A, et al. Combining PMTCT with active case finding for tuberculosis. *Journal of acquired immune deficiency* syndromes (1999). 2006;42(3):379–381.

366. Oosthuizen AP, Wessels PH, Hefer JN. Tuberculosis of the female genital tract in patients attending an infertility clinic. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde. 1990;77(11):562–4.

367. Brassard P, Bruneau J, Schwartzman K, Sénécal M, Menzies D. Yield of tuberculin screening among injection drug users. *The International Journal of Tuberculosis and Lung Disease*. 2004;8(8):988–93.

368. Garfein RS, Laniado-Laborin R, Rodwell TC, et al. Latent tuberculosis among persons at risk for infection with HIV, Tijuana, Mexico. *Emerging Infectious Diseases*. 2010;16(5):757–63.

369. Sadeghi-Hassanabadi A, Yaghout M. Tuberculosis among drug addicts in Shiraz, Islamic Republic of Iran. *Eastern Mediterranean Health Journal*. 1998;4(3):567–570.

370. Friedman LN, Sullivan GM, Bevilaqua RP, Loscos R. Tuberculosis screening in alcoholics and drug addicts. *The American Review of Respiratory Disease*. 1987;136(5):1188–92.

371. Kiria N, Mdivani N, Kalandadze I. TB among intravenous drug users in Georgia. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S85.

372. Lau EA, Ferson MJ. Surveillance for tuberculosis among residents of hostels for homeless men. Australian and New Zealand Journal of Public Health. 1997;21(5):447–50.

373. Kong P-M, Tapy J, Calixto P, et al. Skin-test screening and tuberculosis transmission among the homeless. *Emerging Infectious Diseases*. 2002;8(11):1280–4.

374. McAdam JM, Bucher SJ, Brickner PW, Vincent RL, Lascher S. Latent tuberculosis and active tuberculosis disease rates among the homeless, New York, New York, USA, 1992-2006. *Emerging Infectious Diseases*. 2009;15(7):1109–11.

375. McElroy PD, Southwick KL, Fortenberry ER, et al. Outbreak of tuberculosis among homeless persons coinfected with human immunodeficiency virus. *Clinical Infectious Diseases*. 2003;36(10):1305–12.

Barry MA, Wall C, Shirley L, et al. Tuberculosis screening in Boston's homeless shelters. *Public Health Reports*. 1986;101(5):487–94.
 Southern A, Premaratne N, English M, Balazs J, O'Sullivan D. Tuberculosis among homeless people in London: an effective model of screening and treatment. *The International Journal of Tuberculosis and Lung Disease*. 1999;3(11):1001–8.

378. Badiaga S, Richet H, Azas P, et al. Contribution of a shelter-based survey for screening respiratory diseases in the homeless. *European journal of public health*. 2009;19(2):157–60.

379. Capewell S, France AJ, Anderson M, Leitch AG. The diagnosis and management of tuberculosis in common hostel dwellers. *Tubercle*. 1986;67(2):125–31.

380. Solsona J, Caylà JA, Nadal J, et al. Screening for tuberculosis upon admission to shelters and free-meal services. *European Journal of Epidemiology*. 2001;17(2):123–8.

381. de Vries G, van Hest RA. From contact investigation to tuberculosis screening of drug addicts and homeless persons in Rotterdam. *European Journal of Public Health*. 2006;16(2):133–6.

382. Patel KR. Pulmonary tuberculosis in residents of lodging houses, night shelters and common hostels in Glasgow: a 5-year prospective survey. *British Journal of Diseases of the Chest.* 1985;79(1):60–6.

383. Yagi T, Yamagishi F, Sasaki Y, et al. Clinical review of patients with pulmonary tuberculosis who were detected by the screening of homeless persons admitted in the shelter facilities. *Kekkaku*. 2006;81(5):371–4.

384. Kaguraoka S, Ohmori M, Takao Y, et al. Tuberculosis control in Shinjuku Ward, Tokyo--promoting the DOTS program and its outcome. *Kekkaku*. 2008;83(9):611–20.

385. Valin N, Antoun F, Chouaïd C, et al. Outbreak of tuberculosis in a migrants' shelter, Paris, France, 2002. The International Journal of Tuberculosis and Lung Disease. 2005;9(5):528–33.

386. Lofy KH, McElroy PD, Lake L, et al. Outbreak of tuberculosis in a homeless population involving multiple sites of transmission. *The International Journal of Tuberculosis and Lung Disease* . 2006;10(6):683–9.

387. Takatorige T, Ohsaka T, Yamamoto S, et al. Tuberculosis and its control measures for homeless people: implementation of chest X-ray examination for three successive years. *Kekkaku*. 2007;82(1):19–25.

388. Kimerling ME, Shakes CF, Carlisle R, et al. Spot sputum screening: evaluation of an intervention in two homeless shelters. *The International Journal of Tuberculosis and Lung Disease*. 1999;3(7):613–9.

389. GLICKSMAN R, BRICKNER PW, EDWARDS D. Tuberculosis Screening and Treatment of New York City Homeless People. Annals of the New York Academy of Sciences. 1984;435(1 First Colloqu):419–421.

390. Sokolove PE, Lee BS, Krawczyk JA, et al. Implementation of an emergency department triage procedure for the detection and isolation of patients with active pulmonary tuberculosis. *Annals of Emergency Medicine*. 2000;35(4):327–36.

391. Serwint JR, Hall BS, Baldwin RM, Virden JM. Outcomes of annual tuberculosis screening by Mantoux test in children considered to be at high risk: results from one urban clinic. *Pediatrics*. 1997;99(4):529–33.

392. Sánchez-Pérez HJ, Prat-Monterde D, Jansà JM, Martín-Mateo M. Pulmonary tuberculosis and use of health services in zones of high socioeconomic marginalization in Chiapas, Mexico. *Gaceta Sanitaria*. 14(4):268–76.

393. Nakata N, Inori F, Nakamura F, et al. Significance of tuberculosis screening of outpatients in areas with high prevalence of tuberculosis. *Kekkaku*. 2007;82(5):455–8.

