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Abstract
Automated microscopes are now widespread in biological research. They enable the unprecedented collection of 
images at a rate which outpaces researchers’ ability to visually inspect them. Whether interrogating hundreds of 
thousands of individual fixed samples or fewer samples collected over time, automated image analysis has 
become necessary to identify interesting samples and extract quantitative information by microscopy. This 
chapter builds on the material presented in the introductory HCS section.

1. Experimental design for HCS

1.1. Controls
Whenever possible, positive and negative controls should be included in an assay. Using controls is required to 
calculate a performance envelope for measuring the assay quality and phenotype feature space (see "Assay 
Quality and Acceptance Criteria for HCS" section below).

However, positive controls may not be readily available. In these situations, an assay measuring a real biological 
process may still show a phenotype of interest under some conditions that can be observed and measured even if 
positive controls that induce high levels of cells with the phenotype do not exist. Once a condition is identified 
and demonstrates such a measurable change, then it can serve as a positive control going forward.

For profiling assays, in which a large variety of cellular features are measured to identify similarities among 
samples, and hence designed to have multiple readouts, several different positive controls for each desired class 
of outcomes may be necessary. However, these may not be known in advance. Long running assays will typically 
accumulate positive controls over time and may even change the perceived limits or dynamic range of the assay.

Ideally, a positive control is of the same type as the reagents to be screened (e.g. a small molecule control for a 
small molecule screen, and an RNAi-based control for an RNAi screen). However, any reagent that induces the 
phenotypic change of interest can serve as a positive control if necessary, even if artificial. For example, 
expression of a constitutively active form of a tagged protein or knockdown of a target by RNAi can simulate the 
effects of a sought-after small molecule in a screen. Although differences in modality may complicate direct 
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quantitative analysis of such controls, such 'artificial' controls are often helpful during assay development and 
optimization, and provide a sense of the dynamic range to be expected in the screen.

In selecting controls, there is a temptation to select reagents with very strong effects as positive controls. This is 
often the result of undue emphasis on minimum criteria for acceptance for screening, such as a Z'-factor cutoff. 
Good judgment should instead prevail, and positive controls should be selected based on the intensity of the hits 
hoped to find. For example, it is not helpful to select a very strong positive control that yields a high-quality Z'-
factor if it is not comparable to the strength of the expected hits sought in an actual screen. Instead, inclusion of 
moderate to mild positive controls, or decreasing doses of a strong positive control, is better in gaining a sense of 
the sensitivity of the assay to realistic hits.

The authors have observed several successful screens with sub-par Z'-factors or absent a positive control that 
nonetheless yielded high-value, reproducible, biologically relevant hits. As such, common sense should prevail 
by factoring in the complexity and value of hits in the screen and the degree of tolerance for false positives that 
can be filtered out in confirmation screens.

For plates of reagents from vendors, typically only the first and the last columns of a multi-well plate are 
available for controls, with the treated samples contained in the middle wells.

Unfortunately, this practice renders the assay susceptible to the well-known problem of plate-based edge effects, 
which lead to over- or under-estimation of cellular responses when normalizing by the control wells.

One strategy to minimize edge effects is to spatially alternate the positive and negative controls in the available 
wells, such that they appear in equal numbers on each of the available rows and on each of the available columns 
(1)(2). (Figure 1)

If the screener is creating a custom plate for an HCS run, ideally the control wells should be randomly placed 
across the plate in order to avoid spatial bias. However, this approach is rarely practical in large screens as it must 
be performed manually. Therefore, the chance of introducing a spatial bias effect by using a non-random control 
placement is an accepted practice due to the difficulty in creating truly random plate arrangements.

For screens run in multiple batches where the controls need to be prepared such as lentiviral shRNA screens 
which necessitate the creation of viral vectors, variation in viral preparation may be confounded with assay 
variation. One helpful strategy in this situation is to make a plate containing controls in one batch, freeze them 
and then thaw and use them a few at a time as the screen progresses. This method can help identify assay drift or 
batch specific problems.

For analytical approaches to correcting inter- and intra-plate bias, see the section "Normalization of HCS data" 
below.

1.2. Replicates
Like all HTS assays, the cost of replicates should be weighed against the cost of cherry-picking hits and 
performing a confirmation screen. HCS assays with complex phenotypes are often more difficult to score so 
more replicates are often needed. Experiments are normally performed in duplicate or higher replicate numbers 
in order to decrease both false positive and false negative rates. Performing replicate treatments offers the 
following advantages (2):

1. Taking the mean or median of the replicate measurements yields lower variability than with single 
measurements only.

2. Replicate measurements provide direct estimates of variability and are useful for evaluating the 
probability of detecting true hits. When combined with control measurements, a statistically significant 
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change can be determined by comparing (a) the ability to distinguish treated wells from the controls, and 
(b) the ability to distinguish replicates of the same treatment.

