All rights reserved.
No part of this book may be reproduced, stored in a retrieval system, or transmitted in any from or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from TIF.
NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.
Cappellini MD, Cohen A, Porter J, et al., editors. Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT) [Internet]. 3rd edition. Nicosia (CY): Thalassaemia International Federation; 2014.
This publication is provided for historical reference only and the information may be out of date.
Iron overload occurs when iron intake is increased over a sustained period of time, either as a result of red blood cell transfusions or increased absorption of iron through the gastrointestinal (GI) tract. Both of these occur in thalassaemias, with blood transfusion therapy being the major cause of iron overload in thalassaemia major and increased GI absorption being more important in non-transfusion dependent thalassaemia (NTDT). When thalassaemia major patients receive regular blood transfusion, iron overload is inevitable because the human body lacks a mechanism to excrete excess iron. Iron accumulation is toxic to many tissues, causing heart failure, cirrhosis, liver cancer, growth retardation and multiple endocrine abnormalities.
Chelation therapy aims to balance the rate of iron accumulation from blood transfusion by increasing iron excretion in urine and or faces with chelators. If chelation has been delayed or has been inadequate, it will be necessary to excrete iron at a rate which exceeds this. Because iron is also required for essential physiological purposes, a key challenge of chelation therapy is to balance the benefits of chelation therapy with the unwanted effects of excessive chelation. Careful dose adjustment is necessary to avoid excess chelation as iron levels fall. The second major challenge in chelation therapy is to achieve regular adherence to treatment regimens throughout a lifetime, as even short periods of interruption to treatment can have damaging effects. While the convenience and tolerability of individual chelators is important in achieving this goal, other factors such as psychological wellbeing, family and institutional support also impact on adherence and outcomes.
In this chapter we first describe the effects of iron overload and the tools for monitoring excess iron. We then cover the general goals of chelation therapy, and the mechanisms by which chelators work. Recommendations for the dosing of three licensed chelators are then described, based on evidence on their efficacy. The potential toxicities of each chelation regime and how to minimise their risks are given in Appendix 1. Finally, guidelines for monitoring chelation therapy so as to minimize the risks of toxicity from iron chelation are discussed.
Gaining the most accurate information on the rate of iron loading from transfusion therapy is important in assisting selection of the best chelation therapy for each patient. A unit processed from 420 mL of donor blood contains approximately 200 mg of iron, or 0.47 mg/mL of whole donor blood. For red cell preparations with variable haematocrits, the iron per mg/mL of blood can therefore be estimated from 1.16 × the haematocrit of the transfused blood product. In cases where organizational systems or other difficulties prevent such estimations to be calculated, a rough approximation can be made based on the assumption that 200 mg of iron is contained in each donor unit. Irrespective of whether the blood used is packed, semi-packed or diluted in additive solution, if the whole unit is given, this will approximate to 200 mg of iron intake. According to the recommended transfusion scheme for thalassaemia major (Chapter 2), the equivalent of 100–200 ml of pure red blood cell (RBC) per kg body weight per year are transfused. This is equivalent to 116-232 mg of iron/kg body weight / year, or 0.32-0.64 mg/kg/day. Regular blood transfusion therapy therefore increases iron stores to many times the norm unless chelation treatment is provided. If chelation therapy is not given, Table 1 shows how iron will accumulate in the body each year, or each day.
In transfusion dependent thalassaemia (TDT), the contribution of iron absorbed from the diet is small compared with blood transfusion. Normal intestinal iron absorption is about 1-2 mg/day. In patients with thalassaemia who do not receive any transfusion, iron absorption increases several-fold. It has been estimated that iron absorption exceeds iron loss when expansion of red cell precursors in the bone marrow exceeds five times that of healthy individuals. Transfusion regimens aimed at keeping the pre-transfusion haemoglobin above 9 g/dl have been shown to prevent such expansion (Cazzola 1997). In individuals who are poorly transfused, absorption rises to 3-5 mg/day or more, representing an additional 1-2 g of iron loading per year.
Iron is highly reactive and easily alternates between two states – iron III and iron II – in a process which results in the gain and loss of electrons, and the generation of harmful free radicals (atoms or molecules with unpaired electrons). These can damage lipid membranes, organelles and DNA, causing cell death and the generation of fibrosis. In health, iron is ‘kept safe’ by binding to molecules such as transferrin, but in iron overload their capacity to bind iron is exceeded both within cells and in the plasma compartment. The resulting ‘free iron’, either within cells or within plasma, damages many tissues in the body or is fatal unless treated by iron chelation therapy. Free iron also increases the risk of infections (Chapter 7) and neoplasia. A summary of the mechanisms for toxic effects of iron overload is shown in Figure 1.
In the absence of iron overload, uptake of iron into cells is controlled by the interaction of transferrin with its receptors - mainly on red cell precursors, hepatocytes and dividing cells. In iron overload, transferrin becomes saturated and iron species that are not bound to transferrin are present in plasma (plasma non transferrin bound iron, or NTBI). The distribution of NTBI uptake is fundamentally different from transferrin uptake, and is thought to involve calcium channels. Organ damage in transfusional iron overload reflects the pattern of tissue iron uptake from NTBI. Some tissue are spared from iron loading through this mechanism (such as skeletal muscle), while other such myocardial muscle, endocrine tissue and hepatocytes take up NTBI rapidly. This iron is then stored as ferritin or haemosiderin which are visible by MRI. The myocardial iron overload induces heart failure from cardiomyopathy in patients without chelation in as early as the second decade of life. Iron overload also causes pituitary damage, leading to hypogonadism, growth retardation and delayed puberty. Endocrine complications, namely diabetes, hypothyroidism and hypoparathyroidism are also seen. Liver disease with fibrosis and eventually cirrhosis and hepatocellular carcinoma, particularly if concomitant chronic hepatitis is present, are also serious complications (see Chapter 5).
Monitoring is essential in establishing effective iron chelation regimes, tailored to individuals’ specific needs. However, some general principles of monitoring iron overload apply to all.
Serum ferritin (SF) generally correlates with body iron stores, and is relatively easy and inexpensive to determine repeatedly. Serum ferritin is most useful in identifying trends. A decreasing trend in SF is good evidence of decreasing body iron burden but absence of a decreasing trend does not exclude a decreasing iron burden. However, an increasing SF trend implies an increasing iron burden but may also be due to inflammation or tissue damage, so clinical judgment must be used to interpret these trends. Long term control of SF is also a useful guide to the risk of complications from iron overload in TM; many studies have shown an association between the control of serum ferritin and prognosis (Borgna-Pignatti 2004, Davis 2004, Gabutti 1996, Olivieri 1994). Studies have identified a significantly lower risk of cardiac disease and death in at least two-thirds of cases where serum ferritin levels have been maintained below 2,500 µg/L (with Deferoxamine, or DFO) over a period of a decade or more (Olivieri 1994). Observations with larger patient numbers show that maintenance of an even lower serum ferritin of 1,000 µg/L may be associated with additional clinical advantages (Borgna-Pignatti 2004) (see Table 2).
Most SF assays were developed mainly for detecting iron deficiency, and the linear range of the assay at high SF values needs to be known. SF must be performed in a laboratory that has established how to dilute samples with high values, to give readings within the linear range of the assay. SF measures do not always predict body iron or trends in body iron accurately. In TM, variation in body iron stores accounts for only 57% of the variability in plasma ferritin (Brittenham 1993). This variability is in part because inflammation increases serum ferritin, and partly because the distribution of liver iron between macrophages (Kupffer cells) and hepatocytes in the liver has a major impact on plasma ferritin. A sudden increase in serum ferritin should prompt a search for hepatitis, other infections, or inflammatory conditions.
A lack of fall in SF with chelation does not therefore necessarily prove that the patient is a ‘non responder’ to the chelation regime. As outlined above, this can be because inflammation may have falsely raised SF, or because the relationship between body iron and SF is not always linear, particularly in the context of inflammation or tissue damage (Adamkiewicz 2009), and body iron can fall considerably from a high starting point (e.g. LIC >30 mg/g dry wt) before a change in ferritin is clear. Below 3000 µg/L SF values are influenced mainly by iron stores in the macrophage system, whereas above 3000 µg/L they are determined increasingly by ferritin leakage from hepatocytes (Davis 2004, Worwood 1980). Day-to-day variations are particularly marked at these levels. The relationship between serum ferritin and body iron stores may also vary depending on the chelator used (Ang 2010) and by duration of chelation therapy (Fischer 2003).
