U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Institute of Medicine (US) Committee on Optimizing Graduate Medical Trainee (Resident) Hours and Work Schedule to Improve Patient Safety; Ulmer C, Miller Wolman D, Johns MME, editors. Resident Duty Hours: Enhancing Sleep, Supervision, and Safety. Washington (DC): National Academies Press (US); 2009.

Cover of Resident Duty Hours

Resident Duty Hours: Enhancing Sleep, Supervision, and Safety.

Show details

8System Strategies to Improve Patient Safety and Error Prevention

System changes are needed in addition to enhanced supervision, workload adjustment, and fatigue prevention methods to enhance conditions for resident performance and patient safety. The committee recommends ways to make more effective handovers and error reporting an integral part of resident learning experiences to help achieve these goals. Teamwork co ordination and clinical information technology can also foster increased learning, productivity, and patient safety. A transformation in the medical environment is needed so that a system-wide culture of safety develops and a system of blame is replaced with one of shared responsibility.

The committee’s examination of graduate medical education has revealed that duty hours represent only one among many factors in residents’ experiences that may affect patient safety and resident learning. Although the committee’s deliberations about recommendations to help mitigate and prevent resident fatigue were central to its charge, it became apparent that additional changes at the system level could also help improve patient safety, resident education, and the quality of care. The committee further recognized that redesigning hospital practices or system processes may be necessary to facilitate redesign of graduate medical education or implementation of the proposed recommendations. The strategies discussed in this chapter and the recommendations of the committee are aimed at systems that not only improve resident work and learning, but also improve the delivery of care in teaching institutions by all staff. The need for these steps is apparent now, under the current duty hour limits, and will continue to be important after implementation of the committee’s recommended changes to duty hours.

In order to implement such changes, an organization-wide approach is necessary to create an environment that involves all hospital workers in achieving the desired results of maximum safety and the provision of quality care. Adjustments that would assist in transforming the resident work environment, and the environment for all health workers, include improving communications skills among hospital staff, implementing team strategies to complete work more efficiently, and developing a safety culture that extends across hospital settings. Therefore, this chapter discusses organizational and systems strategies that can help to (1) establish a culture of safety, (2) improve handover processes, (3) use adverse event and error-reporting systems for resident learning, and (4) develop a team culture to improve communication and task performance among residents. These elements can both enhance a physician’s education and contribute to patient safety.

LEARNING IN A CULTURE OF SAFETY

Creating a culture of safety and developing teamwork have been broadly addressed in previous Institute of Medicine (IOM) reports, namely the Quality Chasm series (IOM, 2000, 2003, 2004). The committee builds on those earlier reports, focusing attention on adopting strategies for teamwork development and error reporting to better serve the educational needs of residents while fostering safe patient care.

Culture of Safety and High Reliability

Definitions of the concept of a culture of safety vary, but organizations that establish a safety culture generally demonstrate the following characteristics (Singer et al., 2003):

  • Safety is considered the highest priority of the organization.
  • There are strongly shared values and behavioral norms throughout the organization that are centered around safety.
  • Resources and incentives are available for the organization to pursue and implement a safety commitment.
  • There is non-hierarchical and open communication among workers—particularly in safety-related scenarios.
  • There are rare occurrences of errors, but open recognition and reporting of them is accomplished without blame for individuals.
  • Organizational learning is highly valued.

High-reliability organizations (HROs) build on culture of safety elements to go beyond the norm and approach their goals of zero errors and avoidance of potential disasters, such as multiple deaths (Weick and Sutcliffe, 2001). Businesses in particularly risky industries that could have a catastrophic impact on the public, such as military operations, commercial airlines, and nuclear power generation, were among the first to adopt the continual processes needed to achieve high-reliability operations while producing minimal errors.

Although recognition of a safety culture and high-reliability components and practices (e.g., teamwork, blame-free error reporting) are becoming more common in health care, there has yet to be widespread adoption of these practices across the medical field (Patterson et al., 2004). Reasons for slow adoption by some institutions include resistance to organizational change (Carroll and Quijada, 2004) and insufficient resources to support safety culture practices (Patterson, 2007), although some experts note that a major investment of resources is not necessary (Hines et al., 2008). Tension can exist between the goals of a safety culture and individual residents, program directors, or departments, which is why leadership—at both the clinician and the executive levels—is a critical component in overcoming any resistance and establishing the importance of high reliability throughout an organization (Roberts et al., 2005). Leaders in healthcare settings accomplish this by aligning incentives and encouraging the ideas that drive a culture of safety, promoting the continued progression of system redesign and eventually sustaining the developments made (Roberts and Perryman, 2007). Suggesting that they be more active in establishing patient safety standards for clinical performance and that such practices become part of medical training is in line with recommendations from the IOM report To Err Is Human (IOM, 2000).

In an effort to take a lead in promoting a culture of safety for healthcare settings, the Agency for Healthcare Research and Quality (AHRQ) now encourages hospitals to adapt the concepts of high reliability to their organizations, along with the previously mentioned elements of safety culture (Hines et al., 2008). The introduction of high-reliability practices is still relatively new in the medical field, and the exact impact of the culture of safety on specific improvements in healthcare organizations has yet to be documented on a broad scale (Shojania, 2005).

However, it is known that error rates in hospital care tend to be far greater than those associated with HROs in other industries (e.g., airlines). The 44,000-98,000 estimated deaths in the United States related to medical errors are just one component of risks to patients. Many more nonfatal preventable events also harm patients, with impacts such as extended hospital stays, pain and suffering due to hospital acquired infections, or an adverse drug event. The frequency of such errors certainly indicates a need for improvement and is discussed in Chapter 6. In this chapter the focus is on organizational attitudes and culture: ensuring that safety is given the promi nence it requires for the provision of high-quality care, that residents and all other workers in the hospital are comfortable discussing errors, and that efforts are made to correct or prevent situations in which errors occur.

To prevent such occurrences, hospital environments that promote communications by all levels and professions of workers should be supported. Encouraging questions about safety and blame-free reporting of errors would likely enhance the educational value of residents’ training and their ability to learn from all of their colleagues and continuously improve quality of care through cooperative teamwork (IOM, 2001). This does not apply only to medical residents, but focusing attention on them may be a good place to introduce the culture change required for this shift to team mentality or shared responsibility and accountability in healthcare settings.

REDUCING ERRORS BY IMPROVING HANDOVERS

Handovers, or transitions in patient care are an area of medical practice that is considered a substantial source of errors and risks to patients, but one that can benefit from immediate attention through processes improvement. More commonly referred to as “handoffs,” “transfers,” or “sign-out” in the United States, the committee chose the term “handover” for this report because it better encompasses the goal of these pivotal moments, suggesting that they are intended as a handing over of responsibility for a patient from one healthcare provider to another and not simply a quick transcription of patient information at the end of one’s time on duty. Continuity of care as described in Chapter 4 refers primarily to relationship building between physician and patient, and gaining thorough knowledge of a patient’s condition in order to provide the best treatment. A resident’s familiarity with a patient and his/her care is important, and discontinuity of care due to handing cases over to other residents has been shown to result in increased levels of preventable adverse events (Laine, 1993; Petersen, 1994).

However, to achieve stronger patient-physician relationships and serve its educational purpose, continuity of care relies heavily on the continuity of information itself. Information transferred during handovers may include a patient’s name, bed location, blood pressure, diagnosis, and other critical data on patient status or treatment plan. A service that must be available 24 hours daily, such as health care, requires transferring this information and responsibility of tasks from one team member to another at some point or points during the day. In a hospital setting, for example, where teams of physicians, nurses, and residents are all responsible for a single patient, continuity of care involves a comprehensive handover of patient information from one provider or team to another so that clinical care can be maintained successfully among a healthcare team. Handovers take place among teams of nurses, teams of physicians, and teams of residents, as well as between those teams and between integrated care teams consisting of various types of clini cians. Handovers occur between emergency departments, different inpatient settings from surgical to postoperative care, and different hospitals, not to mention transitions out of hospitals to nursing homes or home care settings (Patterson et al., 2004). The act of transferring responsibility for patient care is not inherently a negative practice. However with each additional handover per patient, there is more opportunity for dilution or omission of information, which can lead to inaccuracies that affect patient care and outcomes (Arora et al., 2005, 2007; Horwitz et al., 2008; Petersen, 1994). Such communication breakdowns result in information gaps that intensify discontinuity of patient care and the potential for errors. These factors make them pivotal moments in the care continuum and an important aspect of preventing medical errors and ensuring patient safety (Saultz, 2003). For residents, these exchanges are also opportunities for professional interaction, learning how to assess patient care situations, and problem solving.

The next several sections discuss the role handovers play in the continuity of patient care, the impact they have on patient safety and resident education, how they are affected by the regulation of duty hours, and suggestions for redesigning handover processes to optimize patient safety and resident education.