3. Replicates reduce the number of false negatives without increasing the number of false positives.

Despite the multitude of good reasons for high replicate numbers, almost all large screens are performed in 
duplicate. Increasing the replicate number from 2 to 3 is a 50% increase in reagent cost which in the case of an 
HCS screen involving the tens or hundreds of thousands of samples can determine whether the screen is 
performed at all. HCS screens are normally performed by first screening all the samples, usually at a single 
concentration in duplicate, and then retesting all the hits in confirmation assays. The confirmation assays serve 
to filter out the false positives and are performed on a much smaller scale where it is easier to increase the 
replicate number and perform dose response studies if needed. In an HCS screen, preference is given to reducing 
false negatives because if a hit is missed during the first round of screening, it is irretrievable unless the screen is 
performed.

The number of treatment replicates needed is empirical and largely dictated by the subtlety of the observed 
cellular behavior: If a given treatment produces a strong biological response, fewer replicates will be required by 
virtue of a high signal-to-noise ratio. In certain cases, up to 7 replicates may be needed (3) but 2 - 4 is more 
typical.

Placement of replicate wells is subject to the same considerations in placement of control wells (see "Controls" 
above). Although randomization of the sample placement from one replicate to another is ideal, this is rarely 
done and for practical reasons, plates follow the same layout for all replicates. Where possible, both inter- and 
intra-plate replicate wells should be used for the purposes of ensuring robust normalization (see "Normalization 
of HCS data" below).

2. Assay Quality AND Acceptance Criteria for HCS
Z'-factor (not to be confused with z-score): While there are a number of different measurements of assay 
performance, the most widely used measurement to assess an assay is the so-called Z’-factor.

• Definition: This criteria for primary screens has gained wide acceptance in the HTS community and is 
defined as (4):

Figure 1: Location of sixteen positive controls (red) and sixteen negative controls (yellow) on a 384-well plate. In layout (A), both sets 
of controls are located on the plate edges in a regular pattern, and are susceptible to edge-based bias. In contrast, layouts (B) and (C) 
attempt to systematically decrease the edge bias by alternating the spatial position of the controls so that they appear in equal quantity 
on each of the rows and available columns. Adapted from (1).
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 where μp and σp are the mean and standard deviation values of the positive control (or 

alternately, the treated samples) and μn and σn are those of the negative control.

• Range and interpretation: The Z'-factor has the range of -∞ to 1, and is traditionally interpreted as follows: 
(Table 1).

It should be noted that the "ideal" case of Z' = 1 implies that the dynamic range →∞ or σp = σn = 0 (no variation). 
Neither of these scenarios represent realistic assays.

For moderate assays, the screener should consider the utility of mining hits that fall into the Z’ = 0 ─ 0.5 range. 
Given the screening cost of eliminating a false positive (which is hopefully low) as compared to that of 
eliminating a false negative (potentially very costly, as mentioned above), a decision will need to be made 
whether to follow up on such hits or instead cherry-pick and repeat treatments, or re-screen entire plates.

• Advantages: While Z' > 0.5 has become a de facto cutoff for most HTS assays, 0 < Z' ≤ 0.5 is often 
acceptable for complex HCS phenotype assays, because those hits may be more subtle but still valuable. In 
comparison to other assay robustness metrics (5), advantages of the Z'-factor include:
⚬ Ease of calculation.
⚬ Accounts for the variability in the compared groups while properly ignoring the absolute 

background signal.
⚬ Often found in both commercial and open-source software packages.

• Disadvantages:
⚬ Does not scale linearly with signal strength. That is, an increased target reagent or a very strong 

positive control may achieve a higher Z'-factor that is disproportionate to the phenotype strength. 
The above ranges may not realistically represent more moderate screening positives which may still 
be biologically meaningful, e.g., RNAi screens where the signal-to-background ratio is lower than 
that of small-molecule screens (6).

⚬ The use of sample means and standard deviation. Statistically, this condition assumes that the 
negative and positive control values follow a normal (i.e., Gaussian) distribution. The presence of 
outliers or asymmetry in the distributions can violate this constraint. Such is often the case for cell-
based assays but is rarely verified, and can yield a misleading Z'-factor. Conversely, attempting to 
correct for this by transforming the response values to yield a normal distribution (e.g., log scaling) 
may yield an artificially high Z'-factor (7).