394. Siqueira-Batista R, Gomes AP, Bisaglia JB, et al. Screening for pulmonary tuberculosis in Teresópolis, RJ, Brazil: the search for respiratory symptomatic patients in emergency service of "Hospital das Clínicas de Teresópolis Costantino Ottaviano, Fundação Educacional Serra dos Órgãos." *Revista do Instituto de Medicina Tropical de São Paulo*. 2005;47(2):117–118.

395. Arantes GR, Ruffino-Netto A. Case-finding in pulmonary tuberculosis. Photofluorography respiratory symptoms, followed by bacteriological examinations in suspected cases. *Revista de saúde pública*. 1980;14(2):185–93.

396. Aluoch JA, Swai OB, Edwards EA, et al. Studies of case-finding for pulmonary tuberculosis in outpatients at 4 district hospitals in Kenya. *Tubercle*. 1985;66(4):237–49.

397. Thomas A, Chandrasekaran V, Joseph P, et al. Increased yield of smear positive pulmonary TB cases by screening patients with > or =2 weeks cough, compared to > or =3 weeks and adequacy of 2 sputum smear examinations for diagnosis. *The Indian journal of tuberculosis*. 2008;55(2):77–83.

398. Seetha MA, Rupert Samuel GE, Parimala N. Improvement in Case-Finding in District Tuberculosis Programme by Examining Additional Sputum Specimens. *Indian Journal of Tuberculosis*. 1990;37(3):139–144.

399. Ngadaya ES, Mfinanga GS, Wandwalo ER, Morkve O. Detection of pulmonary tuberculosis among patients with cough attending outpatient departments in Dar Es Salaam, Tanzania: does duration of cough matter? *BMC Health Services Research*. 2009;9:112.

400. Santha T, Garg R, Subramani R, et al. Comparison of cough of 2 and 3 weeks to improve detection of smear-positive tuberculosis cases among out-patients in India. *The International Journal of Tuberculosis and Lung Disease and Lung Disease*, 2005;9(1):61–8.

401. Escombe AR, Huaroto L, Ticona E, et al. Tuberculosis transmission risk and infection control in a hospital emergency department in Lima, Peru. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(9):1120–6.

402. Tsymbalar' GG, Zhurzha LE, Tudos TP. Detection of tuberculosis and nonspecific lung diseases among the rural population in the periods between fluorographic examinations. *Problemy tuberkuleza*. 1980;(11):9–13.

403. Houwert KA, Borggreven PA, Schaaf HS, et al. Prospective evaluation of World Health Organization criteria to assist diagnosis of tuberculosis in children. *The European Respiratory Journal*. 1998;11(5):1116–20.

404. Lin C-H, Tsai C-H, Liu C-E, et al. "Cough officer screening" improves detection of pulmonary tuberculosis in hospital in-patients. *BMC public health*. 2010;10:238.

405. Willingham FF, Schmitz TL, Contreras M, et al. Hospital control and multidrug-resistant pulmonary tuberculosis in female patients, Lima, Peru. *Emerging Infectious Diseases*. 7(1):123–7.

406. Beare NAV, Kublin JG, Lewis DK, et al. Ocular disease in patients with tuberculosis and HIV presenting with fever in Africa. *The British Journal of Ophthalmology*. 2002;86(10):1076–9.

407. Ferrand RA, Bandason T, Musvaire P, et al. Causes of acute hospitalization in adolescence: burden and spectrum of HIV-related morbidity in a country with an early-onset and severe HIV epidemic: a prospective survey. *PLoS Medicine*. 2010;7(2):e1000178.

408. Spencer SS, Morton AR. Tuberculosis surveillance in a state prison system. *American Journal of Public Health*. 1989;79(4):507–9. 409. Risser WL, Smith KC. Tuberculosis in incarcerated youth in Texas. *JAMA*. 2005;293(22):2716–7.

410. Puisis M, Feinglass J, Lidow E, Mansour M. Radiographic screening for tuberculosis in a large urban county jail. *Public Health Reports*. 1996;111(4):330–4

411. Baillargeon J, Black SA, Leach CT, et al. The infectious disease profile of Texas prison inmates. *Preventive Medicine*. 2004;38(5):607–12. 412. White MC, Tulsky JP, Portillo CJ, et al. Tuberculosis prevalence in an urban jail: 1994 and 1998. *The International Journal of Tuberculosis and Lung Disease*. 2001;5(5):400–4.

413. Erkens C, Haddad W. Effectiveness of screening and treatment outcome of prisoners in the Netherlands. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S103.

414. Layton MC, Henning KJ, Alexander TA, et al. Universal radiographic screening for tuberculosis among inmates upon admission to jail. *American Journal of Public Health*. 1997;87(8):1335–7.

415. Saunders DL, Olive DM, Wallace SB, et al. Tuberculosis screening in the federal prison system: an opportunity to treat and prevent tuberculosis in foreign-born populations. *Public Health Reports*. 2001;116(3):210–8.

416. Martin V, Guerra JM, Cayla JA, et al. Incidence of tuberculosis and the importance of treatment of latent tuberculosis infection in a Spanish prison population. *The International Journal of Tuberculosis and Lung Disease*. 2001;5(10):926–32.

417. Kiter G, Arpaz S, Keskin S, et al. Tuberculosis in Nazilli District Prison, Turkey, 1997-2001. *The International Journal of Tuberculosis and Lung Disease*. 2003;7(2):153–8.

418. Carbonara S, Babudieri S, Longo B, et al. Correlates of Mycobacterium tuberculosis infection in a prison population. *The European Respiratory Journal*. 2005;25(6):1070–6.

419. Mor Z, Adler A, Leventhal A, et al. Tuberculosis behind bars in Israel: policy making within a dynamic situation. *The Israel Medical Association Journal*. 2008;10(3):202–6.

420. Bergmire-Sweat D, Barnett BJ, Harris SL, et al. Tuberculosis outbreak in a Texas prison, 1994. *Epidemiology and Infection*. 1996;117(3):485–92.