Consequences of Transfers and Communication Failure for Patient Safety

Several studies, not specific to residents, highlight observed patient cases that point out the errors—at times fatal—caused by poor communication during handovers (Beach et al., 2003; Gandhi, 2005; Vidyarthi, 2004; Wachter, 2008; Wachter et al., 2006). An evaluation by the Joint Commission in 2005 of more than 3,000 root-cause analyses of reported error data revealed that nearly 70 percent of sentinel events in accredited healthcare entities result from communication failures (Joint Commission International Center for Patient Safety, 2006). The Joint Commission further stated that there is evidence that at least half of such communication failures occur during handovers. In a study by Gandhi and colleagues, poorly executed handovers contributed to 20 percent (36 of 181) of malpractice claims that resulted in serious harm or death to patients (Gandhi et al., 2006). Additionally, poor handover and follow-up practices at discharge are particularly likely to increase safety risks for patients (Forster et al., 2003; Moore et al., 2003). Poor discharge practices have been associated with higher readmittance rates or avoidable readmission of discharged patients (Halasyamani et al., 2006). Because this evidence is not specific to residents, it demonstrates the extent to which poor communication permeates the health system, posing safety risks to patients.

Among residents, however, communication failures are among the most common factors contributing to adverse patient events (Sutcliffe et al., 2004), and handovers are just one form of communication between residents and their medical team. In a study by Singh (2007), 19 percent (46) of cases with errors made by residents (including interns and fellows) that resulted in malpractice claims and led to medical injury of patients were attributed to poor handoffs. Another study by Arora et al. (2007) in which 27 percent (1,876) of medication entries in sign-out forms from handover procedures by interns contained either omissions of or commissions from notations in the original patient chart, 54 percent of them had the potential to cause moderate or severe harm to patients. Reducing possible mistakes during these moments can be crucial, and residents can achieve this largely by improving their handover processes, especially with guidance from their attending physician on the critical clinical information that best prepares the next shift of residents to anticipate and respond to changes in patients’ conditions.

Variability of Handovers

A likely contribution to errors during handovers is the variability of the handover process across settings without specification of the information that needs to be provided. Handover procedures and type of information transferred can vary from hospital to hospital and program to program within hospitals, and often are not structured or uniform between or among provider teams. Some use fax systems, others written tools, and others electronic tools, allowing handovers to take place either face-to-face, in written form only, in verbal form only, or in multiple forms—amplifying the variability of the process and information that gets transmitted across teams and care units.

Solet and colleagues (2005) illustrate such variations in a single internal medicine residency program that provides medical training across four different hospitals that each used different methods to transfer patient information. Three different computerized systems were utilized among the four institutions, and only two of the four used a computerized system for handovers. The other two hospitals conducted written handovers, one of which had a free-style form, using no templates or standard format, with residents’ writing up or communicating their notes as they wished. Other studies describe additional variations in handover processes and their differing degrees of effectiveness in communicating necessary patient information (Borowitz et al., 2008; Horwitz et al., 2006).

Impact of Duty Hour Regulations on Handovers and Continuity of Care

Although fewer duty hours or appropriately placed rest periods may help to reduce fatigue in residents, they raise serious concerns for continuity of care. Practice has shown that the number of hours worked and the number of handovers among patients are inversely related, meaning that the fewer hours residents spend in the hospital, the more often patient care has to be handed over to other residents (Horwitz et al., 2007b; Vidyarthi, 2004; Vidyarthi et al., 2006). Therefore, shorter shifts to comply with the 2003 duty hour regulations and periods of sleep within extended duty periods, as this committee recommends, can result in an increase of handovers.

In light of the error rates associated with handovers (Arora and Farnan, 2008; Fletcher et al., 2005), increasing their frequency requires that hospitals improve the process in order to maintain or improve the quality of care. In the United Kingdom, this same trend of increased handovers (because of adherence to the European Working Time Directive) has led its Department of Health to emphasize the effectiveness of handovers as an area of improvement for patient safety (Sabir et al., 2006). Here in the United States, the Joint Commission has recently established a National Patient Safety Goal specific to improving handover practices (which apply to all healthcare professionals, not only to residents) as part of its accreditation process (Joint Commission, 2007). Experts in the field suggest that many errors stemming from poor handovers are preventable or can be made less severe if hospitals take steps to improve communication and coordination of care (Kripalani, 2008), create better opportunities for interaction, and provide better guidance for the process. Examinations of hospital systems and resident programs have shown that structured and supervised handover procedures can dramatically decrease the rates of errors associated with them (Catchpole et al., 2007; Horwitz et al., 2006). It has also been observed that implementing such processes is possible within current spending levels and without having to pass new legislation (Coleman and Berenson, 2004), thus building a case for improving quality of care through improved handovers.

Instead of merely viewing more frequent handovers as an increased opportunity for error, they can be viewed as another opportunity for resident learning. They represent a chance to develop macro cognitive skills such as recognizing and analyzing early warning signs or anticipating any problems that might arise for patients on the next shift, understanding warning signs in patients’ response to treatment, better planning for the care of patients, and improving communication and teamwork skills. Handovers are particularly crucial for all clinical staff to learn to navigate, and it is important that residents be familiar with effective strategies in order to apply them successfully in any setting. Suggestions for possible interventions and training follow in the next section.

HANDOVER INTERVENTIONS

The attention that handovers have received as a target area to improve patient safety is exemplified by the Joint Commission’s decision to issue a “Patient Safety Goal” (effective January 1, 2006) requiring hospitals to standardize their handover approaches and communications as components of improving continuity of care (see Box 8-1) (Joint Commission, 2007). It is generally believed that providing some structure for handover procedures is the appropriate solution for improving outcomes. Other industries in high-risk or high-reliability environments have already identified aspects of handover processes, and several of their lessons or techniques are applicable to hospital settings (Patterson et al., 2004). Examples from such industries were indeed drawn upon to help formulate the Joint Commission requirements for these procedures.

Box Icon

BOX 8-1

National Patient Safety Goal 2: Improve the Effectiveness of Communication Among Caregivers. Requirement 2E Implement a standardized approach to “hand off” communications, including an opportunity to ask and respond to questions.

Improving handovers provides an opportunity to restructure the way residents learn, possibly leading them to greater collaboration with peers and supervisors and helping them to build new skills that promote quality care. One-size-fits-all interventions or complete standardization of the process across all settings, however, is not feasible in a highly variable and complex system such as health care; therefore flexibility in adopting any suggested handover method would be crucial to its success (Patterson, 2008). Application of core components should be evaluated for each setting and care scenario to ensure that they are not used superfluously and do not hinder existing effective transfer methods (Patterson, 2008; Perry et al., 2008). It is expected that handover practices would be tailored somewhat to accommodate the differing needs of intensive care units compared to emergency rooms, surgical and internal medicine disciplines (Arora and Johnson, 2006), or outpatient and inpatient settings, but that core components would be instituted within a basic framework with consistent principles. Therefore, the basic elements that may help improve current medical handover processes presented in the following section are general suggestions. Limited data are available on the implementation of handover guidelines or their effectiveness, but the existing evidence suggests that following a somewhat structured protocol does improve resident communication (Chung and Ahmed, 2007) and patient outcomes (Catchpole et al., 2007).

General Guidance for Improving Handovers

One of the factors most consistently found in the research to help ensure successful handovers for residents is face-to-face interaction (Horwitz et al., 2007a; Parke and Mishkin, 2005; Solet et al., 2005). Solet et al. (2005) suggest that the combination of oral and written handoff is the most effective for transmitting patient information. Most residency programs do solely written sign-outs, and there are times when physicians can be available only via phone or e-mail to exchange crucial information. However, direct face-to-face communication enhances the comprehension of written orders and allows for greater expression of what points need emphasizing and those that are less urgent (Solet et al., 2005). This approach also allows residents to ask questions and clarify instructions, interactions that are helpful for learning and avoiding errors. Face-to-face communication also creates clearer transitions of responsibility and authority on a case, which some believe is equally important to recognize during the handover process (Behara et al., 2005). Because of the benefits of face-to-face interactions, finding locations in which they can occur with limited distractions or interruptions may be helpful (Perry et al., 2008; Singer and Dean, 2006). For example, some advocate going to a patient’s bedside to perform transfers, which may have additional benefits associated with patient centeredness. Building in overlap time between shift schedules also helps set aside the time for this type of interaction, improving handover processes and increasing their educational value by providing the opportunity to ask questions and clarify treatment plans or other pertinent information (Afessa et al., 2005; Goldstein et al., 2004; Landrigan et al., 2004; Volpp and Landrigan, 2008). Each of these actions is very team oriented and often requires training because they are not easily instituted by written standards alone.

The literature further suggests that structuring the content of what is exchanged during handovers and using uniform language or terminology to communicate information assist in preventing omission of necessary information and help reduce confusion about what tasks are to be completed (Arora et al., 2005). To aid in this process several studies recommend framing content by using written checklists such as “I pass the baton” or “Signout,” created by TeamSTEPPS™ (2007) and Horwitz et al. (2007a), respectively. These checklists outline specific information to exchange during handovers such as patient name, diagnosis, pending tests, allergies to medications, and so forth. Ideally, they would be as concise as possible without omitting relevant information.