The physical principles of iron measurement for the heart by MRI are the same as for the liver (see above), with the additional challenge of measuring a moving object - the myocardium. The T2* (or R2*) techniques have the advantage over T2 or R2 in that they require shorter acquisition times and can be achieved with a single breathold (Kirk 2010). The utility of myocardial T2* (mT2*) MRI was originally identified on the basis of shortened T2* values <20 ms in patients with decreased left ventricular ejection fraction (LVEF) (Anderson 2001). More recently the relationship between biochemically measured myocardial iron concentration and myocardial T2* has been shown using post mortem myocardial material (Carpenter, 2011). Here, mean myocardial iron causing severe heart failure in 10 patients at post mortem was 5.98 mg/g dry weight (ranging from 3.2 to 9.5 mg/g); levels that in the liver would not be regarded as harmful to the liver. The relationship of myocardial iron concentration (MIC) to T2* is: MIC (mg/g dry wt) = 45 * (T2* ms)^-1.22 (Kirk 2009b). This relationship is non-linear so small changes in mT2* at values <10 ms may indicate relatively large changes in MIC. The risk of developing heart failure increases with T2* values <10 ms, which are associated with a 160 fold increased risk heart failure in the next 12 months (Kirk 2009b). This risk further increases progressively with T2* values <10 ms, so that the proportion of patients developing heart failure in the next 12 months at T2* of 8-10 ms, 6-8 ms and <6 ms was 18%, 31%, and 52% respectively. These risks were derived from patients whose chelation therapy and adherence was not reported, so this risk may be less in patients taking regular chelation. For example, in a recent prospective study in patients with severe myocardial iron loading (T2* values <10 ms), no patients developed heart failure over a 2 year period while taking deferasirox (DFX) and desferrioxamin (DFO) combination therapy (Ayidinok 2014).
In centres where the T2* method has been validated, the T2* value may have predictive value in identifying patients at high risk of developing deterioration in LVEF, thus allowing targeted intensification of treatment before heart failure develops. The value of T2* monitoring is supported by a recent report in a cohort of TM patients monitored for 10 years using T2*, in which iron mediated cardiomyopathy was no longer the leading cause of death, and the proportion of patients with T2* <20 ms fell from 60% to 1% over the decade (Thomas 2010). Alternative factors such as improved chelation options may also have contributed to these improvements in outcome. T2* monitoring has now been established and validated internationally (Kirk 2010), and is now recommended as part of yearly monitoring of multi-transfused patients at risk of developing myocardial iron loading. However it is very important that the method adopted in a given centre undertakes measurements to independently validate and calibrate measurements, otherwise inappropriate assessment of heart failure prognosis may result. Table 4 summairzes advantages and disadvantages of using T2* MRI for monitoring cardiac iron overload.
Sequential monitoring of LVEF has been shown to identify patients at high risk of developing clinical heart failure (Davis 2004, Davis 2001). When LVEF fell below reference values, there was a 35 fold increased risk of clinical heart failure and death, with a median interval to progression of 3.5 years, allowing time for intensification of chelation therapy. This approach required a reproducible method for determination of LVEF (such as MUGA or MRI), while echocardiography was generally too operator-dependent for this purpose. Furthermore, there is a clear need to identify high risk patients before there is a decline in LVEF. Myocardial T2* by MRI can achieve this and has additional predictive value (see above). However, as only a subset of patients with T2* values between 10 and 20 ms, or even with T2* less than 10 ms have abnormal heart function, sequential measurement of LVEF can identify the subset of patients who have developed decompensation of LV function and are therefore at exceptionally high risk and require very intensive chelation therapy (see below).
The monitoring of organ function as a marker of damage from iron overload is discussed more fully in other chapters. In general by the time diabetes, hypothyroidism, hypoparathyoidism or hypogonadotropic hypogonadism (HH) have been identified, irreversible damage has set in and the focus then becomes replacing hormones. These are late effects and the primary aim of chelation therapy is to prevent such damage. Iron overloaded patients should be monitored for evidence of hypogonadotropic hypogonadism (growth and sexual development and biochemical markers of HH), diabetes mellitus (yearly OGTT), hypothyroidism and hypoparathyroidism. There has been recent interest in using MRI as a way of identifying the risks of iron-mediated damage to the endocrine system. Early work in this area showed good correlation between MRI findings (loss of pituitary volume) and biochemical markers of pituitary damage (Chatterjee 1998). With improved MRI imaging, other endocrine organs have also been evaluated (Wood 2007). It is of interest that there is generally a close correlation between iron deposition in the heart and deposition in endocrine tissues such as those in the pituitary and pancreas (Noetzli 2009, Au 2008). This supports the notion of shared uptake mechanisms for NTBI in heart and endocrine systems and supports clinical observations of shared risks in cardiac and endocrine systems once iron begins to escape from the liver.
Measurement of the urinary iron excretion has been used in assessing the effect on iron excretion by desferioxamine (about half of total iron excreted in urine) (Pippard 1982) or deferiprone (over 80% of iron excreted in urine), but is not useful in patients treated with deferasirox, as nearly all the iron is excreted in faeces. Urine iron has also been used to compare effects of combination and monotherapy regimes containing deferiprone (DFP) (Aydinok 2012a, Mourad 2003). The inherent variability in daily iron excretion necessitates repeated determinations and this is not widely used in routine monitoring
As plasma iron that is unbound to transferrin (NTBI) is considered to be the main route through which iron is distributed to liver and extrahepatic targets of iron-overloaded thalassaemia major patients, levels of NTBI might be expected to correlate with the risk of damage to these tissues. Assays may estimate NTBI directly using a chelation capture method followed by HPLC (Singh 1990), or by colorimetric analysis (Gosriwatana 1999) or indirectly by exploiting the impact of labile iron species to oxidised fluochrome, such as in the labile plasma iron (LPI) assay (Zanninelli 2009, Cabantchik 2005). A potential advantage of the LPI assay is that it is better suited to measurements when iron chelators are present in the plasma (Zanninelli 2009). Whilst some loose associations of NTBI (Piga 2009) or LPI (Wood 2011) with some markers of cardiac iron or response to chelation have been found by some investigators, thus far measurements have not been sufficiently strongly predictive of cardiac risk to be recommended for routine clinical practice. This is partly because NTBI and LPI are highly labile, rapidly returning or even rebounding (Porter 1996) after an iron chelator has been cleared (Zanninelli 2009). Although NTBI correlates loosely with iron overload, it is affected by other factors such as ineffective erythropoiesis, the phase of transfusion cycle, and the rate of blood transfusion (Porter 2011) adding to the complexity of interpreting levels (Hod 2010). It is also not clear which methods identify the iron species that are most strongly inked to myocardial iron uptake. Therefore although the measurement of NTBI (or LPI) has proved a useful tool for evaluating how chelators interact with plasma iron pools, its value as a guide to routine treatment or prognosis has yet to be clearly demonstrated.
Only a very small fraction of body iron is available for iron chelation at any moment of time. This is because iron chelators interact with low molecular weight ‘labile’ iron pools better than with iron stored as ferritin or haemosiderin. Labile iron is constantly being generated, so that the efficiency of chelation is better when a chelator is available at all times (chelator present 24 hours a day). 24h chelation also has the potential to remove toxic labile iron pools within cells continuously, which is particularly important in reversing heart failure. Chelatable iron is derived from two major sources: iron derived from the breakdown of red cells in macrophages (about 20 mg/day in healthy adults), and iron derived from the catabolism of stored ferritin iron within cells. Most of the storage iron in the body is in hepatocytes, and the ferritin in these cells is turned over less frequently (every few days). Iron chelated within the liver is excreted though the biliary system, or circulates back into plasma and is excreted in the urine. The extent to which this chelated iron is eliminated in faeces or urine varies with each chelator. With DFO about half is excreted in urine and half in faeces, whilst with DFX excretion is mainly through the urine and DFP through faeces. Urinary excretion of iron chelated by DFO is derived mainly from macrophage catabolism of red cells, whereas urine iron chelated by DFP is derived from macrophage and hepatocyte pools. Small quantities of storage iron are also deposited in the endocrine system and in the heart. Because these are not designed as cells for iron storage and release, unlike hepatocytes, storage iron is turned over in the lysosome compartment less frequently and a lower proportion of cellular iron is available for chelation at any moment. Thus it generally takes longer to remove iron from these tissues than from the liver.
