PET Radiopharmaceutical Sciences Section, Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bldg. 10, Rm. B3 C338, Bethesda, MD 20892 Date of review: 06/03/04

5. MANUFACTURE OF DRUG SUBSTANCE

A. Batch Formula

The following components and their quantities are used in the production of each batch of [¹¹C]NNC 112 for Injection:

Name of component	Component's function	Amount used
Desmethyl-NNC 112	Substrate/starting material/	1.0 <u>+</u> 0.1
	radiopharmaceutical precursor	mg
[¹¹ C]lodomethane	Radiolabeling agent	0.1-1 Ci
<i>N,N</i> -Dimethylformamide	Reaction solvent	80 µL
HPLC column	Separate product	1
Sodium Chloride for Injection (USP; 10 mL vial)	Formulation	1
Sterile vial, 10 mL	Product container	1
Filter (MP; 0.22 µm; 25 mm; Millex)	Sterilization	1
Filter (GV; 0.22 µm; 4 mm; Millex)	Sterile vent filter	1

NOTE: Upon scale-up, only the mCi amount of radioactive [¹¹C]carbon dioxide reagent is changed. The other components and their amounts remain as stated in the batch formula.

B. Production of Radionulide

All radioactive [¹¹C]carbon dioxide is prepared at the NIH Cyclotron Facility. No other source of material is used for the production of [¹¹C]NNC 112 for Injection.

C. Cyclotrons Used

The following cyclotrons are used for the production of [¹¹C]carbon dioxide radionuclide:

Manufacturer	Model
General Electric	PETtrace
Cyclotron Corporation	CS-30
Japan Steel Works	JSW-1710

PET Radiopharmaceutical Sciences Section, Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bldg. 10, Rm. B3 C338, Bethesda, MD 20892 Date of review: 06/03/04

Specifications for Target Body

Target Data	JSW - 1710	CS-30	GE PETtrace # 1	GE PETtrace # 2
Target body material	Aluminum	Aluminum	Aluminum	Aluminum
Entrance target foil material	Aluminum	Aluminum	Havar	Havar
Target length, cm	30	25.4	25	10
Target volume, mL	212	129	75	11
Gas pressure, atm	5	17	10	25
Maximum proton energy, MeV	9	20	16.5	16.2
Maximum beam current, µA	30	25	50	30

D. Synthesis and Purification of the Drug Substance

Description of Radiosynthesis Equipment and Its Operation:

The descriptions of the radiosynthetic equipment and its cleaning and operation are provided in a copy of the SOP for the unit. See Document 5, SOP # MP201 and SOP # MP202.

Radiosynthetic Production Unit

Manufacturer: General Electric MS PET Systems AB Model: GE PETtrace Methyl Iodide Micro Lab Serial Number: 27740

In-Process Controls:

The radiosynthesis production unit continuously records data from its many transducers as part of each batch record attachment. The batch record provides all pertinent information for the control of the radiosynthesis.

Post-Synthesis Procedures:

Descriptions of procedures used to prepare the production equipment, including any cleaning and purging procedures for a subsequent batch are provided in Document 5, SOP # MP 201 and MP 202.

PET Radiopharmaceutical Sciences Section, Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bldg. 10, Rm. B3 C338, Bethesda, MD 20892 Date of review: 06/03/04

6. MANUFACTURE OF DRUG PRODUCT

A. Production Operation

The production operation is initiated by manually loading the desmethyl-NNC 112 into the Bioscan Autoloop module. [¹¹C]Carbon dioxide, produced from the cyclotron, is then converted into [¹¹C]iodomethane via the GE Micro-lab module. The [¹¹C]iodomethane is then swept into the Autoloop module and reacted with desmethyl-NNC 112 to produce [¹¹C]NNC 112. The radiolabeled drug substance is purified with HPLC and the HPLC eluate removed by rotary evaporation. The purified [¹¹C]NNC 112 is formulated in Sterile Saline for Injection (USP, 0.9% w/v; 10 mL) and sterile-filtered into a sterile, pyrogen-free dose vial. The final sterile vial, vent needle, product needle, and two sterile 0.22 μ m filters are assembled in a sterile cabinet (certified laminar flow sterile cabinet in RM B3C-313) before attachment to the radiosynthesis unit.

The master production and control records that provide the exact procedures used in the controlled production of [¹¹C]NNC 112 for Injection are provided in Document 2.

Attached to each batch of [¹¹C]NNC 112 for Injection are (in this order):

1	Production Batch Record
2	Quality Control Form:
	- form contains summary of the quality control results
	- actual HPLC data
3	Radiopharmacy Form:
	- form contains summary of results (label, pyrogen testing, sterility testing)

B. Reprocessing of Drug Product

The PRSS does not reprocess [¹¹C]NNC 112 for Injection.

7. CONTAINER/CLOSURE

The pre-sterilized, pre-sealed, pyrogen-free container/closure is obtained from Abbott Laboratories. Full information on the container/closure along with its contents sterilization

PET Radiopharmaceutical Sciences Section, Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bldg. 10, Rm. B3 C338, Bethesda, MD 20892 Date of review: 06/03/04

procedures and sterility assurance are provided in the attached COA.