More advanced tools that achieve this same goal are electronic sign-out systems. Electronic systems can improve handover content by providing structured, easy-to-access databases of patient information and creating formatted checklists of tasks that need to be considered for patient treatment. When residents record information electronically, they reduce paperwork and duplication. Electronic systems can also enhance the uniformity of terminology and procedures if multiple departments or an entire hospital uses the same electronic program, much like the Department of Veterans Affairs (VA) does with the system it recently adopted (Carpenter, 2008). The VA system combines sign-out strategies by importing patient data electronically but also includes a free-text entry segment that allows users to personally add treatment plans or anticipated tasks (Solet et al., 2005). Together, these factors can increase handover efficiency, reduce instances of content omission, and help resident and integrated teams have consistent and up-to-date information about their patients and care schedules. Although electronic systems have demonstrated improved resident performance and patient outcomes by reducing rates of adverse events and allowing residents more time to spend on direct patient care (Petersen et al., 1998; Van Eaton et al., 2005), very few residency programs or hospitals actually employ electronic sign-out systems. There are reports that roughly 18 percent of large residency programs have some form of electronic sign-out, as do 3 percent of smaller residency programs (Horwitz et al., 2006), and that less than 5 percent of U.S. hospitals have adopted such procedures (Okie, 2007). At least one study has shown that if electronic sign-out systems are cumbersome, residents may find ways to work around them or discard them altogether (Landrigan et al., 2004). Furthermore, if implemented or used improperly, electronic systems can have unintended consequences that undermine clinician communication or patient care (Ash et al., 2007; Campbell et al., 2006; IOM, 2006), making the need for training in these systems an important one. Further discussion of electronic system use among healthcare staff is addressed in more detail later in this chapter.

In addition to the identified key components of tested handover methods mentioned thus far, results from an observational study of residents during sign-out by Horwitz et al. (2007a) also illuminated the importance of residents’ having supervision available during the process and having time to formulate clear plans to carry out their assigned tasks. Opportunities for learning could be increased by the presence of appropriate supervisors during the handover process. Learning how to hand over responsibility and information is important, as is learning what patient signs to look for and what types of information are critical to forward to another caregiver. A supervisor can help new residents anticipate a patient’s future care needs.

All together, the above results fall in line with a 2005 study that interviewed 26 interns from a university teaching hospital. These interns suggested improvements in handover practices to help them make more informed and accurate decisions about patient care and reduce duplicative or unnecessary work. The recommendations included a request for face-to-face interactions; reviewing anticipated areas for care or troubleshooting; and having an accurate, updated, legible, written worksheet that includes standard patient content and medical information (Arora et al., 2005). Since these were the suggestions of first-year residents, it may be that having the structured format is more beneficial to residents as they first learn these processes (rather than after several years of experience), which underlines the educational benefits of using these methods for handovers.

Other components that can add structure to handover processes include agreeing on an end-of-shift time that allows for an overlap of shifts, establishing pre-handover routines, determining a set location for transfers to take place, requiring that outgoing residents inform incoming residents of all patients in the department, and conducting joint bedside visits (Singer and Dean, 2006).

Innovative Handover Strategies

A number of handover strategies currently being developed and practiced incorporate several of the components addressed above. A particular handover strategy used to improve patient care and help residents learn patient-centered techniques is bedside handover. Bedside strategies establish patient centeredness and visible continuity that reduces patient confusion or anxiety (Singer and Dean, 2006). For example, a pilot study in Ontario, Canada, involving nurses showed that implementing bedside handover helped catch incorrect patient armbands or intravenous solutions (via the bedside safety checks that were part of the handover intervention), preventing possible harm to the patient and helping to reach established patient safety goals. Patients seem to appreciate this approach and acknowledge that “they are reassured by knowing information about their care requirements has been communicated” (Alvarado et al., 2006, p. 78), promoting a culture of patient safety and team integration.

Another suggestion to promote team structure and shared information through bedside handover strategies is to share the care responsibilities of specific teammates more regularly with patients. For example, introductions of the care team at the bedside could indicate not only the names of the team members but their titles or roles on the team. If staff shifts change at times when no patient visits are planned, a record could be kept in the ward (or a note in each patient’s record) to indicate which resident and attending are responsible for each patient at a particular time. Also, a schedule could be kept in the ward of when patient rounds with the attending physician could reasonably be expected, so patients and their families can be informed (Simmons and Gonzalez del Rey, 2008). These changes, suggested by patients, would be relatively easy to implement in facilities that do not already follow such protocols. Integrating patients more openly into the care team allows team culture to extend beyond the resident or integrated teams, adding a more personal view of the patient’s perspective to the team. Patients familiar with this handover practice also suggest that hospital staff introduce themselves, use an understandable vocabulary when speaking to them, and include patients in discussions to maximize the value to patient and to promote team thinking (Simmons and Gonzalez del Rey, 2008).

As previously noted, handovers that occur at discharge create substantial risk to patients. Also known as a type of “care transition,” “transfer of care,” or “transitional care,” these types of transfer have been defined as “a set of actions designed to ensure the coordination and continuity of health care as patients transfer between different locations or different levels of care in the same location” (Coleman and Berenson, 2004). Often they are transfers of patients to somewhere outside the hospital setting, usually to home settings or home care facilities where regular monitoring of a patient’s condition is not necessarily possible. A number of strategies have been shown to be effective in increasing patient centeredness and reducing the occurrence of errors, such as Dr. Eric Coleman’s Care Transitions Program and the Transforming Care at the Bedside program launched by the Robert Wood Johnson Foundation and the Institute for Healthcare Improvement (Care Transitions Program, 2008; IHI, 2007). Since information in these cases passes from health professionals to patients or their families (instead of to other health professionals), residents need special training in how to present the information adequately and appropriately in a way that patients will understand, which is what the mentioned programs aim to do for all health professionals.

Handovers, from the perspective of patients, can appear to be a confusing interruption or discontinuity in their care, as responsibility for their care shifts from physician to physician. Lessons learned from the above studies could decrease the discontinuities that the patient experiences with handovers, regardless of their frequency. Likewise, applying some of the suggested methods can also help residents learn what information is most pertinent for quality care and patient safety during handovers and how to handle both the clinical and the relationship side of the process by interaction with their peers and supervisors as well as patients. Creating a formal protocol to transfer clinical information and patient care thoroughly and accurately, in any setting, can go a long way to help prevent or intercept errors, enhance workforce communication, provide educational opportunities for residents, and possibly assist to minimize the negative effects of increased shift work.

The committee concludes that whichever method or combination of methods is used to improve handovers, the key factor is that handovers be structured, while also conforming to the needs and capacity of particular departments or settings. Residents and all other participants in handover processes should be trained in how to perform effective handovers. Training other hospital staff in addition to residents will be particularly important for those who work on integrated care teams and those who hand over to other units. Establishing some basic, facility-wide principles and structures should assist all teams to work more seamlessly together and foster more open communication and accurate transfer of information and responsibility across hospital settings. Both clinical and executive leaders can help promote these system-wide practices. Successful handover processes should try to include the following components:

  • Face-to-face interactions (whenever possible),
  • A set location and time for handovers to occur,
  • Minimal interruptions,
  • Structured content (e.g., use of checklists) to ensure that all relevant information is transmitted,
  • Uniform language or terminology,
  • Sufficient time to interact and clarify questions or concerns (e.g., overlap in shift schedules), and
  • Presence of a supervisor to oversee the process and answer additional questions.

Teaching the Handover Process

A lack of standard educational practices for teaching how to do handovers is another factor contributing to the degree of variability in conducting them. Evidence suggests that a formal curriculum including sessions on handovers does not exist in 92 percent of medical schools and that most medical students and residents alike learn handover procedures informally from other residents (Solet et al., 2005), highlighting the lack of attention this matter receives. A later study found that 60 percent of medical training programs (not including those of New York State) provided no lectures or workshops on sign-out skills (Horwitz et al., 2006). Therefore, the committee agrees with suggestions to improve handover education that include providing standard instructional materials, training faculty leaders to encourage shared responsibility and effective handover, encouraging or requiring faculty or resident leaders to properly supervise handover procedures, and teaching residents formal communication techniques (Solet et al., 2005). Additionally, materials on handovers could give case examples of how the type of information transferred can influence the outcomes of patient care. Because in addition to providing basic patient information, handovers “support macrocognitive functions, such as problem recognition, problem analysis, sensemaking, and planning” (Perry et al., 2008, p. 2), where residents have to determine future actions for a patient’s care, anticipate any problems that might arise, and adequately communicate these things when necessary. Training materials that teach residents how to approach these actions would highlight the clinical lessons that can be gained from good handovers. Hospitals should consider each factor for incorporation into new education strategies for the improvement of handovers by residents.

Examples from the literature of effective curricula for training healthcare professionals in handover practices vary from providing a comprehensive series of classes over time to providing a one-time instructional conference (Alvarado et al., 2006; Horwitz et al., 2007a). When introducing new training or a new curriculum, however, the already extensive nature of residents’ workload must be considered thoughtfully. Some studies found that programs had difficulty finding a time when sufficient numbers of residents were available to attend the proposed conferences (Horwitz et al., 2007a). As a result, only a small number of residents trained on the handover process. Given that resident schedules and workload are already so demanding, it is important either to find a time that works with their schedules (e.g., during orientation) or to make this lesson a priority and place it in the regular curriculum where appropriate. Education about these methods should also occur in real time, with patients under the resident’s care to reinforce the lessons learned in general orientation on systems. For example, attendings could incorporate the discussion of what should be in each patient’s sign-out during rounds and the nature of errors (omission or commission) that might occur without vigilance during these interactions. Alternately, computer-based or simulated lessons could be designed so that residents could learn whenever convenient.

Recommendation 8-1: Teaching hospitals should design, implement, and institutionalize structured handover processes to ensure continuity of care and patient safety.