Three iron chelators are currently licensed for clinical use and their iron binding properties, routes of absorption, elimination and metabolism differ. These are summarized in Table 5. Of note, the majority of information presented refers to prototype formulations of the chelators. Chemistry: The number of chelator molecules required to bind iron differs with each of these chelators. DFO binds iron in a 1:1 ratio, which results in a very stable iron chelate complex but also a large molecule that cannot be absorbed from the gut. DFX binds iron in a 2:1 chelator to iron ratio, and is small enough for oral absorption. DFP is smaller still and requires 3 molecules to bind iron, resulting in a less stable iron complex and a lower efficiency of iron binding at low chelator concentrations (low pM).
Pharmacology: The patterns of elimination of the chelate-iron complexes are shown in Table 5. Iron free DFO is eliminated rapidly in urine and faeces (short T ½) if it does not bind iron, but the elimination of iron complexes are slower. Iron free DFP has a short plasma half-life, requiring it to be given 3 times a day. It is rapidly metabolized at its iron binding site in hepatocytes. DFX has a longer plasma half-life, typically requiring only once daily dosing and providing 24 clearance of labile plasma iron. Plasma drug levels differ between the chelators. DFO levels rarely exceed 10 µM when given as an infusion at night, and negligible levels of iron-free chelator are present during the day. DFP levels fluctuate with peaks exceeding 100 µM at approximately 2h after ingestion but with negligible levels at night, if the 3 doses are given during the day (Aydinok 2012a, Limenta 2011). DFX and its iron complex are eliminated in faeces (Table 5) (Nisbet-Brown 2003), and about 10% of plasma DFX is bound to iron (Galanello 2003). Metabolism is mainly by glucuronidation to iron binding metabolites, with less than 10% of metabolism being oxidative, by cytochrone p450 (Waldmeier 2010).
In general, as with any therapy, the potential benefits of chelation therapy must be balanced against occasional unwanted adverse effects which are generally more likely when doses are high relative to the level of iron overload. These typically take time to develop, so that careful monitoring should reduce these risks. Unfortunately the combination of chelation therapies is not specifically licensed, so there is no prescribing information provided by licensing authorities in this respect. However, the clinical and research experience with combination therapies will be described as are used in many treatment centres when monotherapy is inadequate. Appendix 1 summarises the particular prescribing information from licensing authorities which act as a guide for prescribing individual monotherapies.
DFO is licensed for the treatment of chronic iron transfusional iron overload worldwide for affected patients above the age of 2 years, reflecting its long-standing clinical use. There are some small differences in age of treatment commencement and maximum doses recommended in different countries.
DFO was the first chelator introduced clinically. A large body of literature has since emerged on the changing complications and improved survival, predominantly from retrospective cohort analysis. As no treatment alternatives were available at the time of its introduction, the benefits of its long term use are clearer than for newer chelators, where patients have often received more than one chelation treatment over a lifetime. The main disadvantages of the treatment are that it is costly and it must be administered parenterally which is uncomfortable and time consuming. Also because of its short half live it typically only chelates iron during the time infused, therefore leaving 12 or more hours with no active chelator with standard regimens. The increased toxicity of DFO at low levels of body iron (see Appendix 2) means that guidelines for its use have been conservative, generally recommending that therapy not be started until SF levels reach 1000 µg/L, and with care to avoid over-chelation below this SF value.
Long term control of SF has been linked to protection from heart disease and to improved survival if levels are consistently less than 2500µg/L (Olivieri 1994) with even better outcomes at levels <1000µg/L (Borgna-Pignatti 2004). Four decades of clinical experience clearly show that ferritin can be controlled with DFO monotherapy at 40-50 mg/kg administered as an 8-10-h infusion at least 5 times a week. In children however, mean daily doses should not exceed 40 mg/g because of the effects on growth and skeletal development. Guidelines about the dosing required to control iron overload were based on retrospective data until recently. A randomised study in 290 TM patients identified the doses required to stabilize or decrease SF, with a mean daily dose of 42 mg/kg resulting in a small decrease in serum ferritin of 364µg/L at one year, whereas 51 mg/kg resulted in an average decrease of approximately 1,000 µg/L (Cappellini 2006). Further analysis shows that response is also linked to the transfusion rate and that larger doses are required in patients requiring higher transfusions (see below) (Cohen 2008). Thus the effectiveness of DFO at controlling SF is related to dose, frequency and duration of exposure and transfusion rate.
Administered at least 5 times a week in sufficient doses, DFO is effective in controlling liver iron and hence total body iron stores (Brittenham 1993). In a prospective randomized study (Cappellini 2006), a mean dose of 37 mg/kg stabilised LIC for patients with baseline LIC values of between 3 and 7 mg/g dry wt. For patients with LIC values between 7 and 14 mg/g dry wt, a mean dose of 42 mg/kg resulted in a small decrease of 1.9 mg/kg dry wt over a 1 year interval. In patients with LIC values >14 mg/g dry wt, a mean dose of 51 mg/kg resulted in LIC decreases of an average of 6.4 mg/g dry wt. Thus a dose of 50 mg/kg at least 5 days a week (giving a mean daily dose of 50 × 5/7 = 36 mg/kg) is recommended if a significant decrease in optimal LIC levels is required (see above). It should be emphasised that these are average changes and that the dose required may increase or decrease depending on transfusion requirements (Cohen 2008).
Subcutaneous therapy has long been known to prevent (Wolfe 1985) or improve asymptomatic cardiac disease in thalassaemia major (Aldouri 1990, Freeman 1983). After the introduction of DFO, the incidence of iron- induced heart disease in different cohorts of patients fell progressively – with a key factor being the age of starting treatment (Borgna-Pignatti 2004, Brittenham 1994). Symptomatic heart disease can be reversed by high dose intravenous treatment (Davis 2000, Cohen 1989, Marcus 1984). The same results can be obtained with excellent long-term prognosis with lower doses (50-60 mg/kg/day – see below), and consequently less drug toxicity using continuous dosing (Davis 2004, Davis 2000). Continuous intravenous doses of 50-60 mg/kg/day typically normalise LVEF in a period of three months (Anderson 2004), significantly before liver or heart iron stores have been normalised. However, if advanced heart failure has developed before treatment is intensified, the chances of successful rescue are reduced. Early intervention for decreased LV function is therefore recommended. Once heart function has improved, sustained compliance is critical to improve outcomes, especially while myocardial iron remains increased (Davis 2004).
Myocardial iron can improve with either subcutaneous or intravenous therapy provided treatment is given in adequate doses and frequency. Improvement in mild to moderate cardiac T2*, even at low intermittent doses (5 days a week) has been confirmed by prospective randomised studies (Pennell 2014, Pennell 2006b, Tanner 2006). For patients with established mild to moderate myocardial iron, a simple increase in dose or frequency of use may be sufficient to improve the mT2*. For example at relatively low doses of 35 mg/kg, an average improvement in T2* of 1.8 ms over one year has been shown (Pennell 2006b). At a slightly higher dose of 40-50 mg/kg five days a week, patients showed an improvement of 3 ms over one year (Porter 2005a). When mT2* is < 10 ms, as with other iron chelators, it will take several years of sustained and compliant therapy to normalise myocardial iron (Porter 2002). For T2* values <10 ms, a simple 5 day a week s.c. DFO at standard doses is unlikely to be sufficient, and treatment intensification is indicated. This could involve higher dose continuous DFO or more likely switching to another chelation regime in the absence of heart failure (see below).