421. Martin V, Gonzalez P, Caylá JA, et al. Case-finding of pulmonary tuberculosis on admission to a penitentiary centre. *Tubercle and Lung Disease*. 1994;75(1):49–53.

422. McLaughlin SI, Spradling P, Drociuk D, et al. Extensive transmission of Mycobacterium tuberculosis among congregated, HIV-infected prison inmates in South Carolina, United States. *The International Journal of Tuberculosis and Lung Disease*. 2003;7(7):665–72.

423. Carbajal CL, Vallina E, Arribas JM, Díaz J, Domínguez B. Epidemiological study of prisoners at risk for AIDS in a Spanish prison. *Anales de Medicina Interna*. 1991;8(8):382–6.

424. Arranz Alcalde MS, Rodríguez JC. Detection of tuberculosis in HIV-positive patients. *Revista de Enfermería*. 1999;22(5):358–60. 425. Wong MY, Leung CC, Tam CM, et al. TB surveillance in correctional institutions in Hong Kong, 1999-2005. *The International Journal of Tuberculosis and Lung Disease*. 2008;12(1):93–8.

426. Leung CC, Chan CK, Tam CM, et al. Chest radiograph screening for tuberculosis in a Hong Kong prison. *The international journal of tuberculosis and lung disease*. 2005;9(6):627–32.

427. Vieira AA, Ribeiro SA, de Siqueira AM, et al. Prevalence of patients with respiratory symptoms through active case finding and diagnosis of pulmonary tuberculosis among prisoners and related predictors in a jail in the city of Carapicuíba, Brazil. *Revista Brasileira de Epidemiologia*. 2010;13(4):641–50.

428. Abrahão RMCM, Nogueira PA, Malucelli MIC. Tuberculosis in county jail prisoners in the western sector of the city of São Paulo, brazil. *The International Journal of Tuberculosis and Lung Disease*. 2006;10(2):203–8.

429. Lemos ACM, Matos ED, Bittencourt CN. Prevalence of active and latent TB among inmates in a prison hospital in Bahia, Brazil. Jornal Brasileiro de Pneumologia. 2009;35(1):63-8.

430. Sanchez A, Larouzé B, Espinola AB, et al. Screening for tuberculosis on admission to highly endemic prisons? The case of Rio de Janeiro State prisons. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(10):1247–52.

431. Sanchez A, Gerhardt G, Natal S, et al. Prevalence of pulmonary tuberculosis and comparative evaluation of screening strategies in a Brazilian prison. *The International Journal of Tuberculosis and Lung Disease*. 2005;9(6):633–9.

432. Fournet N, Sanchez A, Massari V, et al. Development and evaluation of tuberculosis screening scores in Brazilian prisons. *Public Health*. 2006;120(10):976–83.

433. Sanchez A, Diuana V, Romano E, et al. Tuberculosis control in prisons: impact of intensive education and screening at entry. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S362.

434. Harries AD, Nyirenda TE, Yadidi AE, et al. Tuberculosis control in Malawian prisons: from research to policy and practice. *The International Journal of Tuberculosis and Lung Disease*. 2004;8(5):614–7.

435. Chiang C-Y, Hsu C-J, Hsu P-K, Suo J, Lin T-P. Pulmonary tuberculosis in the Taiwanese prison population. *Journal of the Formosan Medical Association*. 2002;101(8):537–41.

436. Rao NA. Prevalence of pulmonary tuberculosis in Karachi central prison. *JPMA. The Journal of the Pakistan Medical Association*. 2004;54(8):413–5.

437. Banda HT, Gausi F, Harries AD, Salaniponi FM. Prevalence of smear-positive pulmonary tuberculosis among prisoners in Malawi: a national survey. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(12):1557–9.

438. Okaru C, Bhatt K, Amayo E, Aywak A, Irimu H. Prevalence of active pulmonary tuberculosis among prisoners at Kamiti Maximum Security Prison, Kenya. *International Journal of Tuberculosis and Lung Diseases*. 2009;13(12 S1):S87.

439. Sretrirutchai S, Silapapojakul K, Palittapongarnpim P, Phongdara A, Vuddhakul V. Tuberculosis in Thai prisons: magnitude, transmission and drug susceptibility. *The International Journal of Tuberculosis and Lung Disease*. 2002;6(3):208–14.

440. Kazi AM, Shah SA, Jenkins CA, Shepherd BE, Vermund SH. Risk factors and prevalence of tuberculosis, human immunodeficiency virus, syphilis, hepatitis B virus, and hepatitis C virus among prisoners in Pakistan. *International Journal of Infectious Diseases* . 2010;14 Suppl 3:e60–6.

441. Banu S, Hossain A, Uddin MKM, et al. Pulmonary tuberculosis and drug resistance in Dhaka central jail, the largest prison in Bangladesh. *PloS one*. 2010;5(5):e10759.

442. Noeske J, Kuaban C, Amougou G, Piubello A, Pouillot R. Pulmonary tuberculosis in the Central Prison of Douala, Cameroon. *East African medical journal*. 2006;83(1):25–30.

443. Nyangulu DS, Harries AD, Kang'ombe C, et al. Tuberculosis in a prison population in Malawi. *Lancet*. 1997;350(9087):1284–1287.
444. Shah SA, Mujeeb SA, Mirza A, Nabi KG, Siddiqui Q. Prevalence of pulmonary tuberculosis in Karachi juvenile jail, Pakistan. *Eastern Mediterranean health journal = La revue de santé de la Méditerranée orientale = al-Majallah al-sihhīyah li-sharq al-mutawassit.* 2003;9(4):667–74.

445. Aerts A, Habouzit M, Mschiladze L, et al. Pulmonary tuberculosis in prisons of the ex-USSR state Georgia: results of a nation-wide prevalence survey among sentenced inmates. *The International Journal of Tuberculosis and Lung Disease*. 2000;4(12):1104–10. 446. Koffi N, Ngom AK, Aka-Danguy E, et al. Smear positive pulmonary tuberculosis in a prison setting: experience in the penal camp of Bouaké, Ivory Coast. *The International Journal of Tuberculosis and Lung Disease*. 1997;1(3):250–3.