  • Programs should train residents and teams in how to hand over their patients using effective communications.
  • Programs should schedule an overlap in time when teams transition on and off duty to allow for handovers.
  • The process should include a system that quickly provides staff and patients with the name of the resident currently responsible in addition to the name of the attending physician.

Because of widespread concern across medical specialties that increasing handovers—a necessary consequence of restricting resident duty hours—will result in decreased continuity of care and increased risk to patient safety, systematic research is required on the effects of different handover techniques designed to prevent loss of continuity of care and risks to patients. Currently, we do not know if the relative risk of resident duty hours and fatigue mitigation as recommended by the committee, combined with good handover practices, results in better or worse patient safety outcomes. There should be detailed examination of specific elements of handovers—for example, the optimal time(s) required by residents for handovers of a specific number and severity of patients, when joint bedside visits would be recommended, minimum information transfer needed for all patients, availability of supervisors at handovers, the impact of face-to-face handovers and how handovers can be opportunities for intercepting errors.

TRAINING DOCTORS AND ERROR REPORTING

In addition to the latest, evidence-based best practices for patient care and structured handover procedures, new physicians must also learn and practice safety and quality improvement principles and methods. Throughout medical centers or hospitals there should be encouragement for residents to participate in ongoing quality improvement efforts and support for them to learn from constructive feedback. As part of its six core competencies the Accreditation Council for Graduate Medical Education (ACGME) requires residency programs to teach about quality improvement practices and produce residents who can “systematically analyze practice using quality improvement methods, and implement changes with the goal of practice improvement,” and “participate in identifying system errors and implementing potential systems solutions,” to improve care based on an understanding of resource allocation and integration of care delivery systems as well as individual patients’ clinical needs (ACGME, 2007, pp. 1, 3). Some health researchers are finding that educating residents on quality improvement methods for patient care can have a beneficial effect on the outcomes of patients that they treat during training (Stevens et al., 2008; Warm et al., 2008). If the quality of education that residents receive during training affects the quality of care they give to future patients once they are working independently, then learning from their mistakes or those of others as part of that education can be valuable for future patient safety.

Teaching hospitals typically have error-reporting systems (as ACGME states they should in its competency requirements), but residents are often not fully integrated into the hospital’s culture of safety and either do not know how to report errors or do not see the value of doing so. A serious barrier is that residents, regardless of whether they see the value of reporting errors, are often reluctant to report them because they fear retribution for asking questions, displaying ignorance, or facing legal consequences (Hines et al., 2008; Kaldjian et al., 2008).

The Joint Commission recently issued a Sentinel Event Alert concerning “intimidating and disruptive behaviors [that] can foster medical errors … and preventable adverse outcomes” that indicates that such disruptive behavior is not unusual (Joint Commission, 2008, p. 1). The Joint Commission mentioned examples of intimidating behavior, such as “reluctance or refusal to answer questions, return phone calls or pages; condescending language or voice intonation; and impatience with questions. Overt and passive behaviors undermine team effectiveness …” (Joint Commission, 2008, p. 1). The alert states that several surveys have found that a majority of healthcare workers have seen or experienced such behavior and one study found that “40 percent of clinicians have kept quiet or remained passive during patient care events rather than question a known intimidator” (Joint Commission, 2008, p. 1). Likewise, an AHRQ database comprised of voluntary survey responses by hospital staff on the efforts to create a patient safety culture in their institutions revealed that only 44 percent of respondents agreed that their hospital had a nonpunitive response to errors (AHRQ, 2008).

Among the core concepts of HROs is a perception of errors or near misses not as an occasion to point blame, but as an opportunity to improve system design and performance to achieve an even safer environment (Hines et al., 2008). This leads to creating a blame-free environment through a systemic response to errors, which could help reform the punitive culture often observed in healthcare settings that tend to inhibit open communication and, thus, learning. The careful design of an error-reporting system, analyses resulting from it, and feedback to those involved and to others who can learn from error-related events are critical to the success of the system (Kaplan and Rabin Fastman, 2003). An understanding of the errors in a system is the foundation for building a strong culture of safety. Information from error reporting and root-cause analyses of critical cases could also contribute significantly to residents’ education.

Since the focus of most hospital error-reporting programs has been on system-wide problems rather than on the individual, and they frequently guarantee confidentiality, they often do not note characteristics of the individual who was involved in the event, such as profession, discipline, and training status. Without data on error patterns—including what type of caregiver was involved, at what training level, and whether there were errors of omission, commission, misdiagnosis, or work-around—it is more difficult to address educational deficiencies (Battles and Shea, 2001). However, if data were available on when during a work period the event occurred, it might show that events happened most frequently at the end of an extended work period and were possibly an indication of decreased attention due to fatigue. Error reports indicating the time and other specific circumstances of events might reveal patterns related to work shifts of individuals or teams, the transitions from team to team, and whether fatigue or communications failures were a significant factor. Currently, reporting does not capture such information in hospitals for use in residency programs.

While most individual institution reporting systems would have a limited volume of reports and insufficient power to draw statistically valid conclusions about certain events, they could be valuable to management and educators by identifying any problem. Just one report of a near miss could identify a critical situation in need of redesign and lead to significant quality improvement. Residents in particular can play an important role in improving health systems in this regard. Acting as the “spackle” in the busy training settings of the health profession, they know where gaps exist in the system, and helping to identify them can be an asset in any care setting as well. Not only would residents be a part of the solution to these problems, they would benefit from the educational benefits these systems can provide.

If more hospitals had robust error-reporting systems with sufficiently detailed data reported, and an atmosphere that encouraged all workers to participate, and if such data were consistently recorded from hospital to hospital and could be aggregated to a national level, or if there were an effective national reporting program in place, it might have been possible for this committee to assess whether errors by residents were a serious threat to patients and to what extent those errors could be attributed to fatigue and long work hours. However, data at that level do not currently exist.

The issues surrounding error-reporting systems are not new and are of much broader relevance than just the training of physicians. In fact, earlier IOM reports, including many in the Quality Chasm series, contain extensive discussions of these issues and recommendations on how to develop an effective error-reporting and learning system. This report does not repeat those discussions, but rather turns the focus toward residents. Healthcare organizations have been responding to these reports and pressures from the Joint Commission and public bodies. Both the public and healthcare professionals are growing more aware of the importance of identifying errors in understanding how to improve the quality of services and the safety of patients and workers. However, progress in reporting and reducing errors has not been uniform (ACGME, 2008; Hines et al., 2008; Kaldjian et al., 2008).

At the hospital level, to learn from mistakes in patient care involving residents and to prevent similar events in the future requires an error-reporting system with a common set of data standards and a broader definition of what information should be collected that could, perhaps, contribute to the training of doctors. The error-reporting system would have to include training for all residents in what should be reported, how to report incidents, who should report, and how to analyze the reported errors to understand the root causes of the error and the changes needed to prevent future harm to patients (Garbutt et al., 2008). Support and encouragement from executive leadership, methods for reporting errors anonymously, and a feedback loop to the residents, caregivers, and especially the graduate medical faculty are all important elements of the reporting system for promoting its use. Knowledge that the reported information will be used to enhance patient care is critical to motivate doctors and other caregivers to make the effort to report an incident. The perception that there is no follow-up can be a deterrent to reporting (Evans et al., 2006). The use of such reported information to enhance resident training would also be a benefit.

Recommendation 8-2: Graduate medical education-sponsoring institu tions should fully involve residents in their safety reporting, learning, and quality improvement systems, and this should become an impor tant part of the residents’ educational experience.

Health Information Technology for Clinical Decision Support

Today’s residents face a rapidly expanding knowledge base while serving in a learning environment with a growing focus on patient safety mea sures. As mentioned, fostering relationships between residents and other hospital staff provides important clinical support to residents as they learn to make decisions about patient management. Yet other forms of support can aid them in their clinical decision making as well. Besides seeking help from their peers and supervisors to reduce uncertainty and prevent errors, residents can use an array of information technologies to assist them.

Health information technologies include up-to-date patient-specific data in electronic medical records, clearly documented handovers from other team members, and diagnostic support systems that offer clinicians opportunities to avoid reaching premature closure on diagnoses. Information technology (IT) support systems have been shown to enhance care and reduce errors by alerting patients to drug interactions and providing access to clinical guidelines (Bates et al., 1998; Garg et al., 2005; Petersen et al., 1998). Various studies show that electronic medical records have been observed to help in documentation, thus preventing errors and reducing test ordering by residents (Hier et al., 2005; Keenan et al., 2006; O’Connell et al., 2004; Stair and Howell, 1995).

IT solutions can also enhance communication for supervision in the event that attendings are unable to be on site. Remote access can help attendings monitor the activities of residents as well as patient progress through review of online records. Greater accountability is being required of residency program directors (e.g., monitoring resident hours, privileges for clinical and surgical procedures, workflow management) that require documentation for accreditation purposes and to enhance patient safety (Afrin, 2006).

Despite all the benefits electronic tools can provide, if they are ill suited to an organization’s needs or are not used appropriately, unintended or adverse consequences are possible, requiring ongoing maintenance and attention to business processes to prevent such occurrences (IOM, 2006). Not all electronic medical systems are created equally; some are quite advanced while others are more rudimentary, ranging in degrees of content or flexibility of integration with other systems. Those that integrate poorly with other information systems may be more time consuming to use or may create duplicative efforts instead of reducing them (Campbell et al., 2006). Heavy reliance on electronic systems can also decrease general communication skills and the occurrence of face-to-face interactions among clinicians (Ash et al., 2007). In some cases, electronic medical systems can contribute to errors by new users who are learning to navigate these systems and incorrectly fill out information or accidentally press wrong functions, or by program formats that are too cumbersome to enter information in a timely manner (Campbell et al., 2006). For these reasons, training staff in how to use any electronic system is critical to their effectiveness and efficiency (Arora et al., 2007).