DFO has been in clinical use since the 1970s and widely used as subcutaneous infusions since about 1980. The most powerful evidence for the effectiveness of DFO and indeed for chelation as a treatment modality is the improving survival and decreased morbidity in patients treated with DFO since this time (Table 6). This benefit is clearly shown in successive cohorts born since this time. Only patients born after 1980 will have started treatment at an early age, and age of starting treatment is a key factor in outcome (Borgna-Pignatti 2004, Brittenham 1993). Regular subcutaneous therapy started before the age of 10 years reduces co-morbidities such as the incidence of hypogonadism (Bronspiegel-Weintrob 1990), as well as other endocrine disturbances, including diabetes mellitus (Borgna-Pignatti 2004, Olivieri 1994, Brittenham 1993). Adherence to therapy has been the main limiting factor to successful outcomes; failure to take treatment at least 5 times a week at adequate doses and subsequent failure to control serum ferritin in the long term leads to increased mortality (Gabutti 1996). Up until 2000, 50% of UK patients still died by age 35 years (Modell 2000), reflecting difficulties with DFO use and other issues such as the variable support patients on chelation therapy received in centres where only small numbers of patients attended. It is important to recognize that toxicity from iron overload is a long-term phenomenon, so the entire chelation history of an individual is important for outcomes, rather than simply the treatment a patient is taking when an event happens.
In high risk cases with decreased LVEF, continuous infusion is potentially more beneficial than periodic infusions because it reduces the exposure to toxic free iron (NTBI), which returns to pre-treatment levels within minutes of stopping a continuous intravenous infusion (Porter 1996). The route of administration is not critical, provided that as close to 24-hour exposure to chelation as possible is achieved. Intensification of treatment through continuous, 24-hour intravenous administration of DFO via an implanted intravenous delivery system (e.g. Port-a-cath) (Davis 2000), or subcutaneously (Davis 2004) has been shown to normalise heart function, reverse heart failure, improve myocardial T2* (Porter 2013b, Anderson 2004) and lead to long-term survival, provided treatment is maintained. Some studies have included cases where for operational reasons, intensification was undertaken without continuous infusion. Continuous infusion is usually given through an indwelling line for long-term management. For emergency management before a central line can be inserted, DFO can be given through a peripheral vein, provided it is diluted in at least 100 mls of saline to avoid damage to the veins where the drug is infused. A dose of at least 50 mg/kg/day and not exceeding 60 mg/kg/day is recommended as a 24-hour infusion (Davis 2004, Davis 2000). Higher doses have been used by some clinicians, however, DFO is not licensed at these doses and the risk of retinopathy increases. Addition of vitamin C is recommended only when acute heart dysfunction has settled, which usually occurs by three months of continuous treatment (Anderson 2004). As ferritin falls, the dose but preferably not the duration of treatment can be reduced - in line with the therapeutic index (see above).
The question of whether to add DFP to intensified DFO needs to be considered. This is partly because DFP at high doses (90-100 mg/kg) was found to increase the T2* more than conventional s.c. DFO 5 days a week (Pennell 2006b) and because combined DFP + DFO has also been found to improve T2* more rapidly than conventional doses of DFO (Tanner 2007). However, these patients have baseline LVEF in the normal range and were not in heart failure but showed greater LVEF increases with the DFP containing regimes. Furthermore, these studies compared conventional intermittent non-intensified DFO with the DFP containing regimes; such low DFO doses should not be recommended for patients in heart failure. The only randomised study to examine the effect of additional DFP to intensified DFO found no difference between the two study arms with or without DFP, either with respect to LVEF or to improvements in T2* (Porter 2013b). Nevertheless, this study also showed no major extra toxicities in the study arm containing DFP, so the addition of DFP to intensified DFO would seem a reasonable course of action for patients in heart failure, provided that patient can tolerate oral administration of DFP.
Deferiprone (DFP) is an orally absorbed bidentate iron chelator that began clinical trials in the UK in the 1980s. DFP was licensed in several countries from the 1990s and more recently in the US (October 2011) (Traynor 2011) for the treatment of iron overload in TM patients. The indication for treatment differs slightly in different countries (see below):
Randomised trials comparing the effects of DFP on serum ferritin at baseline and at follow-up have been reported from the 1990s (Pennell 2006b, Ha 2006, Gomber 2004, Maggio 2002, Olivieri 1997). Pooled analysis shows a statistically significant decrease in serum ferritin at six months in favour of DFO, with no difference between the two drugs at 12 months (Pennell 2006b, Gomber 2004). There are numerous non-randomised cohort studies demonstrating a lowering of serum ferritin at doses of 75 mg/kg/day administered in three doses. The effect on SF at this dose appears greater at higher baseline ferritin values. In these studies significant decreases in serum ferritin are seen in patients with baseline values above 2,500 µg/L (Viprakasit 2013, Olivieri 1995, Al-Refaie 1992, Agarwal 1992) but not with values below 2,500 µg/L (Cohen 2000, Hoffbrand 1998, Olivieri 1995). In a recent study from Thailand, only 45% of paediatric thalassaemia patients (age > 2 years) had significant reduction of serum ferritin after 1 year at doses of over 79 mg/kg/day (Viprakasit 2013). In this study, baseline SF was the major factor that predicted clinical efficacy; patients with baseline SF>3,500 µg /L had the most significant fall of SF at 1 year. The FDA licensing agreement in 2011 concluded that “data from a total of 236 patients were analyzed, of the 224 patients with thalassemia who received DFP monotherapy and were eligible for serum ferritin analysis…the endpoint of at least a 20% reduction in serum ferritin was met in 50% (of 236 subjects), with a 95% confidence interval of 43% to 57%”.
Change in LIC from baseline after various periods of treatment with DFP has been compared with DFO in randomised studies (El-Beshlawy 2008, Ha 2006, Pennell 2006a, Maggio 2002, Olivieri 1998) and also with combination of DFP plus DFO (Aydinok 2007). One study showed initial LIC decreases at 1 year but increases in LIC at 33 months of 5 mg/g dry wt with DFP (n=18) and 1 mg/g dry wt with DFO (n=18) (Olivieri 1998). In another study an average decrease in LIC at 30 months was reported with both DFP (n=21) and DFO (n=15) (Maggio 2002). A greater 1 year decrease in LIC with DFO than DFP monotherapy was reported in several studies (Aydinok 2007, Pennell 2006a). A decrease of 0.93 mg/g dry wt with DFP (n=27) and 1.54 mg/g dry wt with DFO (n=30) (Pennell 2006) was observed at 1 year. Another study reported initial decreases in LIC at six months with both DFP and DFO, but LIC had increased by the end of the trial (Ha 2006), consistent with earlier observations (Olivieri 1998). In a randomised 1 year comparison of DFP with DFP + DFO, there was no decrease in LIC with DFP monotherapy but a decrease with combination therapy or in the DFO comparison group (Aydinok 2007). In a non-randomised prospective study using DFP, LIC increased with DFP by 28% at two years and by 68% at three years (Fisher 2003). In a recent study of paediatric patients, decrease in LIC was seen in those patients who showed a clinical response by reduction of serum ferritin and in those with a higher baseline LIC (Viprakasit 2013). In observational studies where only single biopsies were performed after several years of DFP treatment, LIC was found to be above 15 mg/g dry wt in variable proportions of patients, ranging between 11% (Del Vecchio 2002), 18% (Tondury 1998) and 58% (Hoffbrand 1998). Overall negative iron balance (decrease in LIC) with standard transfusion rates using DFP monotherapy is achieved in only about 1/3 of patients receiving 75 mg/kg (Fischer 1998).