447. Kosmak AV, Kopylov IF. Tuberculosis in a penitentiary somatic hospital. *Problemy tuberkuleza i bolezneĭ legkikh*. 2008;(2):12–4. 448. Mbondi Mfondih S, Noeske J. Tuberculosis and HIV/AIDS prevention and care in prisons in Cameroon: achievements and constraints. *XVIII International AIDS Conference, Vienna 18-23 July*. 2010:Abstr MOPE0859.

449. Habeenzu C, Mitarai S, Lubasi D, et al. Tuberculosis and multidrug resistance in Zambian prisons, 2000-2001. *The International Journal of Tuberculosis and Lung Disease*. 2007;11(11):1216–20.

450. Trehan I, Meinzen-Derr JK, Jamison L, Staat MA. Tuberculosis Screening in Internationally Adopted Children: The Need for Initial and Repeat Testing. *Pediatrics*. 2008;122(1):e7–e14.

451. Pedemonte P, Rosso R, Iozzi C, et al. Infectious diseases in adopted children coming from developing countries: A possible approach. *Italian Journal of Pediatrics*. 2002;28(5):392–395.

452. Blum R, Polish L, Tapy J, Catlin B, Cohn D. Results of screening for tuberculosis in foreign-born persons applying for adjustment of immigration status. *Chest*. 1993;103(6):1670–1674.

453. Fernández Sanfrancisco MT, Díaz Portillo J, Sánchez Romero JM, Pérez Fernández A, Vadillo Andrade J. Prevalence of tuber culosis among the immigrant population in Ceuta, Spain. *Revista Española de Salud Pública*. 2001;75(6):551–8.

454. King K, Vodicka P. Screening for conditions of public health importance in people arriving in Australia by boat without authority. *The Medical Journal of Australia*. 2001;175(11-12):600–2.

455. Schoch OD, Rieder P, Tueller C, et al. Diagnostic Yield of Sputum, Induced Sputum, and Bronchoscopy after Radiologic Tuberculosis Screening. *American Journal of Respiratory and Critical Care Medicine*. 2006;175(1):80–86.

456. Bonvin L, Zellweger JP. Mass miniature X-ray screening for tuberculosis among immigrants entering Switzerland. *Tubercle and Lung Disease*. 1992;73(6):322–325.

457. Callister M, Barringer J, Thanabalasingam ST, Gair R, Davidson R. Pulmonary tuberculosis among political asylum seekers screened at Heathrow Airport, London, 1995-9. *Thorax*. 2002;57:152–156.

458. Bakker J, Horsthuis K, Cobelens FGJ, Beek FJA, Schulpen TWJ. Value of routine chest radiography in the medical screening of internationally adopted children. *Acta Paediatrica*. 2005;94(3):366–8.

459. Godue CB, Goggin P, Gyorkos TW. Tuberculin reactors among refugee status claimants newly arrived in Canada. *Can. Med. Assoc. J.* 1988;139(1):41-44.

460. Hobbs M, Moor C, Wansbrough T, Calder L. The health status of asylum seekers screened by Auckland Public Health in 1999 and 2000. *The New Zealand Medical Journal*. 2002;115(1160):U152.

461. Winje BA, Oftung F, Korsvold GE, et al. Screening for tuberculosis infection among newly arrived asylum seekers: comparison of QuantiFERONTB Gold with tuberculin skin test. *BMC Infectious Diseases*. 2008;8:65.

462. Rysstad OG, Gallefoss F. TB status among Kosovar refugees. *The International Journal of Tuberculosis and Lung Disease*. 2003;7(5):458–63.

463. Liu Y, Weinberg MS, Ortega LS, Painter JA, Maloney SA. Overseas screening for tuberculosis in U.S.-bound immigrants and refugees. *The New England Journal of Medicine*. 2009;360(23):2406–15.

464. Lavender M. Screening immigrants for tuberculosis in Newcastle upon Tyne. Journal of Public Health. 1997;19(3):320-323.

465. Saracino A, Scotto G, Fornabaio C, et al. QuantiFERON-TB Gold In-Tube test (QFT-GIT) for the screening of latent tuberculosis in recent immigrants to Italy. *The New Microbiologica*. 2009;32(4):369–76.

466. Harstad I, Heldal E, Steinshamn SL, Jacobsen GW. Screening of tuberculosis among asylum seekers: a missed opportunity. *The International Journal of Tuberculosis of Lung Disease*. 2008;14(11 (Suppl 2)):S300.

467. Sutherland JE, Avant RF, Franz WB, Monzon CM, Stark NM. Indochinese refugee health assessment and treatment. *The Journal of Family Practice*. 1983;16(1):61–7.

468. Durán E, Cabezos J, Ros M, et al. Tuberculosis in recent immigrants in Barcelona. *Medicina Clínica*. 1996;106(14):525–8. 469. Bothamley GH, Rowan JP, Griffiths CJ, et al. Screening for tuberculosis: the port of arrival scheme compared with screening in general practice and the homeless. *Thorax*. 2002;57(1):45–9.

470. Bodenmann P, Vaucher P, Masserey E, Zellweger J-P. Prevalence of latent tuberculosis infection among undocumented migrants in Lausanne, Switzerland. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S58.

471. Chaves NJ, Gibney KB, Leder K, et al. Screening practices for infectious diseases among Burmese refugees in Australia. *Emerging Infectious Diseases*, 2009;15(11):1769–72.

472. Truong DH, Hedemark LL, Mickman JK, et al. Tuberculosis among Tibetan immigrants from India and Nepal in Minnesota, 1992-1995. JAMA : The Journal of the American Medical Association. 1997;277(9):735–8.

473. Kelly PM, Scott L, Krause VL. Tuberculosis in east timorese refugees: implications for health care needs in East Timor. *The International Journal of Tuberculosis and Lung Disease*. 2002;6(11):980–7.

474. Wells CD, Zuber PL, Nolan CM, Binkin NJ, Goldberg SV. Tuberculosis Prevention Among Foreign-born Persons in Seattle-King County, Washington. *American Journal of Respiratory and Critical Care Medicine*. 1997;156(2):573–577.