⚬ The sample mean and sample standard deviation are often not robust estimators of the distribution 
mean and standard deviation. In the presence of outliers, these statistics can easily lead to an 
inaccurate measure of control distribution separation.

One-tailed Z’ factor: This measure is a variant of the Z'-factor formulation which is more robust against skewed 
population distributions. In such cases, long tails opposite to the mid-range point lead to a high standard 
deviation for either population, which results in a low Z' factor even though the population means and samples 
between the means may be well-separated (unpublished work).

• Definition: This statistic has the same formulation as the Z'-factor, with the difference that only those 
samples that lie between the positive/negative control population medians are used to calculate the 
standard deviations.

• Range and interpretation: Same as that for the Z'-factor.
• Advantages

⚬ Attempts to overcome the Gaussian limitation of the original Z'-factor formulation.
⚬ Informative for populations with moderate or high amounts of skewness.
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• Disadvantages
⚬ Still subject to the scaling issues described above for the original Z'-factor formulation.
⚬ Not available as part of most analysis software packages.

V-factor: The V-factor is a generalization of the Z'-factor to a dose-response curve (8).

Definition: Calculated as either:

where , i.e, the root-mean-square deviation of a logistic 

model to the response data, and σp and σn are defined as above; or

if no model is used, i.e., the average of several replicates where σ are the standard deviations 

of the data.

• Range and interpretation: Same as that for the Z'-factor.
• Advantages

⚬ Decreased susceptibility to saturation artifacts, which reduce the variability of the controls.
⚬ Taking the entire response curve into account makes the V-factor robust against dispensing errors 

(which typically occur towards the middle of the dose curve, rather than the extremes as for the 
positive/negative controls).

⚬ The V-factor formula has the same value as the Z'-factor if only two doses are considered.
• Disadvantages:

⚬ Requires dose response data, which requires many more samples than statistics relying solely on 
positive and negative controls.

⚬ Not available as part of most analysis software packages (CellProfiler is an exception).

Strictly standardized mean difference (SSMD, denoted as β): This measure was developed to address 
limitations in the Z' factor in experiments with control of moderate strength.

• Definition: The SSMD measures the strength of the difference between two controls, using the formulation 
is (9)(10):

where μn, , μp and  are defined as above for the Z' factor.

• Range and interpretation: Acceptable screening values for SSMD depend on the strength of the positive 
controls used, as described in the following table (11) (these threshold values assume that the positive 
control response is larger than that of the negative control; if the converse is true, the threshold values are 
negative and the inequality signs are reversed): (Table 2).

Zhang et al (10) make the following recommendations to choosing the appropriate criterion:

• In chemical compound assays (which typically have positive controls with strong/extremely strong 
effects), use criterion (4) or (3).

• For RNAi assays in which cell viability is the measured response, use criterion (4) for the empty control 
wells (i.e, wells with no cells added).

• If the difference is not normally distributed or highly skewed, use criterion (4).
• If only one positive control is present in the experiment, use criterion (3).
• For two positive controls, use criterion (3) for the stronger control and criterion (2) for the weaker control.
• Advantages (6)
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⚬ Ease of calculation.
⚬ Accounts for the variability in the compared groups.
⚬ Accommodates the effect size of the controls, through the use of different thresholds.
⚬ Lack of dependence on sample size.
⚬ Linked to a rigorous probability interpretation.

• Disadvantages (6)
⚬ Not available as part of most analysis software packages (CellProfiler is an exception).
⚬ Not intuitive for many biologists.
⚬ The thresholds are based on a subjective classification of control strength.

Area under the receiver operating characteristic curve (AUC) ( 12 ):

• Definition: The receiver characteristic curve (ROC) is a graph showing the proportion of true and false 
positives given a range of possible thresholds between the positive and negative control distributions (see 
figure). This pictorial information can be summarized as a single value by taking the area under the ROC 
curve (also known as the AUC) (Figure 2).

• Range and interpretation: The AUC can assume a value between 0 and 1. An assay which generates both 
true and false positives at random would result in a diagonal line between (0, 0) and (1, 1) on the ROC. 
For such a case, the AUC would equal 0.5. Therefore, a usable assay must therefore have an AUC > 0.5 
(and ideally much higher) although no cutoff criteria has been agreed upon by the community (Table 3).

Given that most screens will require a false positive rate of less than 1%, the right side of the ROC is typically less 
relevant than the left-most region. An alternate metric is to calculate the AUC from only the left-most region 
(12).

• Advantages (6)
⚬ Allows for the viewing the dynamic range of the data given positive and negative controls.
⚬ Does not assume that control distributions are normal (i.e, Gaussian)
⚬ Multiple thresholds for defining positives and the resulting trade-offs between true positive and true 

negative detection can be evaluated simultaneously.
• Disadvantages (6)

⚬ Requires a large sample size for calculation. Ideally, many replicates of positive and negative controls 
are needed.