The effect of DFP monotherapy on myocardial iron has been reported in randomised studies. One compared high dose DFP (92 mg/kg/day) with s.c. DFO 5-7 days a week in patients with mild to moderate myocardial iron (mT2* 8-20 ms). The actual dose prescribed for DFO was 43 mg/kg for 5.7 days/week (or a mean daily dose of 35 mg/kg/day). The increase in mT2* from 13 ms to 16.5 ms in the DFP group was greater than that seen in the DFO group, where an increase from 13.3 to 14.4 ms at 1 year was observed (Pennell 2006b). In another 1 year randomised study of DFP and DFO, no change in heart iron estimated by MRI (signal intensity ratio) was reported for either drug. Lower doses of DFP (75 mg/kg/day) were used in this study (Maggio 2002). In a retrospective study, higher mT2* values were seen using a multislice technique and with higher global systolic ventricular function, in patients with DFP monotherapy (n=42) than those with DFO (n=89) or DFX (n=24) monotherapies, although the mean values were in the normal range in each monotherapy category (Pepe 2011).
The effects of DFP on heart function have been documented in patients with normal baseline function (Pennell 2006b, Maggio 2002) but not in patients with baseline LVEF below the normal reference range. In a one-year randomised study of patients with normal LVEF, DFP given at high doses (92 mg/kg) increased LVEF (Pennell 2006b). In another 1 year randomised study, no difference in LVEF or other measures of LV function were seen with either DFP at 75 mg/kg/day or DFO (Maggio 2002). In a three year retrospective reanalysis of patients in the one year prospective study, follow up data showed that DFP monotherapy was associated with significant increase in LVEF in patients with LVEF in the normal range at baseline (Maggio 2012). Another retrospective study of 168 patients with thalassaemia major and baseline mean LVEF within the normal range were followed for at least 5 years while receiving monotherapy with DFO or DFP. LVEF increased in both groups but was higher in the DFP group at 3 years. However the subgroup of patients with LVEF <55% at baseline was greater in the DFO than in the DFP group (Filosa 2013).
One study comparing compliance with DFP and DFO found rates of 95% and 72% respectively (Olivieri, 1990), while another reported rates of 94% and 93%, respectively (Pennell 2006b). The similar rate of compliance with DFP has been observed in other populations (Viprakasit 2013). As with other oral chelators, two important points should be taken into consideration: (i) compliance with any treatment tends to be higher in in the context of clinical studies than in routine use, and (ii) although compliance with oral treatment is expected to be better, the importance of constant supervision and patient support as provided when administering DFO, should not be overlooked.
Several retrospective studies have reported a survival advantage of DFP either alone (Borgna-Pignatti 2006) or with DFO (Telfer 2006) (see below), compared with DFO alone. For example, in a retrospective cohort analysis of patients treated with DFP or DFO, no deaths were reported (n=157) in the DFP arm (n=157), in contrast to 10 in DFO-treated patients (Borgna-Pignatti 2006). Other retrospective or observational studies have drawn inferences about potential advantages of DFP over DFO based on surrogate markers for survival, such as SF, myocardial T2* or LVEF (though not liver iron) (Filosa 2013, Maggio 2012, Pepe 2011). However, two systematic analyses have not found clear evidence of survival advantages of any particular chelator regime (Fisher 2013b, Maggio 2011). The Cochrane systematic review concluded: ‘’earlier trials measuring the cardiac iron load indirectly by measurement of the magnetic resonance imaging T2* signal had suggested DFP may reduce cardiac iron more quickly than DFO. However, meta-analysis of two trials showed a significantly lower left ventricular ejection fraction (at baseline) in patients who received DFO alone compared with those who received combination therapy using DFO with DFP’’ (Fisher 2013b). Another systematic study concluded ‘’There is no evidence from randomised clinical trials of different chelators or regimes to suggest that any has a greater reduction of clinically significant end organ damage, although in two trials, combination therapy with DFP and DFO showed a greater improvement in left ventricular ejection fraction than DFO used alone’’ (see below). Thus while retrospective analyses encourage the view of a survival advantage with DFP monotherapy compared with DFO, this has not been confirmed by in systematic meta-analysis.
The unwanted effects of DFP and their monitoring and management are described in Appendix 2.
According to the FDA, Ferriprox ® ‘’is indicated for the treatment of patients with transfusional iron overload due to thalassemia syndromes when current chelation therapy is inadequate’’ (FDA 2011). FDA approval is ‘based on a reduction in serum ferritin levels’. The European licensing Agency (EMEA) states ‘Ferriprox is indicated for the treatment of iron overload in patients with thalassaemia major when DFO therapy is contraindicated or inadequate’. In Thailand and many Asian countries, DFP was registered for similar indications and is licensed for use from the age of 6.
The daily dose of DFP that has been evaluated most thoroughly is 75 mg/kg/day, given in three doses. In the EU, the drug is licensed for doses up to 100 mg/kg/day but formal safety studies of this dose are limited. The standard dose of 75 mg/kg/day administered in three separate doses is therefore recommended. The drug’s labeling includes charts stating how many tablets and half tablets to use per dose for patient weights ranging from 20 to 90 kg. Each 500 mg tablet is scored to facilitate tablet splitting. An oral solution is also available for paediatric use.
Adjustments may be made on the basis of the patient’s response but should never exceed 33 mg three times daily. Doses of 100 mg/kg/day have been given in at least one prospective study (Pennell, 2006), with no increase in reported side-effects. The relation of dose to iron balance or serum ferritin has not been reported in a single study. High dose monotherapy with DFP has not yet been prospectively evaluated for safety and effectiveness for patients with abnormal heart function, and thus combination therapy with DFP and DFO (see below) or intensive therapy with DFO as a 24-hour infusion should be recommended for this group of patients.
There is less experience on the safety and efficacy of DFP in children under 6 years of age than in adults. A recent open label prospective study examined efficacy and tolerability in 73 pediatric patients, age range 3-19 years (Viprakasit 2013), as well as a similar study involving 100 children of 1-10 years old who received the liquid formulation of DFP found no specific tolerability issues that have not been previously reported in adults.
The effect of vitamin C on iron excretion with DFP is not clear and is thus not recommended.
These are summarised in Appendix 1 and described in Appendix 2.
Deferasirox (DFX) was developed as a once-daily oral monotherapy for the treatment of transfusional iron overload. The drug has been licensed as first-line monotherapy for thalassaemia major in over 100 countries worldwide, although the earliest age at which deferasirox qualifies as first-line treatment differs somewhat between the FDA and the EMEA (see Appendix 1).
Deferasirox is an orally absorbed tridentate iron chelator, with two molecules binding each iron atom. The chemical properties and pharmacology are summarized in Table 5. The tablet is dispersed (not dissolved) in water or apple juice using a non-metallic stirrer and consumed as a drink once daily, preferably before a meal. The drug is rapidly absorbed, reaching peak concentrations of 80µM at 20 mg/kg and the long half-life of this iron-free drug allows trough concentrations of about 20 µM, providing 24hr protection from plasma labile iron (Nisbet-Brown 2003, Galanello 2003), with about 90% in the free drug form and 10% as iron complexes (Waldmeier 2010). The lipid solubility allows entry into cells, including cardiomyocytes. The majority of the drug is excreted in faeces, and metabolism is mainly to an acyly-glucuronide that retains its ability to bind iron (Waldmeier 2010). Metabolic iron balance studies show iron to be excreted almost entirely in the faeces, with less than 0.1% of the drug eliminated in urine (Nisbet-Brown 2003). The main pathway of DFX metabolism is via glucuronidation to the acyl glucuronide and the 2-O-glucuronide metabolites. Oxidative metabolism by cytochrome 450 enzymes is minor (10% of the dose) (Waldmeier 2010). The efficiency of chelation is 28% over a wide range of doses and levels of iron loading.