475. Rascon Villanueva AE, Todd L, Assael R, Moser K, Paz T. Implementation of the new technical instructions for tuberculosis screening and treatment for immigrants. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S286.

476. LoBue PA, Moser KS. Screening of immigrants and refugees for pulmonary tuberculosis in San Diego County, California. *Chest.* 2004;126(6):1777–82.

477. DeRiemer K. Tuberculosis Among Immigrants and Refugees. Archives of Internal Medicine. 1998;158(7):753-760.

478. Marras TK, Wilson J, Wang EEL, Avendano M, Yang JW. Tuberculosis among Tibetan refugee claimants in Toronto: 1998 to 2000. *Chest*. 2003;124(3):915–21.

479. Al Marri M, Al Hail L, Al Otaibi S, Al Marri ND. The time of reactivation of tuberculosis in expatriates in the state of Qatar. *Qatar Medical Journal*. 2006;15(2):21–23.

480. Mor Z, Leventhal A, Weiler-Ravell D, Peled D, Lerman Y. Chest radiography accuracy in screening pulmonary tuberculosis in immigrants from an endemic country. *The International Journal of Tuberculosis and Lung Disease*. 2010;14(11 (Suppl 2)):S140.

481. Wu H-Y, Su F-H, Liu S-C, et al. Analysis of the health status of foreign brides in a community hospital in Taipei County. *Chang Gung medical journal*. 2004;27(12):894–902.

482. Keane VP, O'Rourke TF, Bollini P, Pampallona S, Siem H. Prevalence of tuberculosis in Vietnamese migrants: the experience of the Orderly Departure Program. *The Southeast Asian Journal of Tropical Medicine and Public Health*. 1995;26(4):642–7.

483. Gorbacheva O, Mishra AK, Shapovalov D, Sudtasay S. Prevalence of bacteriologically confirmed pulmonary tuberculosis of the Bhutanese refugees in Nepal. Results of active case finding. 33.008. *International Journal of Infectious Diseases*. 2010;14:e150.

484. Maloney SA, Fielding KL, Laserson KF, et al. Assessing the performance of overseas tuberculosis screening programs: a study among USbound immigrants in Vietnam. *Archives of Internal Medicine*. 2006;166(2):234–40.

485. Oeltmann JE, Varma JK, Ortega L, et al. Multidrug-resistant tuberculosis outbreak among US-bound Hmong refugees, Thailand, 2005. *Emerging infectious diseases*. 2008;14(11):1715–21.

486. Casas García I, Ruiz Manzano J, Carreras Molas A, et al. Prevalence of tuberculosis in a population from Kosovo sheltered in Catalonia, Spain. *Medicina Clínica*. 2001;116(20):770–1.

487. Lange WR, Warnock-Eckhart E, Bean ME. Mycobacterium tuberculosis infection in foreign born adoptees. *The Pediatric Infectious Disease Journal*. 1989;8(9):625–9.

488. Saraiya M, Cookson ST, Tribble P, et al. Tuberculosis screening among foreign-born persons applying for permanent US residence. *American Journal of Public Health*. 2002;92(5):826–9.

489. Huerga H, Lopez-Velez R. Infectious diseases in sub-Saharan African immigrant children in Madrid, Spain. *The Pediatric Infectious Disease Journal*. 2002;21(9):830–4.

490. Jacobson ML, Mercer MA, Miller LK, Simpson TW. Tuberculosis risk among migrant farm workers on the Delmarva peninsula. *American Journal of Public Health*. 1987;77(1):29–32.

491. Brassard P, Steensma C, Cadieux L, Lands LC. Evaluation of a school-based tuberculosis-screening program and associate investigation targeting recently immigrated children in a low-burden country. *Pediatrics*. 2006;117(2):e148–56.

492. Orr PH, Manfreda J, Hershfield ES. Tuberculosis surveillance in immigrants to Manitoba. *Canadian Medical Association Journal*. 1990;142(5):453-8.

493. Chang S, Wheeler LSM, Farrell KP. Public health impact of targeted tuberculosis screening in public schools. *American Journal of Public Health*. 2002;92(12):1942–5.

494. Manzardo C, Treviño B, Gómez i Prat J, et al. Communicable diseases in the immigrant population attended to in a tropical medicine unit: epidemiological aspects and public health issues. *Travel Medicine and Infectious Disease*. 2008;6(1-2):4–11.

495. Van den Brande P, Uydebrouck M, Vermeire P, Demedts M. Tuberculosis in asylum seekers in Belgium. VRGT (Flemish Lung and Tuberculosis Association). *The European Respiratory Journal*. 1997;10(3):610–4.

496. Ormerod LP. Is new immigrant screening for tuberculosis still worthwhile? The Journal of Infection. 1998;37(1):39-40.

497. Ormerod LP. Tuberculosis screening and prevention in new immigrants 1983-88. Respiratory Medicine. 1990;84(4):269-71.

498. García de Olalla P, Caylà JA, Milá C, et al. Tuberculosis screening among immigrants holding a hunger strike in churches. *The International Journal of Tuberculosis and Lung Disease*. 2003;7(3):5.

499. Alcaide Megías J, Altet Gómez MN, de Souza Galvao ML, et al. Active tuberculosis case finding among immigrants in Barcelona. Archivos de Bronconeumología. 2004;40(10):453-8.

500. El-Hamad I, Casalini C, Matteelli A, et al. Screening for tuberculosis and latent tuberculosis infection among undocumented immigrants at an unspecialised health service unit. *The International Journal of Tuberculosis and Lung Disease*. 2001;5(8):712–6.

501. Salinas Solano C, Altube Urrengoetxea L, España Yandiola PP, Capelastegui Saiz A, Quintana López JM. Tuberculosis among immigrants in Bilbao (Spain). Archivos de Bronconeumología. 2002;38(11):506–10.

502. Hostetter MK, Iverson S, Thomas W, et al. Medical evaluation of internationally adopted children. *The New England Journal of Medicine*. 1991;325(7):479–85.

