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Chemical name: 3'-Deoxy-3'-[18F]fluorothymidine

Abbreviated name: [18F]FLT, FLT

Synonym: [18F]Fluorothymidine

Agent category: Compound

Target: Thymidine kinase-1

Target category: Transporters, enzymes

Method of detection: Positron emission tomography (PET)

Source of signal: 18F

Activation: No

Studies: • In vitro
• Rodents
• Non-primate non-rodent mammals
• Humans

Structure is currently not available in PubChem.

Background
[PubMed]

One of the characteristics of tumor cells is their unchecked proliferation. It is important to measure the 
proliferation rate of cancer lesions to help differentiate benign from malignant tumors and to characterize 
malignant tumors among normal tissues. 2-[18F]Fluoro-2-deoxy-D-glucose ([18F]FDG) has been widely used in 
cancer imaging. However, enhanced uptakes of FDG also occur in inflammatory cells and lesions as well as in 
necrotic cells (1, 2). Thymidine (TdR) and TdR analogs are the standard markers for DNA synthesis, and 
[11C]thymidine has been used in positron emission tomography (PET) imaging to measure tumor growth rate 
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in situ. Because of the short half-life of 11C and extensive metabolism of [11C]TdR in the blood (3), 3'-
deoxy-3'-[18F]fluorothymidine (FLT) was developed for PET imaging.

FLT is an analog of TdR and is phosphorylated by thymidine kinase-1 (TK-1), an enzyme expressed during the 
DNA synthesis phase of the cell cycle (4). Most cancer cells have a much higher TK-1 activity than normal cells. 
FLT monophosphate is not incorporated into DNA and is impermeable to the cell membrane. Therefore, it is 
metabolically trapped inside the cells. The uptake and accumulation of FLT are used as an index of cellular 
proliferation. [18F]FLT PET has been used to detect and monitor tumor proliferation, to evaluate the stages of 
tumor, and to detect metastases (5).

Related Resource Links:
• Chapters in MICAD (Thymidine kinase)
• Gene information in NCBI (Thymidine kinase)
• Articles in Online Mendelian Inheritance in Man (OMIM) (Thymidine kinase)
• Clinical trials ([18F]FLT)

Synthesis
[PubMed]

A reliable radiosynthesis of [18F]FLT has been developed based on [18F]fluoride displacement of a protected 
nosylate precursor. A simple three-step synthesis was used to prepare 370 MBq (>10 mCi) of radiochemically 
pure [18F]FLT, with a specific activity of 37 GBq/μmol (>1 Ci/μmol) at the end of synthesis within 100 min and 
with 13% radiochemical yield (end of bombardment; 7% end of synthesis) (6). Recently, Oh et al. (7) reported a 
new, fully automated method for the synthesis of [18F]FLT with a yield of 50% radiochemical yield, by 
modifying a commercial FDG synthesizer and its disposable fluid pathway.

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

Expression of major pyrimidine metabolizing enzymes in pancreatic cancer cell lines, chronic pancreatitis tissue, 
and human pancreatic cancer and the in vitro uptake of [18F]FLT were studied (8). TK-1 and thymidine 
synthetase mRNA were increased in six pancreatic cancer cell lines. High TK-1 activity was confirmed in all of 
these cancer cell lines as compared with normal pancreatic tissue and samples from patients with chronic 
pancreatitis. The cellular uptake of [18F]FLT was 18.4% ± 3.6% and 5.2% ± 1.4% of the applied radioactivity after 
240 min in SW-979 and BxPc-3 cells, respectively, whereas uptake of [18F]FDG was only 0.6% ± 0.04% (SW-979) 
and 0.3% ± 0.13% (BxPc-3). In contrast, the cellular uptake of [18F]FLT in isolated pancreas and growth-arrested 
HT1080 cells was lower as compared with the uptake of [18F]FDG and with the malignant pancreatic cancer cell 
lines. The majority of [18F]FLT was phosphorylated to the respective monophosphate in both cell lines. The 
incorporation of [18F]FLT into the DNA was only 0.8% ± 0.12% (BxPc-3) and 1.3% ± 0.38% (SW-979) of the 
applied radioactivity. These results demonstrate the cellular uptake, intracellular trapping, and incorporation 
into the DNA of [18F]FLT in pancreatic cancer cells in vitro. TK-1, as the rate-limiting enzyme of [18F]FLT 
metabolism, is overexpressed in pancreatic cancer cell lines and in human pancreatic cancer.

It was recently reported that human lung adenocarcinoma A549 cells accumulated [18F]FLT intracellularly as 
[18F]FLT-nucleotides (49% monophosphate, 6% diphosphate, and 29% triphosphate) by high-performance 
liquid chromatography (HPLC) analyses (9). The rate-limiting step in the overall conversion of FLT to FLT-
triphosphate was the phosphorylation of the monophosphate by thymidylate kinase. FLT-triphosphate was 
resistant to degradation and trapped in the cells, although it was not incorporated into DNA.
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Cells derived from human esophageal carcinoma were grown for 2 days and incubated with cisplatin, 5-
fluorouracil (5-FU), methotrexate, or gemcitabine. The cytotoxic drugs methotrexate, 5-FU, and gemcitabine 
caused an increase in [18F]FLT accumulation with similar [18F]FDG uptake as compared with untreated cells. 
There was a rebound effect of the cancer cells to increase the uptake of FLT. The cytostatic drug, cisplatin, 
showed a decrease in [18F]FLT uptake and little change in [18F]FDG uptake (10). Not all of the anticancer drugs 
have the same effect on FLT uptake, depending on their mechanisms of action.