A dose-dependent effect on serum ferritin has been observed in several studies (Porter 2008, Cappellini 2006, Piga 2006). A prospective randomised study comparing the effects of DFX in 296 thalassaemia major patients with DFO in 290 patients, found that 20 mg/kg daily stabilized serum ferritin close to 2,000µg/L and at 30 mg/kg, serum ferritin was reduced with an average fall of 1,249 µg/L over one year (Cappellini 2006). Longer-term analysis of ferritin trends show that the proportion of patients with ferritin values <1,000 µg/L and less than 2,500 µg/L is decreasing progressively with time. At 4-5 years follow up in 371 patients, median SF had fallen to < 1500 µg/L (Cappellini 2011) and the increase in mean dose from an initial value of < 20 mg/kg to 25 mg/kg was associated with a significant fall in serum ferritin. Overall, 73% of patients attained serum ferritin levels ≤2500 µg/L and 41% of patients achieved serum ferritin levels of ≤1000 µg/L, compared with 64% and 12% at baseline respectively. A large-scale prospective study (EPIC) has examined the interaction between dose and SF response in large scale studies involving 1,744 transfusion-dependent anaemias, including 1,115 with TM (Cappellini 2010). The initial dose of deferasirox was 20 mg/kg/day for patients receiving 2-4 packed red blood cell units/month, and 10 or 30 mg/kg/day for patients receiving less or more frequent transfusions, respectively. Dose adjustment were made on the basis of ferritin trends at 3 monthly intervals. A significant though modest overall fall in ferritin was seen at 1 year. In a recent substudy, the largest SF decrease of -1,496 µg/L/year was noted in patients with the highest baseline SF values (baseline median SF 6,230 µg/L) (Porter 2013a). These patients were treated with DFX at high dosage (35-40 mg/kg/day), which are therefore doses now recommended for heavily iron overloaded patients.
Metabolic balance studies showed that excretion averaged 0.13, 0.34 and 0.56 mg/kg/d at DFX doses of 10, 20 and 40 mg/kg/d respectively, predicting equilibrium or negative iron balance at daily doses of 20 mg and above (Nisbet-Brown 2003). In a longer term randomised prospective study in 586 thalassaemia patients aged 2 to 53 years (with half of patients <16 years old), iron balance with DFX (n=290) assessed by serial LIC determination was achieved at 20 mg/kg/day, with mean LIC remaining stable over one year (Cappellini 2006). Negative iron balance was achieved at 30 mg/kg/day, with a mean LIC decrease of 8.9 mg/g dry wt (equivalent to a decrease in body iron of 94 mg/kg body weight) over one year. These are average trends and a closer analysis shows that the blood transfusion rate influences the response to treatment (Cohen 2008) (Table 8). This shows that negative iron balance over 1 year (response rate) is increased as doses increase, and that the response rate is less at high transfusion rates, who therefore required higher doses.
At 4-5 years of follow up, the percentage of patients with LIC values <7 mg/g dry wt by biopsy increased from 22% at baseline to 44% (Cappellini 2011). A more moderate reduction in LIC occurred in children under six years old, despite the administration of an average dose of 21.9 mg/kg in this subgroup. However, these patients had the highest mean transfusional iron intake. In a recent liver MRI analysis of 374 patients enrolled on the EPIC study (Porter 2013a), response to DFX was analyzed according to baseline levels of iron overload. In patients with a high baseline LIC of 27.5 mg/g dry wt, LIC decreased by 6.9 mg/g dry wt at one year at doses of 25-35 mg/kg/day. In patients with LIC of 32 mg/g dry wt the decrease was 7.3 mg/g dry wt and 35-40 mg/kg/day, respectively. Thus, provided adequate doses are given, there is a good response to DFX across the full range of baseline LIC values (Porter 2013a).
DFX was the first chelator to be formally assessed in children as young as 2 years old. Approximately 50% of patients in 5 clinical studies that included 703 patients were children aged <16 years. The drug appears to be tolerated in children as well as in adults. Importantly, no adverse effects on growth or skeletal development were observed at a dose of 10 or 20 mg/kg /day (Piga 1988). In another observational study of chelation-naive transfusion-dependent children (aged < 5 years) with SF > 1000 µg/L at baseline, DFX or DFO was prescribed to maintain serum ferritin levels between 500 and 1000 µg/L. With a median follow up of 2.3 years for DFX (n = 71) and 2.8 years for DFO (n = 40), DFX was shown to be well tolerated and at least as effective as DFO in maintaining safe serum ferritin levels and normal growth progression (Aydinok 2012b).
Improvement in mT2* was first reported in a retrospective analysis of effects on myocardial T2* after 1 and 2 years (Porter 2010, Porter 2005a). Prospective data demonstrated the efficacy of DFX in improving myocardial T2*over a range of mT2* from 5-20 ms, with 41% having severe myocardial iron loading <10 ms at baseline (Pennell 2010). In a prospective trial, 114 patients with high mean baseline LIC (mean 28 mg/g dry wt) were treated with DFX for up to 3 years (Pennell 2012), receiving mean actual doses of 33, 35, and 34 mg/kg/day during the 1st, 2nd and 3rd years, respectively. Higher mean doses of 37 mg/kg per day were received by patients with baseline T2* between 5 and <10 ms, compared with those between 10 and 20 ms (32 mg/kg per day). Of the 114 patients initially enrolled, 101 continued into the 2nd year, 86 completed two years of treatment and 71 entered into a third year. There was year by year significant improvements in mT2*; from 12.0 ms at baseline to 17.1 ms at 3 yrs, corresponding to a decrease in cardiac iron concentration (from 2.43 mg/g dry wt at baseline, to 1.80 mg/g dry wt. After three years, 68 % of patients with baseline T2* between 10 and <20 ms benefited from normalization of T2*, and 50% of patients with baseline T2*>5 to <10 ms at baseline improved to 10 to <20 ms. There was no significant variation in left ventricular ejection fraction over the three years and no deaths occurred. Tolerability was similar to other DFX studies in TM over the doses up to 40 mg/kg/day.
In a 1 year randomised prospective study (CORDELIA) 197 patients with T2* of 6-20 ms and no signs of cardiac dysfunction were randomised to DFX (target dose 40 mg/kg/day) or subcutaneous DFO treatment (50-60 mg/kg/day for 5-7 days/week) (Pennell 2014). Baseline LIC was high in both DFX (mean 29.8 mg/g dry wt) and DFO treated patients (30.3 mg/g dry wt), with 73% of patients having baseline LIC >15 mg/g dry wt. The geometric mean (Gmean) myocardial T2* improved with DFX from 11.2 ms at baseline to 12.6 ms at 1 year (Gmeans ratio 1.12) and with DFO (11.6 ms to 12.3 ms, Gmeans ratio 1.07). This study established non-inferiority of DFX vs. DFO for cardiac iron removal in this patient population. LVEF remained stable in both arms and the frequency of drug-related adverse events was comparable between DFX (35.4%) and DFO (30.8%). Taken together, these studies show that DFX is an effective treatment for patients with increased heart iron with mT2* >5-20 ms. It also demonstrates response in patients with high levels of baseline mT2* (5-10 ms), as well as those with high levels of baseline LIC or SF. As with other chelation regimes, high levels of baseline heart iron (<10 ms) will typically take several years to clear, but the risk of developing heart failure during this time appears very low (see below), provided treatment is monitored.
In the above studies, even though mT2* values at baseline were as low at 5-6 ms and the proportion of patients with mT2* <10 ms was significant (17.2-33%), LVEF remained stable, and there were neither deaths nor episodes of symptomatic heart failure observed. Only one case of atrial fibrillation and one case of cardiomyopathy were reported. According to risk analysis of heart failure in TM from other cohorts, the risk of developing cardiac failure was expected to be substantial, with a relative risk 160 fold higher for patients with T2* < 10 ms (Kirk 2009a). The stability of LVEF and the absence of heart failure in this otherwise high risk group of patients suggests that DFX renders effective prophylaxis for heart failure, even in patients with T2* values of 5-10 ms. This may be related to the 24hour ‘protection time’ against labile iron that results from the long plasma half-life of DFX (Daar 2009). Deferasirox has not been evaluated in formal trials for patients with symptomatic heart failure or LVEF < 56%, therefore at this time other chelation options are recommended for such patients.
More than 5,900 patients have been enrolled in prospective trials but these, with some exceptions, have typically been designed for short term evaluation. Up to 5 years of follow up have now been reported in one prospective clinical trial from the initial registration studies, which provides useful information about risk and benefit with this treatment (Cappellini 2011). Other prospective data of patients with myocardial T2* of 5-20 ms and high levels of liver iron but without complications, provides further insight into comorbidities and mortality in high-risk subjects. The stability of left ventricular function, lack of progression to heart failure and absence of any deaths are notable features of the prospective 3-year EPIC and 1-2 year CORDELIA cardiac studies, despite including patients at high risk of cardiac decompensation, with mT2* levels as low as 5 ms (Pennell 2012) or 6 ms (Pennell 2014).