503. Sheikh M, Pal A, Wang S, et al. The epidemiology of health conditions of newly arrived refugee children: A review of patients attending a specialist health clinic in Sydney. *Journal of Paediatrics and Child Health*. 2009;45(9):509–513.

504. Kik SV, Franken WPJ, Arend SM, et al. Interferon-gamma release assays in immigrant contacts and effect of remote exposure to Mycobacterium tuberculosis. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(7):820–8.

505. Rivas-Clemente FP, Nácher-Conches M, Corrillero-Martín J, Vélez-Reyes S, Huerta-Galindo L. The results of an active screening program for tuberculosis in immigrants from the Maghreb: acceptability and adherence. *Atencion primaria*. 1999;24(7):411–6.

506. Scolari C, El-Hamad I, Matteelli A, et al. Incidence of tuberculosis in a community of Senegalese immigrants in Northern Italy. *The International Journal of Tuberculosis and Lung Disease*. 1999;3(1):18–22.

507. Moradi M, Arababadi MK, Hassanshani G. Tuberculosis in the Aghan immigrant Kerman Province of Iran. *Journal of Biological Sciences*. 2008;8(6):1107–1109.

508. Nelson KR, Bui H, Samet JH. Screening in special populations: a "case study" of recent Vietnamese immigrants. *The American Journal of Medicine*. 1997;102(5):435–40.

509. Toscani L, Richard M. Tuberculosis in a refugee camp: A campaign to reduce transmission. Disasters. 1988;12(3):259-273.

510. Weinstock DM, Hahn O, Wittkamp M, et al. Risk for tuberculosis infection among internally displaced persons in the Republic of Georgia. *The International Journal of Tuberculosis and Lung Disease*. 2001;5(2):164–9.

511. Zahnow K, Matts JP, Hillman D, et al. Rates of tuberculosis infection in healthcare workers providing services to HIV-infected populations. Terry Beirn Community Programs for Clinical Research on AIDS. *Infection Control and Hospital Epidemiology*. 1998;19(11):829–35.

512. Manusov EG, Bradshaw RD, Fogarty JP. Tuberculosis screening in medical students. Family Medicine. 1996;28(9):645-9.

513. Thijsen SFT, van Rossum SV, Arend S, et al. The value of interferon gamma release assays for diagnosis infection with Mycobacterium tuberculosis during an annual screening of health care workers. *Journal of Occupational and Environmental Medicine*. 2008;50(11):1207–8. 514. Tripodi D, Brunet-Courtois B, Nael V, et al. Evaluation of the tuberculin skin test and the interferon-gamma release assay for TB screening in French healthcare workers. *Journal of Occupational Medicine and Toxicology*. 2009;4:30.

515. Ringshausen FC, Schlösser S, Nienhaus A, et al. In-hospital contact investigation among health care workers after exposure to smearnegative tuberculosis. *Journal of Occupational Medicine and Toxicology* . 2009;4:11.

516. García-García ML, Jiménez-Corona A, Jiménez-Corona ME, et al. Factors associated with tuberculin reactivity in two general hospitals in Mexico. *Infection Control and Hospital Epidemiology*. 2001;22(2):88–93.

517. LoBue PA, Catanzaro A. Effectiveness of a nosocomial tuberculosis control program at an urban teaching hospital. *Chest.* 1998;113(5):1184–9.

518. Migueres B, Carbonne A, Abiteboul D, et al. Tuberculose pulmonaire chez les personnels de santé de l'inter-région Nord (2002–2007) : description des cas signalés et des campagnes de dépistage des sujets contacts. *Médecine et Maladies Infectieuses*. 2010;40(9):524–529. 519. Torres Costa J, Silva R, Sa R, et al. Comparison of interferon-gamma release assay and tuberculin test for screening in healthcare workers. *Revista Portuguesa de Pneumologia*. 2010;16:211–21.

520. Silva VMC, Cunha AJLA, Kritski AL. Tuberculin skin test conversion among medical students at a teaching hospital in Rio de Janeiro, Brazil. *Infection Control and Hospital Epidemiology*. 2002;23(10):591–4.

521. Tan L-H, Kamarulzaman A, Liam C-K, Lee T-C. Tuberculin skin testing among healthcare workers in the University of Malaya Medical Centre, Kuala Lumpur, Malaysia. *Infection Control and Hospital Epidemiology*. 2002;23(10):584–90.

522. Rodrigues PM, Moreira TR, Moraes AKL de, et al. Mycobacterium tuberculosis infection among community health workers involved in TB control. *Jornal Brasileiro de Pneumologia*. 2009;35(4):351–8.

523. Ali NS, Hussain SF, Azam SI. Is there a value of mantoux test and erythrocyte sedimentation rate in pre-employment screening of health care workers for tuberculosis in a high prevalence country? *The International Journal of Tuberculosis and Lung Disease*. 2002;6(11):1012–6. 524. Wang F-D, Chang C-H, Su W-J, et al. Screening of hospital workers for pulmonary tuberculosis in a medical center in Taiwan. *Infection Control and Hospital Epidemiology*. 2006;27(5):510–1.

525. Kassim S, Zuber P, Wiktor SZ, et al. Tuberculin skin testing to assess the occupational risk of Mycobacterium tuberculosis infection among health care workers in Abidjan, Côte d'Ivoire. *The International Journal of Tuberculosis and Lung Disease*. 2000;4(4):321–6.

526. Bhattacharya M, Gupta N, Vellore AD, et al. Prevalence of Tuberculosis in Health Care Workers in Delhi. *American Journal of Respiratory* and Critical Care Medicine. 2008;177:A437.

527. Mosquera JA, Rodrigo L, Gonzálvez F. The evolution of pulmonary tuberculosis in coal miners in Asturias, northern Spain. An attempt to reduce the rate over a 15-year period, 1971-1985. *European Journal of Epidemiology*. 1994;10(3):291–7.

528. Leung CC, Yam WC, Yew WW, et al. T-Spot.TB outperforms tuberculin skin test in predicting tuberculosis disease. *American Journal of Respiratory and Critical Care Medicine*. 2010;182(6):834–40.

