Box 13.1Replication of the yeast genome

Microarray analysis is being used to examine the dynamics of origin firing and fork migration in replicating yeast chromosomes.

Research into genome replication is entering a new phase. Attention is still focused on the detailed biochemical events occurring at individual replication forks, but these studies are now being supplemented by new experimental strategies that have been made possible by the availability of complete genome sequences. These new strategies, which are being pioneered with the yeast Saccharomyces cerevisiae, are providing a global view of the pattern and dynamics of replication across entire genomes. Research during the 1990s had shown that, as in all eukaryotes, replication of individual yeast chromosomes follows a consistent pattern from one cell cycle to the next, the region around the centromere usually being one of the first parts of a chromosome to be replicated, and the telomeres being replicated towards the end of S phase. But these features of genome replication had been extrapolated from studies of just a few origins, and it was generally agreed that further progress would require a new experimental strategy that enabled the activities of many origins to be studied at the same time. The new strategy that has been devised combines an established approach to genome replication - labeling with heavy isotopes - with the latest advances in microarray technology.

Compared with other eukaryotes, yeast has a relatively small genome (see Table 2.1). This is a major advantage in global studies of genome activity because it means that microarrays representing all of the genome can be prepared quite easily, using a set of cDNAs or oligonucleotides specific for every one of the 6000 yeast genes. In Section 3.2.3 we saw how cDNA probing of microarrays has been used to follow the global pattern of gene expression during the yeast sporulation pathway. Can a similar approach be used to follow the pattern of origin activation during S phase?

Microarray analysis is based on hybridization probing, so to use a microarray to follow the pattern of genome replication it will be necessary to devise a way of separating unreplicated DNA from replicated DNA, so that one or the other fraction can be used as a hybridization probe. If, for example, a sample of replicated DNA could be obtained from cells that had just entered S phase, then this DNA could be used to probe the microarray in order to identify those genes that have already been replicated at this early stage. A second probe, prepared from replicated DNA from slightly later in S phase, would identify the next set of genes to be replicated, and so on. When data have been collected for all of S phase, the gene identities could be correlated with the genome map to chart the pattern of replication for each chromosome. But how can samples of replicated DNA be prepared? The problem has already been solved, way back in 1958 by Meselson and Stahl, who used heavy-isotope labeling to distinguish between old and new DNA during replication of the Escherichia coli genome (Section 13.1.1). By growing bacteria in medium containing 15NH4Cl they prepared cells containing 15N-labeled double-stranded DNA. Transfer to normal medium, followed by one round of genome replication, gave rise to daughter cells whose DNA molecules were hybrids, comprised of one strand of 15N-DNA and one strand of 14N-DNA (see Figure 13.3A). A similar approach can be used with yeast: grow the cells in medium with heavy nitrogen, transfer to normal medium, and allow the cells to enter S phase. Extract the DNA, treat it with a restriction endonuclease, and fractionate by density gradient centrifugation. Two bands are seen. One is made up of fragments of 15N-15N-DNA, derived from the unreplicated component of the genome. The other band is 14N-15N-DNA and hence is derived from the regions that have undergone replication. Purify the 14N-15N-DNA, label it with a radioactive or fluorescent marker, and apply to the microarray (see figure on facing page).

Image ch13fb1.jpg

Early and late origins

The analysis is simple but remarkably informative, as illustrated by the two graphs on the right. Graph A charts the dynamics of origin firing along yeast chromosome VI and identifies a region midway along the shorter arm as the area where replication of this chromosome commences. As indicated by previous experiments, the centromere (indicated by the circle on the x-axis) is replicated early in S phase, and the telomeres at the end of the cycle. Note that both telomeres are replicated at approximately the same time. This observation holds true for all yeast chromosomes, but not all chromosomes complete their replication cycle at the same time. Some, such as chromosomes XI and XV, are completely replicated early in S phase, and others, such as VIII and IX, are not fully replicated until much later. These time differences are not related to the length of the chromosome but instead indicate real variations in the kinetics of chromosome replication. Graph B emphasizes this point, showing that 15 minutes after the start of S phase, most of the origins in chromosome XV have been activated whereas replication of chromosome XII has only just begun. Microarray analysis also enables the migration rate of individual forks to be inferred, again showing variability. The mean speed is 2.9 kb per minute, but some forks move much more quickly, up to 11 kb per minute for the most active ones.

More questions

As with many novel techniques, microarray analysis of yeast genome replication answers some questions but raises many new ones. Why do some replication forks migrate much more quickly than others? The variations do not appear to be the result of chromatin structure because adjacent forks that are moving towards one another often migrate at quite different speeds. What sets the time of firing for a particular origin? Previous research has suggested that timing is not an intrinsic property of the origin itself, but instead is determined by other controlling sequences in the genome. Are all origins used in every round of genome replication? Again, previous work has suggested that some origins are used in every S phase whereas others are optional. Microarray analysis will enable all of these questions to be addressed in more detail.

Image ch13fb2.jpg

Reference

  1. Raghuraman MK, Winzeler EA, Collingwood D. et al. Replication dynamics of the yeast genome. Science. (2001);294:115–121. [PubMed: 11588253]

From: Chapter 13, Genome Replication

Cover of Genomes
Genomes. 2nd edition.
Brown TA.
Oxford: Wiley-Liss; 2002.
Copyright © 2002, Garland Science.

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.