Convenience and quality of life on DFX, as with other oral chelation regimes, are expected to impact on adherence and hence survival. This is likely to have a greater impact outside formal clinical studies, where adherence is generally better than in routine clinical use. Studies comparing satisfaction and convenience of DFX with DFO in thalassaemia major show a significant and sustained preference for DFX (Cappellini 2007). In a randomised comparison, total withdrawals in DFX-treated patients was 6% at one year, compared with 4% with DFO (Cappellini 2006). This compares with a dropout rate of 15% at one year with DFP, although these are not matched populations (Cohen 2000). In the large scale EPIC study, patients reported improved quality of life (estimated by SF36 scores) and greater adherence to chelation therapy compared with baseline before starting DFX (Porter 2012).
Deferasirox is taken orally as a suspension in water once daily, and preferably before a meal. A starting dose of 20 mg/kg is recommended for thalassaemia major patients who have received 10-20 transfusion episodes and currently receive standard transfusion at rates of 0.3-0.5 mg of iron/kg/day. In those patients in whom there is a higher rate of iron intake from transfusion (>0.5 mg/kg/day), or in patients with pre-existing high levels of iron loading where a decrease in iron loading is clinically desirable, 30 mg/kg/day is recommended. For patients with a low rate of iron loading (<0.3 mg/kg/day), a dose of 10-15 mg/kg may be sufficient to control iron loading.
The labeling for age of commencement differs in countries that follow US licensing from those that adhere to EU licensing (Appendix 1). However, based on prospectively randomised studies of DFX in children as young as two years of age, some recommendations can be made. A fall in LIC has been seen across all age groups analysed, with no age-related adverse effects. In particular, no adverse effects on growth, sexual development or bones have been observed (Piga 2006). Deferasirox also appears to be palatable to children at this young age. On the basis of present knowledge, the criteria for starting treatment (ferritin level, age, number of transfusions) are similar to those of DFO. However, a target of 500-1000 µg/L appears to be achievable with DFX without additional toxicity issues, provided that doses are adjusted downwards as SF values fall towards 500 µg/L.
When body iron has accumulated to high levels (see monitoring), negative iron balance is required. The proportion of patients in negative iron balance at a given dose is partially dependent on the rate of iron loading (see above). Doses of up to 40 mg/kg/day are recommended for patients with LIC or SF values and are now licensed at this dose (Porter 2013a). Dividing the dose as a twice daily dose has been used in some patients who fail to achieve negative iron balance, despite these higher doses (Pongtanakul 2013). Some patients have taken DFX after rather than before food, with apparently improved efficacy. This is consistent with the known effects of food on GI absorption (Galanello 2008).
On the basis of prospective studies these patients can be successfully treated with DFX, resulting in preservation and stabilisation of LV function. Doses of up to 40 mg/kg have been used and are advisable in patients with very high levels of liver iron or serum ferritin.
Prospective clinical trials with DFX monotherapy have been confined to patients with mT2* values ≥6 ms. For patients with mT2* <6 ms, other alternative chelation regimes are recommended.
DFX has not been formally evaluated in prospective trials for such patients and is therefore not recommended.
DFX is contraindicated in patients with renal failure or significant renal dysfunction (see below). Caution is recommended for patients with advanced liver disease and hepatic decompensation.
Unwanted effects of DFX and their monitoring and management are described in Appendix 2.
The term ‘combination therapy’ has been used to cover a variety of approaches to improve outcomes if monotherapy proves inadequate. In principle, two chelators can be given at the same time (simultaneously), or one after the other (sequentially). True combination, where two chelators are present in the blood at the same time, has been used relatively rarely compared with sequential regimes. Some investigators have used the term ‘alternating therapy’ to describe the use of two drugs administered on alternate days, reserving the term ‘sequential therapy’ for when DFO is given at night and DFP during the day. In practice, regimes may involve both a component of ‘sequential’ and ‘alternating’ therapy such as when DFO is given three times a week (alternate nights) and DFP every day. Most commonly used regimes have tended to give DFP daily at standard doses, combined with varying frequency and dosing of DFO. More recently, combinations of DFX with DFO, or DFX with DFP have been evaluated. In this instances, both drugs may be present in plasma or intracellularly for at least part of the time owing to the half-life of DFX and its extended time in the plasma - for up to 24hr.
The pharmacology and mechanisms of action in combining chelators is dependent on whether the drugs are present in cells or plasma at the same time. By giving DFO at night and DFP by day, 24-hrs of exposure to iron chelation can be achieved (similar exposure to that achieved with 24-hrs desferrioxamine infusion, or once daily deferasirox). This has the theoretical advantage of 24hr protection from labile (redox active) iron (Cabantchik 2005). If the drugs are given at the same time (simultaneously), they may interact in a process that involves the ‘shuttling’ of iron, which may lead to additional chelation of iron from cells or plasma NTBI (Evans 2010) and so improved efficiency of iron chelation. On the other hand, there is also the possibility of chelation from metalloenzymes, leading to increased drug-related toxicity, but this has not been an issue clinically. The use of DFX, which is present in plasma 24hrs/day, together with DFO by intermittent infusion provides 24hr chelation, with decreases in LPI and NTBI (Lal 2013). Simultaneous exposure to two chelators may also result in synergistic removal of cellular iron. This has been demonstrated in cell culture with combinations of all three chelators (Vlachodimitropoulou 2013).
Combinations of these chelators has been studied more extensively than other chelator combinations so far. A variety of regimens involving combinations of DFP and DFO have been used, either in the context of a formal trial or on an ad hoc basis, usually when monotherapy with DFO or DFP has failed to control iron overload or its effects. These have been detailed elsewhere (Porter and Hershko 2012). Here some of the key studies providing useful evidence are described.
Experience with this combination is relatively limited compared with the above regimes. Two prospective studies have evaluated this combination. In the first, 22 patients were studied over 12 months of DFX at 20-30 mg/kg daily plus DFO at 35-50 mg/kg on 3-7 days/week. Median LIC was shown to decrease by 31% and median ferritin by 24%. All 6 subjects with elevated myocardial iron showed improvements in MRI T2*. Both NTBI and LPI fell significantly. Tolerability was consistent with that seen previously with individual treatments (Lal 2013). A larger prospective study has examined 60 patients with severe liver and heart iron overload (cardiac T2* 5-10 ms) given DFX 20-40 mg/kg/d 7 days per week, plus DFO 40 mg/kg/d 5 days per wk for ≥8 hrs/d (Aydinok 2013). Results up to 2 years show a reduction in SF of 44% and 52% in LIC, and an increase in cardiac T2* of 33% (Aydinok 2014). Improvement in mT2* were greater in patients with baseline LIC <30 than those >30 mg/g dry wt. LVEF remained stable during the study. Tolerability was consistent with that seen with monotherapy regimes.
Experience with the combination of these two drugs is currently even more limited. Single case reports suggest that this is an effective regime (Voskaridou 2011). One study reported combined use in 16 patients for a period of up to 2 years with decrease of total body iron load as estimated by serum ferritin, LIC and MRI T2* indices (Farmaki 2010). The incidence of adverse events was minor compared to the associated toxicity of monotherapy of each drug. No new onset of iron overload-related complications was demonstrated, with reversal of cardiac dysfunction in 2/4 patients and significant increase in mean LVEF. More recently, preliminary results of a larger randomised trial have been presented comparing this combination with DFP monotherapy (Elalfy 2013). In 96 patients in Egypt, two combination regimes were compared over 1 year: DFP 75 mg/kg in two divided doses was given in both regimes and combined with either DFX 20 mg/kg once daily, or with overnight DFO at 40 mg/kg (the frequency of DFO is not stated in the abstract). SF, LIC, and mT2* improved significantly in both groups and no serious adverse events were reported during the study in either treatment group. The authors reported improvement in quality of life in a greater number of patients in the arm containing DFX, than those treated with DFO. These findings are encouraging but further studies are needed to clarify the tolerability of this approach, and to determine how this might be used most effectively and safely. The optimal relative doses and frequency of each drug also need to be determined, which may vary depending on the degree of cardiac or overall iron overload.