529. Churchyard GJ, Coetzee L, Fielding K, et al. Contribution of TB screening as part of community-wide IPT to TB case finding among South African gold miners. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S264.

530. Fielding K, Chihota V, Lewis J, et al. Factors associated with prevalent TB at screening prior to isoniazid preventive therapy. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S172.

531. Corbett EL, Charalambous S, Moloi VM, et al. Human immunodeficiency virus and the prevalence of undiagnosed tuberculosis in African gold miners. *American journal of respiratory and critical care medicine*. 2004;170(6):673–9.

532. Lewis JJ, Charalambous S, Day JH, et al. HIV infection does not affect active case finding of tuberculosis in South African gold miners. *American Journal of Respiratory and Critical Care Medicine*. 2009;180(12):1271–8.

533. Calver AD, Falmer AA, Murray M, et al. Emergence of increased resistance and extensively drug-resistant tuberculosis despite treatment adherence, South Africa. *Emerging Infectious Diseases*. 2010;16(2):264–71.

534. Park HH, Girdler-Brown BV, Ehrlich R, Churchyard GJ. Silicosis, COPD, TB and HIV in a cohort of Basotho gold miners followed for one year after lay-off. *The International Journal of Tuberculosis and Lung Disease*. 2008;14(11 (Suppl 2)):S59.

535. Nevin RL, Silvestri JW, Hu Z, Tobler SK, Trotta RF. Suspected pulmonary tuberculosis exposure at a remote U.S. army camp in northeastern Afghanistan, 2007. *Military Medicine*. 2008;173(7):684–8.

536. Ferraris VA, Carpenter WR, Brand DR, et al. Mass screening for tuberculosis in an isolated United States Army outpost. *Military Medicine*. 1984;149(8):457–8.

537. Lamar JE, Malakooti MA. Tuberculosis outbreak investigation of a U.S. Navy amphibious ship crew and the Marine expeditionary unit aboard, 1998. *Military medicine*. 2003;168(7):523–7.

538. Lescrève JP, Van Tiggelen RP. The value of systematic chest radiographic screening in recruits of the Belgian Armed Forces. *Journal Belge de Radiologie*. 1991;74(5):423–6.

539. Chiang C-Y, Suo J, Yu M-C, Yang S-L, Lin T-P. Screening for pulmonary tuberculosis among military conscripts in Taiwan. *Journal of the Formosan Medical Association*. 2002;101(12):841–5.

540. Johnston JH, Luby J. Tuberculosis in Gurkhas. Is there a greater incidence in those from East Nepal? *Journal of the Royal Army Medical Corps.* 1981;127(3):134–8.

541. Parmet AJ. Tuberculosis on the flight deck. Aviation, Space, and Environmental Medicine. 1999;70(8):817-8.

542. Shigenobu T. Pulmonary tuberculosis of university students. Kekkaku. 1985;60(11):561-6.

543. Kitazawa Y, Uraya K. Present status of pulmonary tuberculosis among employees of smaller enterprises in Tokyo. -Results of mass chest x-ray survey on employees under governmental health insurance scheme. *Kekkaku*. 1975;50(9):263–70.

544. Judson FN, Sbarbaro JA, Tapy JM, Cohn DL. Tuberculosis screening. Evaluation of a food handlers' program. Chest. 1983;83(6):879-82.

545. Cappabianca S, Barbieri A, Del Vecchio W, Sergi D, Grassi R. Recrudescence of pulmonary tuberculosis: radiological and CT features in an asymptomatic Southern Italian young population. *La Radiologia Medica*. 2002;104(5-6):404–11.

546. Nakamura T. Estimate of a trend of incidence of pulmonary tuberculosis after abolition of mass miniature radiography. *Kekkaku*. 1987;62(10):497–501.

547. Kimura T, Suzuki K, Yabe T, et al. Tuberculosis control of construction workers living in Hanba. *Kekkaku*. 2002;77(9):597–603. 548. Gray NJ, Hansen-Knarhoi M, Krause VL. Tuberculosis in illegal foreign fishermen: whose public health are we protecting? *The Medical Journal of Australia*. 2008;188(3):144–7.

549. Ciesielski S, Esposito D, Protiva J, Piehl M. The incidence of tuberculosis among North Carolina migrant farmworkers, 1991. *American Journal of Public Health*. 1994;84(11):1836–8.

550. Su S-B, Chiu C-F, Chang C-T, et al. Screening for pulmonary tuberculosis using chest radiography in new employees in an industrial park in Taiwan. *American Journal of Infection Control*. 2007;35(4):254–9.

551. Tiwari R, Zodpey S, Deshpande S, Ughade S, Vasudeo N. Respiratory morbidity in handloom weavers. *Indian Journal of Occupational and Environmental Medicine Medicine*. 1999;3(2):71–3.

552. Hassan MR, Bennoor KS, Rahman MF, et al. Incidence of pulmonary tuberculosis in garments workers of Dhaka City, Bangladesh. Bangladesh Medical Research Council Bulletin. 2005;31(1):7–14.

553. Aungkasuvapala N, Juengprasert W, Obhasi N. Silicosis and pulmonary tuberculosis in stone-grinding factories in Saraburi, Thailand. *Journal of the Medical Association of Thailand*. 1995;78(12):662–9.

554. Marga OI, Saulite VM, Kratule RV, Auzane MK, Kruze ZK. The results of nonscheduled xeroradiographic examinations of adolescents and young adults. *Problemy tuberkuleza*. 1983;(6):11–5.

555. Vega RA, Conde JG, Díaz M. Prevalence of tuberculin reactivity and prevalence of risk factors for the development of active tuberculosis in a nursing home in Puerto Rico. *Puerto Rico Health Sciences Journal*. 1996;15(1):27–31.

556. Forssman B, Gupta L, Mills K. A tuberculosis contact investigation involving two private nursing homes in inner Western Sydney in 2004. *New South Wales Public Health Bulletin.* 2006;17(3-4):44–46.

557. Ohmori M, Wada M, Yoshiyama T, Uchimura K. Factors related to early case detection of tuberculosis in health service facilities for the elderly. *Kekkaku*. 2003;78(6):435–42.