Health IT will likely continue to advance and come to be a more widely used tool in hospitals and training facilities. As more residents are exposed to these systems they may be in an ideal position to provide necessary feedback on how to improve their functionality for clinical use. Currently, however, it is beyond the scope of this report to evaluate specific models of electronic medical records or decision support systems for residents. The committee recognizes the potential usefulness of these systems for information transfer, supervision, workload reduction, and enhanced education in the pursuit of patient safety and urges their continued evaluation and adoption. Adoption of these systems can have value to all staff on patient care teams and is not resident specific.

DEVELOPING A TEAM CULTURE

It has been recognized that healthcare structures are complex, “characterized by competing responsibilities and an evolving perception of patient care as a collective responsibility” (Park et al., 2007, p. 111). Residents are increasingly trained and expected to practice in models of integrated care, which rely on the coordination of different services, clinicians, and teams all working together to provide comprehensive care for patients. Facilitating this coordination requires effective communication skills and strategies across and among all units—a fundamental trait of teams and teamwork. A team is defined as a distinguishable set of two or more people interacting toward a common goal with specific roles and boundaries on tasks that are interdependent and are completed within a larger organizational context (Kozlowski and Bell, 2003; Salas et al., 1992). The tasks that teams work on tend to require (1) dynamic exchange of team member resources (including information), (2) coordination of activities, (3) adaptability to task demands, and (4) an organizational structure that coordinates members (Salas et al., 1992; Swezey et al., 1994).

Team-based work is an effective strategy not only for combating errors, but also for mitigating the negative impact of high workloads, fatigue, and stress, especially when team members become aware of their own responsibilities in addition to the responsibilities of others (Salas and Cannon-Bowers, 2000b; Salas et al., 2005; Smith-Jentsch et al., 1996). Using a team-based approach for resident work and patient care could suitably address concerns of both continuity and fatigue, reducing potential threats to patient safety.

A study by Singh and colleagues, analyzing malpractice claims in which residents were identified as playing a role in harming patients, concluded that residents “are particularly vulnerable to medical errors owing to teamwork failures” (Singh et al., 2007, p. 2030). From among 240 cases resulting in patient injury, teamwork breakdowns were a factor in 70 percent of them (errors in judgment were a factor in 72 percent and lack of technical competence was a factor in 58 percent) (Singh et al., 2007). It was also found that “lack of supervision and handoff problems were the most prevalent types of teamwork problems [in the malpractice cases], and both were disproportionately more common among errors that involved trainees than those that did not” (respectively, 54 percent vs. 7 percent, p = .001, and 20 percent vs. 12 percent, p = .009) (Singh et al., 2007, p. 2032). Such data suggest that residents could greatly benefit from a reinforced team structure and training in communication and team practices to prevent patient harm, where supervision is readily available to provide necessary guidance.

Shared Responsibility

For team structures to develop and thrive, it is important to transform the culture of care. By introducing such culture change into residency programs, researchers have noted that “the real challenge of the 80-hour workweek is that it demands a psychological transformation” (Mukherjee, 2004, p. 1824), one that allows residents to tone down expectations of superhuman resistance to long hours and continuous care, and give in to the flexibility of team systems. Residents will continue to strive to be independent practitioners, but given their time constraints and the content of their work, distributing workload among colleagues can help them collectively better manage their time and alleviate demands while on duty. In this way, a team dynamic lends itself to better organization, which has the potential to better sustain continuity of care among multiple health practitioners and, in turn, help improve overall patient care.

There is general agreement among systems experts that a mentality of “shared responsibility” is necessary to successfully adopt interventions for any specifically team-centered goal (Arora et al., 2008). Mutual trust and shared mental models are key components to successfully achieving these goals. Shared mental models refer to an organized knowledge structure among a team for a particular task in which the team is engaged and how team members will interact. This interaction includes anticipating and predicting each other’s needs, identifying changes in the team task or teammates, and implicitly adjusting strategies as needed (Salas et al., 2005).

A challenge in adopting this shared mentality is that a variety of team structures exists in hospitals of which residents are a part or with which they need to communicate. Nursing teams, physician teams, resident teams, lab clinicians, pharmacists and other healthcare professionals all exist interdependently with one another and combine into integrated teams to provide comprehensive and continuous care to any given patient. Furthermore, each type of professional (e.g., nurses, doctors) is trained to communicate differently, creating discrepancies in expectations when exchanging information (Leonard et al., 2004). Targeting residents is a good way to introduce teamwork and shared accountability across these interdependent teams, which can help develop structured communication among all healthcare workers and ultimately reduce gaps or errors in patient care.

Teamwork and Task Performance

The focus of teamwork for residents is individual performance in a team environment; helping each resident perform to his or her fullest capacity, most effectively and efficiently, while creating more learning opportunities. Teamwork is defined as a set of interrelated behaviors, cognitions (thoughts), and attitudes (feelings) held by each team member that combine to facilitate adaptive, coordinated performance (Morgan et al., 1986; Salas et al., 2004). Learning and using the five core components of teamwork—specifically, leadership, mutual performance modeling, backup behavior, adaptability, and team orientation (Box 8-2)—can lead to more effective work processes.

Box Icon

BOX 8-2

The Five Core Components of Teamwork. Team leadership: The ability to direct and coordinate the activities of other team members; assess team performance; assign tasks; develop team knowledge, skills, and abilities; motivate team members; plan and organize; (more...)

Research by Jung and colleagues has demonstrated that as teams work together applying these components, they can increase their productivity and build shared ideas of how to accomplish a task (Jung et al., 2002). Teamwork depends on each team member’s ability and willingness to cooperate toward achieving shared goals. For residents, these goals are providing effective patient care, maximizing learning, and minimizing errors.

An example of using team efforts to achieve these goals is a general medicine residency program that recently developed a team-based teaching program to determine the effects of reducing workload and providing more supervision and teaching upon the quality of resident education and patient care. This was accomplished by creating integrated teams of two attendings (one a primary care physician and the other a hospitalist or subspecialist), two residents, three interns, and two medical students. The team remained together for 2 weeks or more at a time completing daily work and teaching schedules with a cap of 15 patients at any time, who were divided equitably among the interns. Compared to the traditional general medicine resident team, patients treated by the integrated team had a lower mortality rate (1.4 percent vs. 2.4 percent, p = .053) and significantly shorter length of stays (LOSs) (4.2 vs. 4.7 days, p < .01) (McMahon, 2008). The quality of discharge communications was also higher for the integrated team, and members managed to double their amount of time spent in educational sessions (McMahon, 2008), demonstrating that improved patient care and resident learning can both be facilitated by team structures. Other efforts incorporating interdisciplinary or multidisciplinary team rounds had very similar results of reduced LOS and improved core knowledge and team skills (Curley et al., 1998; O’Mahoney et al., 2007).

Training Residents in Effective Teamwork Strategies

Teamwork skills often need to be learned and numerous reports and publications highlight the importance of team training in realizing goals to enhance patient safety and clinical communication (Barach and Small, 2000; Barach and Weingart, 2004; Jeffcott and Mackenzie, 2008; Leonard et al., 2004). The skills acquired through resident team training can be taught using various techniques (Klein et al., 2009; Rosen et al., 2008; Salas and Cannon-Bowers, 2000a, 2001; Salas et al., 2008; Smith-Jentsch et al., 1998), including simulation strategies that can measure team competency (Zheng et al., 2008), and are valuable because they are applicable to many facets of resident work.

Since there are multiple forms of team structures and methods in which teams can be trained, a straightforward way of introducing team-centered activity and skills into healthcare settings is by training residents as a team around completing specific tasks. Also referred to as “task-tailored train ing,” this type of training can be effective for several processes that take place in hospitals (e.g., surgical procedures, handovers, clinical rounds). For example, a study by Chung et al. (2007) applied a task-tailored team approach to the rounding process (a substantial part of some handover processes) performed by general surgical residents, specifically morning rounds. The strategy focused residents’ work during their rounds on three distinct tasks: detecting postoperative complications early or conducting orderly preoperative workup; informing patients of the agenda for the day; and answering patient questions and complaints. In addition to having them focus exclusively on these tasks, the members of the rounding team (nine members: one PGY-5 and eight PGY-1 to PGY-4s) were assigned specific roles. With this direction, residents’ work became more purposeful and efficient, and they completed rounds and associated work in 1 hour (Chung and Ahmed, 2007). After a year of implementation, attendings on duty observed substantial increases in resident professionalism and communication, demonstrating the positive effects of team structure and culture, not only on workload but on general attitude as well. Such structure also automated team continuity of care, increasing patient awareness of the resident team and satisfaction with care received (Chung and Ahmed, 2007).

Whichever methods of handover intervention or error reporting are used, residents will have to be trained in the team components of coordination, communication, and cooperation to conduct them most effectively and efficiently. In some facilities, faculty or supervisors may also have to be trained in these matters in order to ensure their organizational adoption and most effective implementation.