Name and address of supplier	Abbott Laboratories Inc. 200 Abbott Park Rd.
	Abbott, IL
NDC/List number	5816-11
Container	Flip-top – Vial - Glass (LF)
Representative COA and acceptance criteria	COA (Document 8)

8. CONTROLS FOR THE FINISHED DOSAGE FORM

A. Sampling Procedures

Each batch of [¹¹C]NNC 112 for Injection will be produced in one vial. A description of the amount of volume that is withdrawn from the finished drug product container and how it is distributed among individual tests is provided in SOP # QA301: Post-filtration sampling for QC.

B. Regulatory Specifications, Procedures, and Testing Schedules

Each batch of [¹¹C]NNC 112 for Injection will meet the following specifications during its entire shelf life (see below). We assure that any batch that fails to meet the acceptance criteria will not be released. We also assure that FDA will be notified of any changes to the approved application.

Note: The following tests are related to a commonly used production method. In the event that the production method does not use a component listed below or uses an alternative method of production or produces additional impurities, appropriate tests, acceptance criteria, procedures, and a testing schedule that is more appropriate for such production should be proposed.

Test	Acceptance	Procedures	Testing
	criteria		schedule

PET Radiopharmaceutical Sciences Section, Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bldg. 10, Rm. B3 C338, Bethesda, MD 20892

Date of review: 06/03/04

Radionuclidic identity	The measured half-life is	Measurement of a	Test completed
	between 18–22 min	sample in a dose	annually or before
		calibrator over 20 min	use of new target
		period.	design
Radiochemical	Retention time ± 1.0 min	HPLC QC Procedure	Test completed
identity	in comparison to	See Document 3.	before release of
	standard injection of		drug product
	NNC 112		
Radiochemical purity	NLT ¹ 95 %	HPLC QC Procedure	Test completed
	[¹¹ C]NNC 112	See Document 3.	before release of
			drug product
Chemical Purity	For the injection NMT ²	HPLC QC Procedure	Test completed
	0.654 μ g of impurity	See Document 3.	before release of
	(NNC 112 equivalent) ³		drug product
Assay	2.0 mCi to 20 mCi /mL	Ionization chamber	Test completed
(radioconcentration)	at EOS⁴	(dose calibrator)	before release of
		See Document 3.	drug product
Residual solvents:	Acetonitrile: NMT 0.04%	Gas chromatography	Test performed on
	(w/v).	with flame ionization	each batch. Test
	Ethanol: NMT 10% (w/v)	detection.	completed before
		See Document 3 and	release of drug
		Document 5 SOP # QA	product.
		302.	
рН	4.5-7.5	pH paper	Test completed
		See Document 3	before release of
			drug product
Specific radioactivity	NLT 500 Ci/mmol at	HPLC QC Procedure	Test completed
	EOS	See Document 3.	before release of
			drug product

PET Radiopharmaceutical Sciences Section, Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bldg. 10, Rm. B3 C338, Bethesda, MD 20892 Date of review: 06/03/04

Sterility testing	Sterile	NIH Microbiology	Test initiated within
		Building 10	192 h of
		Clinical Center	preparation
Membrane filter	Sterile 0.22 µm filters are	Pressure gauge	Test completed
integrity	used once. Each	transducer. No bubbles	before release of
	membrane tested by	at 45 p.s.i	drug product
	bubble point test.	See Document 5: SOP	
		# GP102.	
Bacterial endotoxins	Less than 1.25 EU/mL	LAL test kit procedure	Test performed on
(LAL)		(see Document 4:	each batch. Drug
		Radiopharmacy Form)	product may be
			released before
			test completion.

- 1. NLT = No less than
- 2. NMT = No more than
- 3. i.e. < 10% impurity of maximum allowed dose of $6.54 \mu g$
- 4. EOS = End of synthesis

9. MICROBIOLOGICAL VALIDATION

Data provided in Document 9 (Validation Runs) show that [¹¹C]NNC 112 for Injection is obtained in a sterile and pyrogen-free form, when prepared according to this application and the submitted batch production record.

10. STABILITY AND BATCH DATA

A. Expiry Dating Period

Expiry-dating period is 1 h from EOS for [¹¹C]NNC 112 for Injection stored at controlled room temperature (note: refer to USP for controlled room temperature definition).

PET Radiopharmaceutical Sciences Section, Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bldg. 10, Rm. B3 C338, Bethesda, MD 20892 Date of review: 06/03/04

B. Stability Data/Batch Data

Complete release and stability data were obtained on three batches of [¹¹C]NNC 112 for Injection, prepared at the upper range of the proposed radioconcentration and stored at controlled room temperature. See Document 9: Validation Runs.

Also for each stability batch:

- The batch was stored in the same container/closure as it was produced.
- All tests indicated in the specification section were performed at release.
- The appearance and radiochemical purity were also evaluated at the end of the proposed expiry period.

11. VIAL AND OUTER PACKAGING LABELS

Proposed vial and outer packaging labels are shown in Document 5: SOP # QA 304. Each batch will be labeled with a lot number, compound name, volume and assay and will contain the statement: "Caution: New Drug Limited by Federal Law to Investigational Use".

12. ENVIRONMENTAL ASSESSMENT

In accordance with 21 CFR 25.31(b), the PRSS claims a categorical exclusion from the environmental assessment requirements of 21 CFR 25.20 for approval of [¹¹C]NNC 112 for Injection on the basis that the estimated concentration of [¹¹C]NNC 112 at the point of entry into the aquatic environment will be below 1 part per billion. Additionally, no extraordinary circumstances exist.