558. Morris CD, Nell H. Epidemic of pulmonary tuberculosis in geriatric homes. South African Medical Journal . 1988;74(3):117-20.

559. Chan-Yeung M, Cheung AHK, Dai DLK, et al. Prevalence and determinants of positive tuberculin reactions of residents in old age homes in Hong Kong. *The International Journal of Tuberculosis and Lung Disease*. 2006;10(8):892–8.

560. Woo J, Chan HS, Hazlett CB, et al. Tuberculosis among elderly Chinese in residential homes: tuberculin reactivity and estimated prevalence. *Gerontology*. 1996;42(3):155–62.

561. Morris C. Sputum examination in the diagnosis of pulmonary tuberculosis in the elderly. *Quarterly Journal of Medicine*. 1991;81(296):999–1004.

562. FORTUIN M, UYDEBROUCK M, WANLIN M, et al. Tuberculosis incidence and surveillance in Belgium. *Archives of Public Health*. 1998;56(5-8):199–208.

563. Harada N, Higuchi K, Mori T. Assessment of nosocomial transmission of tuberculosis in a psychiatric hospital using a whole blood interferon-gamma assay. *Japanese Journal of Infectious Diseases*. 2008;61(5):415–8.

564. Huang H-Y, Jou R, Chiang C-Y, et al. Nosocomial transmission of tuberculosis in two hospitals for mentally handicapped patients. *Journal* of the Formosan Medical Association. 2007;106(12):999–1006.

565. Chanmugam AS, Kirsch TD, de Obeso EA, et al. Tuberculosis screening of residents and staff in long-term care facilities. Academic Emergency Medicine. 1998;5(6):652–3.

566. for Disease Control C, (CDC) P. Tuberculosis prevention in drug-treatment centers and correctional facilities--selected U.S. sites, 1990-1991. *MMWR.Morbidity and mortality weekly report*. 1993;42(11):210–213.

567. Beser E. The prevalence of pulmonary tuberculosis using different methods in group screenings. *East African Medical Journal*. 1993;70(12):768–71.

568. Gauchon A, André N, Rome A, et al. Evaluation of a screening strategy after occurrence of two simultaneous contaminating tuberculosis cases in a pediatric oncology department. *Archives de Pédiatrie*. 2008;15(3):236–44.

569. Francis J, Reed A, Yohannes F, Dodard M, Fournier AM. Screening for tuberculosis among orphans in a developing country. *American Journal of Preventive Medicine*. 2002;22(2):117–9.

570. Kim SJ, Hong YP, Lew WJ, Yang SC, Lee EG. Incidence of pulmonary tuberculosis among diabetics. *Tubercle and Lung Disease*. 1995;76(6):529–33.

571. Lester FT. Tuberculosis in Ethiopian diabetics. Ethiopian Medical Journal. 1984;22(3):129-33.

572. Ezung T, Devi NT, Singh NT, Singh TB. Pulmonary tuberculosis and diabetes mellitus--a study. *Journal of the Indian Medical Association*. 2002;100(6):376, 378–9.

573. Tripathy S, Kar K, Chakraborty D, Majumdar A. Diabetes mellitus and pulmonary tuberculosis. A prospective Study. *Indian Journal of Tuberculosis*. 1984;31:122–125.

574. Webb EA, Hesseling AC, Schaaf HS, et al. High prevalence of Mycobacterium tuberculosis infection and disease in children and adolescents with type 1 diabetes mellitus. *The International Journal of Tuberculosis and Lung Disease*. 2009;13(7):868–74.

575. Gill GV, Huddle KR, Krige LP. Intensive health screening of young black diabetics. South African Medical Journal . 1984;65(20):815–6.

576. Al Shohaib S. Tuberculosis in chronic renal failure in Jeddah. *International Urology and Nephrology*. 1999;31(4):571–5.

577. Dogan E, Erkoc R, Sayarlioglu H, Uzun K. Tuberculin skin test results and the booster phenomenon in two-step tuberculin skin testing in hemodialysis patients. *Renal Failure*. 2005;27(4):425–8.

578. Segarra-Obiol F, Lopez-Ibañez P, Perez Nicolas J. Asbestosis and tuberculosis. *American Journal of Industrial Medicine*. 1983;4(6):755–7. 579. Styblo K, van Geuns HA, Meijer J. The yield of active case-finding in persons with inactive pulmonary tuberculosis or fibrotic lesions. A 5year study in tuberculosis clinics in Amsterdam, Rotterdam and Utrecht. *Tubercle*. 1984;65(4):237–51.

580. Hassine E, Marniche K, Hamida J, et al. Tuberculosis in hemodialysis patients in Tunisia. *Néphrologie*. 2002;23(3):135–40.

581. Migliori GB, Espinal M, Danilova ID, et al. Frequency of recurrence among MDR-tB cases "successfully" treated with standardised shortcourse chemotherapy. *The International Journal of Tuberculosis and Lung Disease*. 2002;6(10):858–64.

582. Katoch K, Singh P, Adhikari T, et al. Potential of Mw as a prophylactic vaccine against pulmonary tuberculosis. *Vaccine*. 2008;26(9):1228–34.

583. Schluger NW, Huberman R, Holzman R, Rom WN, Cohen DI. Screening for infection and disease as a tuberculosis control measure among indigents in New York City, 1994-1997. *The International Journal of Tuberculosis and Lung Disease*. 1999;3(4):281–6.

584. de Vries G, van Hest RAH, Richardus JH. Impact of mobile radiographic screening on tuberculosis among drug users and homeless persons. *American Journal of Respiratory and Critical Care Medicine*. 2007;176(2):201–7.

585. Moonan PK, Oppong J, Sahbazian B, et al. What is the outcome of targeted tuberculosis screening based on universal genotyping and location? *American Journal of Respiratory and Critical Care Medicine*. 2006;174(5):599–604.

586. Schluger NW, Huberman R, Wolinsky N, et al. Tuberculosis infection and disease among persons seeking social services in New York City. *The International Journal of Tuberculosis and Lung Disease*. 1997;1(1):31–7.