CONCLUSION

Redesigning any part of the resident learning process is a challenge. To eliminate preventable adverse events and intercept other errors before they harm the patient, it is important to have in place an environment that is both mindful of errors and nonpunitive, as well as leaders willing to consider redesign of the institutions’ systems and processes as necessary to reduce risks. The emphasis on handovers, blame-free error reporting, and teamwork does not mean that individual residents are not expected to develop a sense of loyalty or personal responsibility for individual patient care, but it helps ensure that the best information is available at all times for patient care given that a resident or any caregiver cannot be at the bedside 24 hours a day, 7 days week. It may not be possible to eliminate discontinuity altogether in healthcare settings, but the training system can strive to minimize its effects by enhancing the quality of handovers and error reporting, promoting patient-centered approaches, and improving physician relationships by facilitating communication through team struc tures. Suggestions for these areas of the system are ones that the committee believes deserve immediate attention and can bear positive results if effectively applied.

REFERENCES

  • ACGME (Accreditation Council for Graduate Medical Education). 2007. Common pro gram requirements: General competencies . http://www​.acgme.org​/outcome/comp/GeneralCompetenciesStandards21307.pdf (accessed March 17, 2008).
  • ———. 2008. The ACGME duty hour standards: One element for promoting good learning, safe patient care and resident well-being: Data on compliance and effect. Presentation by Ingrid Philibert and Thomas Nasca to the Committee on Optimizing Graduate Medical Trainee (Resident) Hours and Work Schedules to Improve Patient Safety, March 4, 2008, Irvine, CA.
  • Afessa, B., C. C. Kennedy, K. W. Klarich, T. R. Aksamit, J. C. Kolars, and R. D. Hubmayr. 2005. Introduction of a 14-hour work shift model for housestaff in the medical ICU. Chest 128(6):3910-3915. [PubMed: 16354863]
  • Afrin, L. B., G. W. Arana, F. J. Medio, A. F. Ybarra, and H. S. Clarke, Jr. 2006. Improving oversight of the graduate medical education enterprise: One institution’s strategies and tools. Academic Medicine 81(5):419-425. [PubMed: 16639192]
  • AHRQ (Agency for Healthcare Research and Quality). 2008. Hospital survey on patient safety culture: 2008 comparative database report . Rockville, MD: Agency for Healthcare Research and Quality.
  • Alvarado, K., R. Lee, E. Christoffersen, N. Fram, S. Boblin, N. Poole, J. Lucas, and S. Forsyth. 2006. Transfer of accountability: Transforming shift handover to enhance patient safety. Healthcare Quarterly 9(Supp):75-79. [PubMed: 17087173]
  • Arora, V. M., and J. M. Farnan. 2008. Care transitions for hospitalized patients. Medical Clinics of North America 92(2):315-324. [PubMed: 18298981]
  • Arora, V., and J. Johnson. 2006. A model for building a standardized hand-off protocol. Joint Commission Journal on Quality & Patient Safety 32(11):646-655. [PubMed: 17120925]
  • Arora, V., J. Johnson, D. Lovinger, H. J. Humphrey, and D. O. Meltzer. 2005. Communication failures in patient sign-out and suggestions for improvement: A critical incident analysis. Quality and Safety in Health Care 14(6):401-407. [PMC free article: PMC1744089] [PubMed: 16326783]
  • Arora, V., J. Kao, D. Lovinger, S. C. Seiden, and D. Meltzer. 2007. Medication discrepancies in resident sign-outs and their potential to harm. Journal of General Internal Medicine 22(12):1751-1755. [PMC free article: PMC2219840] [PubMed: 17963009]
  • Arora, V. M., J. K. Johnson, D. O. Meltzer, and H. J. Humphrey. 2008. A theoretical framework and competency-based approach to improving handoffs. Quality and Safety in Health Care 17(1):11-14. [PubMed: 18245213]
  • Ash, J. S., D. F. Sittig, E. G. Poon, K. Guappone, E. Campbell, and R. H. Dykstra. 2007. The extent and importance of unintended consequences related to computerized provider order entry. Journal of the American Medical Informatics Association 14(4):415-423. [PMC free article: PMC2244906] [PubMed: 17460127]
  • Barach, P., and S. D. Small. 2000. Reporting and preventing medical mishaps: Lessons from non-medical near miss reporting systems. BMJ 320(7237):759-763. [PMC free article: PMC1117768] [PubMed: 10720361]
  • Barach, P., and M. Weingart. 2004. Trauma team performance. In Trauma: Resuscitation, anesthesia, surgery, and critical care, edited by W. Wilson, editor; , C. Grande, editor; , and D. Hoyt, editor. . New York: Dekker Inc.
  • Bates, D. W., L. L. Leape, D. J. Cullen, N. Laird, L. A. Petersen, J. M. Teich, E. Burdick, M. Hickey, S. Kleefield, B. Shea, M. Vander Vliet, and D. L. Seger. 1998. Effect of computerized physician order entry and a team intervention on prevention of serious medication errors. JAMA 280(15):1311-1316. [PubMed: 9794308]
  • Battles, J. B., and C. E. Shea. 2001. A system of analyzing medical errors to improve GME curricula and programs. Academic Medicine 76(2):125-133. [PubMed: 11158830]
  • Beach, C., P. Croskerry, and M. Shapiro. 2003. Profiles in patient safety: Emergency care transitions. Academic Emergency Medicine 10(4):364-367. [PubMed: 12670851]
  • Behara, R., R. L. Wears, and S. J. Perry. 2005. A conceptual framework for studying the safety of transitions in emergency care. In Advances in patient safety: From research to imple mentation, Vol. 2 , Concepts and Methodology. Rockville, MD: Agency for Healthcare Research and Quality. Pp.309-321.
  • Borowitz, S. M., L. A. Waggoner-Fountain, E. J. Bass, and R. M. Sledd. 2008. Adequacy of information transferred at resident sign-out (in hospital handover of care): A prospective survey. Quality and Safety in Health Care 17(1):6-10. [PubMed: 18245212]
  • Campbell, E. M., D. F. Sittig, J. S. Ash, K. P. Guappone, and R. H. Dykstra. 2006. Types of unintended consequences related to computerized provider order entry. Journal of the American Medical Informatics Association 13(5):547-556. [PMC free article: PMC1561794] [PubMed: 16799128]
  • Care Transitions Program. 2008. The care transitions program: Improving quality and safety during care hand-offs . http:​//caretransitions.org/overview.asp (accessed July 21, 2008).
  • Carroll, J. S., and M. A. Quijada. 2004. Redirecting traditional professional values to support safety: Changing organisational culture in health care. Quality and Safety in Health Care 13(Suppl II):ii16-ii21. [PMC free article: PMC1765803] [PubMed: 15576686]
  • Catchpole, K. R., M. R. De Leval, A. McEwan, N. Pigott, M. J. Elliott, A. McQuillan, C. Macdonald, and A. J. Goldman. 2007. Patient handover from surgery to intensive care: Using Formula 1 pit-stop and aviation models to improve safety and quality. Pediatric Anesthesia 17(5):470-478. [PubMed: 17474955]
  • Chung, R. S., and N. Ahmed. 2007. How surgical residents spend their training time: The effect of a goal-oriented work style on efficiency and work satisfaction. Archives of Surgery 142(3):249-252. [PubMed: 17372049]
  • Coleman, E. A., and R. A. Berenson. 2004. Lost in transition: Challenges and opportunities for improving the quality of transitional care. Annals of Internal Medicine 141(7):533-536. [PubMed: 15466770]
  • Curley, C. M. D. M. S., J. E. M. D. McEachern, and T. P. Speroff. 1998. A firm trial of interdisciplinary rounds on the inpatient medical wards: An intervention designed using continuous quality improvement. Medical Care 36(8 Suppl):AS4-AS12. [PubMed: 9708578]
  • Evans, S. M., J. G. Berry, B. J. Smith, A. Esterman, P. Selim, J. O’Shaughnessy, and M. DeWit. 2006. Attitudes and barriers to incident reporting: A collaborative hospital study. Quality and Safety in Health Care 15(1):39-43. [PMC free article: PMC2563993] [PubMed: 16456208]
  • Fletcher, K. E., S. Saint, and R. S. Mangrulkar. 2005. Balancing continuity of care with residents’ limited work hours: Defining the implications. Academic Medicine 80(1):39-43. [PubMed: 15618090]
  • Forster, A. J., H. J. Murff, J. F. Peterson, T. K. Gandhi, and D. W. Bates. 2003. The incidence and severity of adverse events affecting patients after discharge from the hospital. Annals of Internal Medicine 138(3):161-167. [PubMed: 12558354]
  • Gandhi, T. K. 2005. Fumbled handoffs: One dropped ball after another. Annals of Internal Medicine 142(5):352-358. [PubMed: 15738454]
  • Gandhi, T. K., A. Kachalia, E. J. Thomas, A. L. Puopolo, C. Yoon, T. A. Brennan, and D. M. Studdert. 2006. Missed and delayed diagnoses in the ambulatory setting: A study of closed malpractice claims. Annals of Internal Medicine 145(7):488-496. [PubMed: 17015866]