The licensing of individual chelators, specified in the country where the treatment is prescribed should act as an initial guide on when to start the therapy and at what dose (see Appendix 1). Standard first line doses have been discussed in detail above, and depend in part on the rate of transfusional iron loading. Starting chelation before overload has built up, or irreversible damage has occurred is critical to success. With DFO, chelation was often withheld until the SF had reached 1000 µg/L because of fears toxicity would have on growth, ears and eyes at low levels of body iron. It may be that with new chelator regimes that chelation can be started earlier, however, information about this is limited at present. In practice, the exact timing of starting chelation is currently constrained to some extent by the licensing of the compound by regulatory authorities, which differs somewhat between countries. If a patient is failing on first line therapy, dose adjustment and attention to adherence (practical as well as psychological support) are the next steps. If this fails then regime adjustment can be considered, depending on the circumstances - some of which described below.
If body iron load builds up because of a delayed in starting chelation therapy, inadequate dosing, and poor adherence or because of poor response to an individual monotherapy, rescue therapy is required by one or more of the following:
DFO, DFP and DFX monotherapy are all effective at decreasing heart iron, but need to be given without interruption for optimal effects and at adequate doses. The immediate risk of heart failure is low, provided that the patient remains on chelation therapy without interruption (Kirk 2009b). Regular daily monotherapy at optimal doses (often an increase from current dose or frequency) will usually improve heart iron but normalisation of heart iron can take several years of consistent therapy and sequential monitoring of T2* is required. Monotherapy with DFX is usually effective and recent work shows that DFX is effective at improving T2* across a full range on LIC concentrations (Pennell 2014, Pennell 2012). If the imperative is to do this as rapidly as possible (for example in preparation for pregnancy or prior to bone marrow transplant), then high dose DFP monotherapy (>90 mg/kg) or regular doses of DFP in combination with standard DFO 5 days a week should be used, rather than DFO alone when given s.c. 5 days a week. DFX has not been compared directly with DFP either alone or in combination with DFO. If there is no trend of improvement in T2* with DFO, DFP or DFX monotherapy, then combined DFP and DFO should be considered.
The risk of developing heart failure increases with lower cardiac T2*, especially when values drop below 10 ms (i.e. higher heart iron). However, if continuous chelation therapy is given, heart failure may be prevented even before the T2* is corrected. This was has been shown for continuous 24h DFO, with high dose DFX in a population where T2* was 6-10 ms, and in patients treated with different combination regimes (DFO+DFP, DFO+DFX). Patients with T2* ≤ 6 ms, are a very high risk group for developing heart failure. This group has not been evaluated extensively with interventional studies (expect people with heart failure). There is some experience of treating these patients with DFO + DFP, but randomised trials did not include patients with T2* values < 8 ms (Tanner 2007). In the absence of formal comparisons with other regimes, the combination of DFO (given as often and as continuously as possible) with DFP at standard doses is recommended. DFX monotherapy at doses >30 mg/kg/day has also been shown to be effective for patients with T2* >5 ms and normal heart function. If patients also have high levels of body iron as well as heart iron, it is important that the regime also reduces total body iron.
If chelation therapy is taken regularly clinical heart failure is now rare. Reversal of heart failure requires continuous DFO therapy and can occur within a few weeks of starting treatment. This will not succeed in all cases, but if started early in the development of heart failure, is usually effective. The addition of DFP in these circumstances may be beneficial, although a small randomised comparison did not show a difference with our without DFP (Porter 2013b). Once reversal of heart failure has been demonstrated clinically and with myocardial MRI or echocardiography, continuation of the same therapy is recommended until the cardiac T2* improves to T2* above 8 ms, depending on the starting T2* this may take as long as a year. The key to success is the timely introduction of intensification and the maintenance of intensive treatment after the heart failure has been corrected.
An increasingly common problem for patients who respond well to a chelation regime is that the clinician does not recognize this and/or does not adjust the dose downward soon enough to prevent toxicity from over chelation. This is more likely in centres without long term or regular experience in monitoring and prescribing iron chelation. Regular monitoring for SF trends (1-3 times monthly) and for the known toxicities of each chelator are minimum requirements. The general principle of downward dose adjustment with rapidly falling body iron loads is clear, but the specifics as regards how much and when are less clear with some of the newer chelator regimes, and these are discussed in the respective sections on individual chelators. In general, the risk of over chelation with DFO increases when the SF is low relative to the dose. This has not been analysed systematically with other chelation regimes. With DFX, low levels of SF can be achieved even in patients not receiving transfusion, provided the doses are low (5-10 mg/kg), as SF values fall below 500µg/L (Taher 2013). Cases of toxicity from over chelation have been observed when SF are higher than this, if the rate of decrease is rapid. DFX dose adjustment consideration should be made at the first sign of increasing serum creatinine values (as a late event associated with falling SF or LIV values). With DFP it is not clear whether to or how to adjust dosing at low levels of SF or with rapid decrements in SF.
CATEGORY | DFO (DESFERRIOXAMINE) | DFP (DEFERIPRONE) | DFX (DEFERASIROX) |
---|---|---|---|
Children age 2-6 | First line for TM | Insufficient information for licensing | First line in USA Second line when DFO contra-indicated or inadequate in Europe |
Children age > 6 and adults | First line TM | If other chelation (FDA 2011) or DFO not tolerated or ineffective | First line TM First line NTDT |
Route | s.c. / i.m. or i.v injection | Oral, tablet or liquid | Oral, dispersed tablet |
Dosage and frequency | 20 - 60 mg/kg 5 -7 × / week, 50 mg/kg in EU Children’s dose up to 40 mg/kg | 75 -100 mg/kg/day in 3 divided doses daily | 20-40 mg/kg/day once daily. Lower doses in NTDT |
Contra-indications |
|
|
|
Precautions |
|
|
|
Potential drug interactions |
|
|
|
Drug labelling recommends stopping when ferritin 500 µg/L but this risks rebound labile iron and see-saw pattern of iron overload. Consider gradual dose reduction as ferritin falls <1000µg/L.
Unwanted effects of chelation therapy are generally more likely at high chelator doses and at low levels of iron overload, and possibly in association with high rates of reduction in body iron. There is more information about the relationship of these variables with DFO than with DFX, and little information is available about the effect of DFP dosing on unwanted effects. Although the licensing of each chelator includes some recommendations about how to monitor for unwanted effects, in this this appendix we have placed these in the context of overall management of TM patients.
Evidence for the relative frequency of adverse events in randomised studies have been aggregated from 18 trials by systematic review (Fisher 2013a, Fisher 2013b). This concluded "Adverse events are increased in patients treated with DFP compared with DFO and in patients treated with combined DFP and DFO compared with DFO alone. People treated with all chelators must be kept under close medical supervision and treatment with DFP or DFX requires regular monitoring of neutrophil counts or renal function".
The unwanted effects of DFO are seen mainly when doses are given that are too high in relation to the level of iron overload, and typically take weeks or months to develop (over chelation). Some effects are largely independent of the dose given, however, limited data on the frequency of adverse effects at currently recommended doses are available, as most data were accumulated in the 1970s and 1980s, when optimal dosing was not fully understood. In a 1 year randomised clinical trial comparing DFO with DFX, abnormalities of hearing were reported as adverse events irrespective of drug relationship in 2.4% on DFO. Cataracts or lenticular opacities were reported as adverse events irrespective of drug relationship in 1.7% on DFO. A similar percentage of patients receiving DFX and DFO experienced cardiac adverse events (DFX 5.1%, DFO 6.9%).
Because regular use of DFO is critical to a good outcome, every effort should be made with each individual to help him or her to find the most convenient way to infuse the drug.
10 % solutions of DFO given to peripheral veins will damage and sclerose the vein. If infused (as an emergency) into a peripheral vein, the solution must be diluted – for example in 200-500 mls of saline.
All rights reserved.
No part of this book may be reproduced, stored in a retrieval system, or transmitted in any from or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from TIF.
Your browsing activity is empty.
Activity recording is turned off.
See more...