Animal Studies

Rodents
[PubMed]

The use of [18F]FLT to monitor the response of tumors to antiproliferative treatment in mice was studied (11). 
The accumulation of [18F]FLT was significantly higher in blood, plasma, liver, kidneys, and small intestine and 
significantly lower in brain, spinal cord, heart, and muscle than [18F]FDG in C3H/Hej mice bearing the 
radiation-induced fibrosarcoma-1 tumor. The tumor-bearing mice were treated with 5-FU (165 mg/kg i.p.). 
Changes in tumor volume and biodistribution of [18F]FLT and [18F]FDG were measured in three groups of 
mice (n = 8-12/group): group a, untreated controls; group b, 24 h after 5-FU; and group c, 48 h after 5-FU. In 
addition, dynamic [18F]FLT PET imaging was performed on a small animal scanner for 60 min. Tumor 
[18F]FLT uptake decreased after 5-FU treatment. The drug-induced reduction in tumor [18F]FLT uptake was 
significantly greater than that of [18F]FDG. The PET image data confirmed smaller tumor [18F]FLT retention in 
group c compared with group a, despite a trend toward higher tracer delivery for group c. Other than 
phosphorylation in tumors, [18F]FLT was found to be metabolically stable in vivo. The decrease in tumor 
[18F]FLT uptake correlated with tumor proliferation and tumor volume changes after 5-FU treatment. 
Compared with group a, TK-1 levels were lower in group b (78.2%) but higher in group c (141.3%; P < 0.001). In 
contrast, a stepwise decrease in ATP levels was observed from group a to group b to group c (P < 0.001). In this 
murine model system, the radiotracer uptake was correlated with tumor proliferation. The decrease in [18F]FLT 
uptake after 5-FU treatment was more drastic than that of [18F]FDG. [18F]FLT is a marker for monitoring 
antiproliferative drug activity in oncology.

Other Non-Primate Mammals
[PubMed]

[18F]FLT was infused into normal dogs, as well as one dog with spontaneous lymphoma, and one with sarcoma 
before treatment (5). Dynamic PET imaging was performed for 60 min over the upper abdomen in normal dogs 
or over the tumors. For comparison, dynamic imaging with [11C]thymidine was also performed in two dogs. 
Images from normal dogs demonstrated a selective uptake in the marrow. There was also a high retention of FLT 
in the nose of the dog and the submandibular lymph node. The kidneys and the bladder showed a high uptake 
activity. The brain had a low uptake of FLT. The mean standardized uptake value (SUV) for FLT in dog marrow 
was 4.6 (4.1-5.5; n = 3), compared with 2.5 for [11C]thymidine (2.4-2.6; n = 2) There was a progressive FLT 
uptake in the bone marrow during the 60 min of imaging. On the other hand, [11C]thymidine, which is largely 
degraded within minutes of injection, did not accumulate in tissues after its initial uptake and retention in DNA. 
HPLC analysis of the dog urine after [18F]FLT administration showed that over 95% of the activity was present 
as unchanged [18F]FLT. Similarly, analysis of late blood samples (50 min) demonstrated that 90–97% of the 
activity remained as the parent compound. FLT was retained in cells as the phosphorylated form, and most FLT 
was intact when it was cleared by the kidneys. In a dog with spontaneous non-Hodgkin’s lymphoma, there was a 
greater uptake in the tumor (SUV, 7.1) than was seen for the marrow (SUV, 5.5). Also, in a dog with a large soft 
tissue sarcoma (11 cm in diameter), a rim of increased FLT accumulation (SUV, 3.1) was observed. The central 
region of the tumor showed little FLT uptake because it was necrotic.
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Non-Human Primates
[PubMed]

No publication is currently available.

Human Studies
[PubMed]

Dosimetry of [18F]FLT was calculated from the biodistribution data of 18 patients (12). The effective dose 
equivalent was estimated to be 0.031 mSv/MBq (114 mrem/mCi). The major radioactivity was in the bladder, 
liver, kidneys, and bone marrow. In 11 patients with non-small cell lung cancer, there was a strong correlation of 
[18F]FLT PET with cytochemical staining of nuclei with MIB-1 monoclonal antibody (13). In another study 
(14), 26 patients with pulmonary nodules on chest CT were examined with the uptake of [18F]FDG and 
[18F]FLT. Of 18 malignant tumors, 17 showed increased [18F]FDG PET uptake. [18F]FLT PET was falsely 
negative in the carcinoma, in another non-small cell lung cancer with a low proliferation index, and in a patient 
with lung metastases from colorectal cancer. Increased [18F]FLT uptake was related exclusively to malignant 
tumors. By contrast, [18F]FDG PET was falsely positive in 4 of 8 patients with benign lesions. Comparative 
studies of FLT and FDG were performed in patients with B-cell lymphoma (15), metastatic melanoma (16), 
breast cancer (17), and thoracic sarcoma (18).
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