  • Garbutt, J., A. D. Waterman, J. M. Kapp, W. C. Dunagan, W. Levinson, V. Fraser, and T. H. Gallagher. 2008. Lost opportunities: How physicians communicate about medical errors. Health Affairs 27(1):246-255. [PubMed: 18180501]
  • Garg, A. X., N. K. Adhikari, H. McDonald, M. P. Rosas-Arellano, P. J. Devereaux, J. Beyene, J. Sam, and R. B. Haynes. 2005. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. JAMA 293(10):1223-1238. [PubMed: 15755945]
  • Goldstein, M. J., E. Kim, W. D. Widmann, and M. A. Hardy. 2004. A 360 degrees evaluation of a night-float system for general surgery: A response to mandated work-hours reduction. Current Surgery 61(5):445-451. [PubMed: 15475093]
  • Halasyamani, L., S. Kripalani, E. Coleman, J. Schnipper, C. van Walraven, J. Nagamine, P. Torcson, T. Bookwalter, T. Budnitz, and D. Manning. 2006. Transition of care for hospitalized elderly patients—Development of a discharge checklist for hospitalists. Journal of Hospital Medicine (Online) 1(6):354-360. [PubMed: 17219528]
  • Hier, D. B., A. Rothschild, A. LeMaistre, and J. Keeler. 2005. Differing faculty and housestaff acceptance of an electronic health record. International Journal of Medical Informatics 74(7-8):657-662. [PubMed: 16043088]
  • Hines, S., K. Luna, J. Lofthus, M. Marquart, and D. Stelmokas. 2008. Becoming a high reli ability organization: Operational advice for hospital leaders . Rockville, MD: Agency for Healthcare Research and Quality.
  • Horwitz, L. I., H. M. Krumholz, M. L. Green, and S. J. Huot. 2006. Transfers of patient care between house staff on internal medicine wards: A national survey. Archives of Internal Medicine 166(11):1173-1177. [PubMed: 16772243]
  • Horwitz, L., T. Moin, and M. Green. 2007. a. Development and implementation of an oral sign-out skills curriculum. Journal of General Internal Medicine 22(10):1470-1474. [PMC free article: PMC2305855] [PubMed: 17674110]
  • Horwitz, L. I., M. Kosiborod, Z. Lin, and H. M. Krumholz. 2007. b. Changes in outcomes for internal medicine inpatients after work-hour regulations. Annals of Internal Medicine 147(2):97-103. [PubMed: 17548401]
  • Horwitz, L. I., T. Moin, H. M. Krumholz, L. Wang, and E. H. Bradley. 2008. Consequences of inadequate sign-out for patient care. Archives of Internal Medicine 168(16):1755-1760. [PubMed: 18779462]
  • IHI (Institute for Healthcare Improvement). 2007. Transforming care at the bedside—How- to guide: Creating an ideal transition home for patients with heart failure . Boston, MA: Institute for Healthcare Improvement.
  • IOM (Institute of Medicine). 2000. To err is human: Building a safer health system. Washington, DC: National Academy Press. [PubMed: 25077248]
  • ———. 2001. Crossing the quality chasm: A new health system for the 21st century. Washington, DC: National Academy Press. [PubMed: 25057539]
  • ———. 2003. Keeping patients safe: Transforming the work environment of nurses. Washington, DC: The National Academies Press. [PubMed: 25009849]
  • ———. 2004. Patient safety: Achieving a new standard for care. Washington, DC: The National Academies Press. [PubMed: 25009854]
  • ———. 2006. Preventing medication errors: Quality chasm series . Washington, DC: The National Academies Press.
  • Jeffcott, S. A., and C. F. Mackenzie. 2008. Measuring team performance in healthcare: Review of research and implications for patient safety. Journal of Critical Care 23(2):188-196. [PubMed: 18538211]
  • Joint Commission. 2007. National Patient Safety Goals: 2007 national patient safety goals hospital version manual chapter, including implementation expectations . http://www​.jointcommission​.org/PatientSafety​/NationalPatientSafetyGoals​/07_hap_cah_npsgs.htm (accessed February 26, 2008).
  • ———. 2008. Behaviors that undermine a culture of safety. Sentinel Event Alert (Issue 40, July 9):1. http://www​.jointcommission​.org/SentinelEvents​/SentinelEventAlert/sea_40.htm (accessed July 25, 2008). [PubMed: 18686330]
  • Joint Commission International Center for Patient Safety. 2006. Improving hand-off communications: Meeting national patient safety goal 2E. Patient Safety 6:9-15.
  • Jung, D. I., J. J. Sosik, and K. B. Baik. 2002. Investigating work group characteristics and performance over time: A replication and cross-cultural extension. Group Dynamics 6(2):153-171.
  • Kaldjian, L. C., E. W. Jones, B. J. Wu, V. L. Forman-Hoffman, B. H. Levi, and G. E. Rosenthal. 2008. Reporting medical errors to improve patient safety: A survey of physicians in teaching hospitals. Archives of Internal Medicine 168(1):40-46. [PubMed: 18195194]
  • Kaplan, H. S., and B. Rabin Fastman. 2003. Organization of event reporting data for sense making and system improvement. Quality and Safety in Health Care 12(Suppl 2). [PMC free article: PMC1765770] [PubMed: 14645899]
  • Keenan, C. R., H. H. Nguyen, and M. Srinivasan. 2006. Electronic medical records and their impact on resident and medical student education. Academic Psychiatry 30(6):522-527. [PubMed: 17139024]
  • Klein, C., D. DiazGranados, E. Salas, H. Le, C. S. Burke, R. Lyons, and G. F. Goodwin. 2009. Does team building work? Small Group Research 40(2):181-222.
  • Kozlowski, S. W. J., and B. S. Bell. 2003. Work groups and teams in organizations. In Hand book of physchology: Industrial and organizational psychology, Vol. 12 , edited by W. Borman, editor; , D. Igen, editor; , and R. Klimoski, editor. . London: Wiley. Pp.333-375.
  • Kripalani, S. 2008. Care transition. http://webmm.ahrq.gov/printviewperspective.aspx? perspectiveID=52 (accessed April 16, 2008).
  • Laine, C., L. Goldman, J. R. Soukup, and J. G. Hayes. 1993. The impact of a regulation restricting medical house staff working hours on the quality of patient care. JAMA 269(3):374-378. [PubMed: 8418344]
  • Landrigan, C. P., J. M. Rothschild, J. W. Cronin, R. Kaushal, E. Burdick, J. T. Katz, C. M. Lilly, P. H. Stone, S. W. Lockley, D. W. Bates, and C. A. Czeisler. 2004. Effect of reducing interns’ work hours on serious medical errors in intensive care units. New England Journal of Medicine 351(18):1838-1848. [PubMed: 15509817]
  • Leonard, M., S. Graham, and D. Bonacum. 2004. The human factor: The critical importance of effective teamwork and communication in providing safe care Quality and Safety in Health Care 13(Suppl 1):i85-i90. [PMC free article: PMC1765783] [PubMed: 15465961]
  • McMahon, G. 2008. Faulkner hospital: Integrated teaching unit—Progress report #3 . Boston, MA: Brigham and Women’s Hospital.
  • Moore, C., J. Wisnivesky, S. Williams, and T. McGinn. 2003. Medical errors related to discontinuity of care from an inpatient to an outpatient setting. Journal of General Internal Medicine 18(8):646-651. [PMC free article: PMC1494907] [PubMed: 12911647]
  • Morgan, B. B., A. S. Glickman, E. A. Woodard, A. S. Blaiwes, and E. Salas. 1986. Measure ment of team behavior in a Navy training environment . Orlando, FL: Naval Training Systems Center, Human Factors Division.
  • Mukherjee, S. 2004. A precarious exchange. New England Journal of Medicine 351(18): 1822-1824. [PubMed: 15509813]
  • O’Connell, R. T., C. Cho, N. Shah, K. Brown, and R. N. Shiffman. 2004. Take note(s): Differential EHR satisfaction with two implementations under one roof. Journal of the American Medical Informatics Association 11(1):43-49. [PMC free article: PMC305457] [PubMed: 14527978]
  • Okie, S. 2007. An elusive balance—Residents’ work hours and the continuity of care. New England Journal of Medicine 356(26):2665-2667. [PubMed: 17596598]
  • O’Mahony, S., E. Mazur, P. Charney, Y. Wang, and J. Fine. 2007. Use of multidisciplinary rounds to simultaneously improve quality outcomes, enhance resident education, and shorten length of stay. Journal of General Internal Medicine 22(8):1073-1079. [PMC free article: PMC2305734] [PubMed: 17486384]
  • Park, J., S. I. Woodrow, R. K. Reznick, J. Beales, and H. M. MacRae. 2007. Patient care is a collective responsibility: Perceptions of professional responsibility in surgery. Surgery 142(1):111-118. [PubMed: 17630007]
  • Parke, B., and A. Mishkin. 2005. Best practices in shift handover communication: Mars exploration rover surface operations. Paper read at European Space Agency (Special Publication), ESA SP, Nice, France.
  • Patterson, E. S. 2007. Communication strategies from high-reliability organizations: Translation is hard work. Annals of Surgery 245(2):170-172. [PMC free article: PMC1876978] [PubMed: 17245167]
  • ———. 2008. Structuring flexibility: The potential good, bad and ugly in standardisation of handovers. Quality and Safety in Health Care 17(1):4-5. [PubMed: 18245211]
  • Patterson, E. S., E. M. Roth, D. D. Woods, R. Chow, and J. O. Gomes. 2004. Handoff strategies in settings with high consequences for failure: Lessons for health care operations. International Journal for Quality in Health Care 16(2):125-132. [PubMed: 15051706]
  • Perry, S. J., R. L. Wears, and E. S. Patterson. 2008. (unpublished). High hanging fruit: Improv ing transitions in health care. Washington, DC: Department of Veterans Affairs.
  • Petersen, L. A., T. A. Brennan, A. C. O’Neil, E. F. Cook, and T. H. Lee. 1994. Does housestaff discontinuity of care increase the risk for preventable adverse events? Annals of Internal Medicine 121(11):866. [PubMed: 7978700]
  • Petersen, L. A., E. J. Orav, J. M. Teich, A. C. O’Neil, and T. A. Brennan. 1998. Using a computerized sign-out program to improve continuity of inpatient care and prevent adverse events. Joint Commission Journal on Quality Improvement 24(2):77-87. [PubMed: 9547682]
  • Roberts, K. H., P. Madsen, V. Desai, and D. Van Stralen. 2005. A case of the birth and death of a high reliability healthcare organisation. Quality and Safety in Health Care 14(3):216-220. [PMC free article: PMC1744010] [PubMed: 15933321]
  • Roberts, V., and M. M. Perryman. 2007. Creating a culture for health care quality and safety. Health Care Manager 26(2):155-158. [PubMed: 17464230]
  • Rosen, M. A., E. Salas, T. S. Wu, S. Silvestri, E. H. Lazzara, R. Lyons, S. J. Weaver, and H. B. King. 2008. Promoting teamwork: An event-based approach to simulation-based teamwork training for emergency medicine residents. Academic Emergency Medicine 15:1-9. [PubMed: 18638035]
  • Sabir, N., S. M. Yentis, and A. Holdcroft. 2006. A national survey of obstetric anaesthetic handovers. Anaesthesia 61(4):376-380. [PubMed: 16548959]
  • Salas, E., and J. A. Cannon-Bowers. 2000. a. The anatomy of team training. In Training and retraining: A handbook for business, industry, government, and the military, edited by S. Tobias, editor; and J. D. Fletcher, editor. . New York: Macmillan Reference. Pp.312-335.
  • ———. 2000. b. Designing training systems systematically. In The Blackwell handbook of principles of organizational behavior, edited by E. A. Locke, editor. . Malden, MA: Blackwell Publisher Ltd. Pp.43-59.
  • ———. 2001. The science of training: A decade of progress. Annual Review of Psychology 52:471-499. [PubMed: 11148314]
  • Salas, E., D. DiazGranados, C. Klein, C. Burke, K. Stagl, G. Goodwin, and S. Haplin. 2008. Does team training lead to improved team outcomes? A meta-analysis. Human Factors 50(6):903-933. [PubMed: 19292013]
  • Salas, E., T. L. Dickinson, S. A. Converse, and S. I. Tannenbaum. 1992. Towards an understanding of team performance and training. In Teams: Their training and performance, edited by R. W. Swezey, editor; and E. Salas, editor. . Norwood, NJ: Ablex Publishing Corporation.
  • Salas, E., E. Sims, and C. Klein. 2004. Cooperation and teamwork at work. In Encyclopedia of applied psychology , Vol. 1 , edited by C. D. Spielberger, editor. . San Diego, CA: Academic Press. Pp.497-505.
  • Salas, E., D. E. Sims, and C. S. Burke. 2005. Is there a “Big Five” in teamwork? Small Group Research 36(5):555-599.
  • Saultz, J. W. 2003. Defining and measuring interpersonal continuity of care. Annals of Family Medicine 1(3):134-143. [PMC free article: PMC1466595] [PubMed: 15043374]
  • Shojania, K. G. 2005. Interpreting the patient safety literature . http://webmm​.ahrq.gov​/printviewperspective​.aspx?perspectiveID=5 (accessed April 15, 2008).
  • Simmons, J., and J. Gonzalez del Rey. 2008. Family-centered rounds (FCRs): Building systems and skills for success at the bedside of the hospitalized child in a teaching hospital . Cincinnati, OH: Cincinnati Children’s Hospital Medical Center. PowerPoint presentation.
  • Singer, J. I., and J. Dean. 2006. Emergency physician intershift handovers: An analysis of our transitional care. Pediatric Emergency Care 22(10):751-754. [PubMed: 17047478]
  • Singer, S. J., D. M. Gaba, J. J. Geppert, A. D. Sinaiko, S. K. Howard, and K. C. Park. 2003. The culture of safety: Results of an organization-wide survey in 15 California hospitals. Quality and Safety in Health Care 12(2):112-118. [PMC free article: PMC1743680] [PubMed: 12679507]
  • Singh, H., E. J. Thomas, L. A. Petersen, and D. M. Studdert. 2007. Medical errors involving trainees: A study of closed malpractice claims from 5 insurers. Archives of Internal Medicine 167(19):2030-2036. [PubMed: 17954795]
  • Smith-Jentsch, K. A., E. Salas, and D. P. Baker. 1996. Training team performance-related assertiveness. Personnel Psychology 49(4):909-936.
  • Smith-Jentsch, K., R. Zeisig, B. Acton, and J. McPherson. 1998. Team dimensional training: A strategy for guided team self-correction. In Making decisions under stress, edited by E. Salas, editor; and J. A. Cannon-Bowers, editor. . Washington, DC: American Psychological Association. Pp.271-297.
  • Solet, D. J., J. M. Norvell, G. H. Rutan, and R. M. Frankel. 2005. Lost in translation: Challenges and opportunities in physician-to-physician communication during patient handoffs. Academic Medicine 80(12):1094-1099. [PubMed: 16306279]
  • Stair, T. O., and J. M. Howell. 1995. Effect on medical education of computerized physician order entry. Academic Medicine 70(6):543. [PubMed: 7786378]
  • Stevens, D. P., C. S. Sixta, E. Wagner, and J. L. Bowen. 2008. The evidence is at hand for improving care in settings where residents train. Journal of General Internal Medicine 23(7):1116-1117. [PMC free article: PMC2517951] [PubMed: 18612755]
  • Sutcliffe, K. M., E. Lewton, and M. M. Rosenthal. 2004. Communication failures: An insidious contributor to medical mishaps. Academic Medicine 79(2):186-194. [PubMed: 14744724]
  • Swezey, R. W., A. L. Meltzer, and E. Salas. 1994. Some issues involved in motivating teams. In Motivation: Theory and research, edited by H. F. O’Neil, Jr., editor; , and M. Drillings, editor. . Hillsdale, NJ: Lawrence Erlbaum Associates. Pp.141-169.
  • TeamSTEPPS. 2007. Strategies and tools to enhance performance and patient safety: Essen tials course. Rockville, MD: Agency for Healthcare Research and Quality. PowerPoint presentation.
  • Van Eaton, E. G., K. D. Horvath, W. B. Lober, A. J. Rossini, and C. A. Pellegrini. 2005. A randomized, controlled trial evaluating the impact of a computerized rounding and signout system on continuity of care and resident work hours. Journal of American College of Surgeons 200(4):538-545. [PubMed: 15804467]
  • Vidyarthi, A. 2004. Fumbled handoff . http://webmm​.ahrq.gov/printview​.aspx?caseID=55 (accessed March 18, 2008).
  • Vidyarthi, A. R., V. Arora, J. L. Schnipper, S. D. Wall, and R. M. Wachter. 2006. Managing discontinuity in academic medical centers: Strategies for a safe and effective resident sign-out. Journal of Hospital Medicine 1(4):257-266. [PubMed: 17219508]
  • Volpp, K. G., and C. P. Landrigan. 2008. Building physician work hour regulations from first principles and best evidence. JAMA 300(10):1197-1199. [PubMed: 18780848]
  • Wachter, R. M. 2008. Chapter 8: Transition and handoff errors. In Understanding patient safety, edited by J. Shanahan, editor; and K. Edmanson, editor. . New York: The McGraw-Hill Companies, Inc.
  • Wachter, R. M., K. G. Shojania, A. J. Markowitz, M. Smith, and S. Saint. 2006. Quality grand rounds: The case for patient safety. Annals of Internal Medicine 145(8):629-630. [PubMed: 17043345]
  • Warm, E., D. Schauer, T. Diers, B. Mathis, Y. Neirouz, J. Boex, and G. Rouan. 2008. The ambulatory long-block: An Accreditation Council for Graduate Medical Education (ACGME) Educational Innovations Project (EIP). Journal of General Internal Medicine 23(7):921-926. [PMC free article: PMC2517908] [PubMed: 18612718]
  • Weick, K. E., editor; , and K. M. Sutcliffe, editor. , eds. 2001. Managing the unexpected: Assuring high perfor mance in an age of complexity. San Francisco: Jossey-Bass.
  • Zheng, B., P. Denk, D. Martinec, P. Gatta, M. Whiteford, and L. Swanström. 2008. Building an efficient surgical team using a bench model simulation: Construct validity of the legacy inanimate system for endoscopic team training (LISETT). Surgical Endoscopy 22(4):930-937. [PubMed: 17710491]
Copyright 2009 by the National Academy of Sciences. All rights reserved.
Bookshelf ID: NBK214937

Views

  • PubReader
  • Print View
  • Cite this Page
  • PDF version of this title (3.5M)

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...