⚬ Some information is lost when the AUC is used exclusively rather than visual inspection of the 
complete ROC. For example, two classifiers under consideration may have the same AUC but one 
may do better than the other at different parts of the ROC graph (that is, their curves intersect at 
some point). In this case, the relative accuracy no longer becomes a measure of the global 
performance, and restricting the AUC calculation to only a portion of the ROC graph is 
recommended.

⚬ Not available as part of most analysis software packages (though GraphPad's Prism is a commonly-
used exception).
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Table 1: Interpretation of Z’ values

Value Interpretation

Z' = 1 An ideal assay

1 > Z' ≥ 0.5 Excellent: Good separation between the populations

0.5 > Z' ≥ 0 Marginal: Moderate to no separation of the distributions

Figure 2: Details of a receiver characteristic curve. ''Top:'' Probability distributions of a hypothetical pair of control data. As a threshold 
value is varied, the proportions of actual and predicted positives and negatives drawn from the two distributions will also vary. 
''Bottom:'' Three hypothetical ROC curves based on the table below. Adapted from (10).

Advanced Assay Development Guidelines for Image-Based High Content Screening and Analysis 7



Table 1 continued from previous page.

Value Interpretation

Z' = 0 Nominal: Good only for a yes/no response

Z' < 0 Unacceptable: Screening is essentially impossible

Table 2: Interpretation of SSMD values (positive control response > negative control response)

Quality Type 1 Moderate Control 2 Strong Control 3 Very Strong Control 4 Extremely Strong Control

Excellent β ≥ 2 β ≥ 3 β ≥ 5 β ≥ 7

Good 2 > β ≥ 1 3 > β ≥ 2 5 > β ≥ 3 7 > β ≥ 5

Inferior 1 > β ≥ 0.5 2 > β ≥ 1 3 > β ≥ 2 5 > β ≥ 3

Poor β < 0.5 β < 1 β < 2 β < 3

Table 3: Interpretation of AUC values

Value Interpretation

AUC = 1 A "perfect" assay.

AUC = 0.5 Poor: Performance is only as good as random chance.

AUC < 0.5 Worse than random chance.

3. Quality Control for HCS
Unlike most HTS assays, HCS data can be visually and sometimes automatically checked to identify and remove 
artifacts. In HCS assays, several fluorescent probes are often used simultaneously to stain cells, each labeling 
distinct cellular components in each sample. For screens in which the goal is to identify a small number of hits 
for a particular, known phenotype of interest, the candidate hits can often be screened by eye to eliminate false-
positive artifacts. However, large screens and profiling experiments probing a broad spectrum of subtle 
morphological responses require more automated methods to detect and remove artifacts and systematic 
aberrations.

In general, the best approach to avoid imaging artifacts is to adjust the image acquisition settings to optimize the 
image quality (see the section "Capturing a Good Image" in the introductory HCS chapter of the AGM for more 
details). However, despite the screener's best efforts at acquisition and sample preparation, anomalies will still 
appear and end up polluting otherwise high-quality microscopy data.

Common artifacts that can confound image analysis algorithms are out-of-focus images, debris, image 
overexposure, and fluorophore saturation, among others. Because these anomalies affect a wide variety of 
intensity, morphological, and textural measurements in different ways, a single quality control (QC) metric that 
captures all types of artifacts, without also triggering on the unusual appearance of hits of interest, is not realistic. 
Instead, it is recommended to use either multiple metrics targeting the various artifacts that arise, or a 
supervised machine-learning approach.
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3.1. Using targeted features for QC

3.1.1. Cell count as a quality control measure
Depending on the experimental context, a simple measure of quality is the calculated cell count. This metric can 
help identify problems with the following situations:

• Per-image object segmentation: If the screener has an idea of the typical number of cells in a given image, 
deviations from this range at the per-image level can be indicative of improper object segmentation. An 
unusually low apparent number may mean that neighboring cells are getting merged together or are 
absent due to cell death or incorrect cell plating, whereas a high apparent count may mean that cellular 
objects are being split apart incorrectly or an artifact such as compound precipitation is present.

• Per-well heterogeneities: Uneven distribution of cells have effects on cellular adhesion and morphology, 
and in multiwell plates, low cell counts may characterize the wells of the edge of the plate. Computation 
and display of per-well cell counts in a plate layout heatmap format can reveal the presence of such 
systemic artifacts, which can be corrected at the sample preparation stage (14).

3.1.2. Features for detecting out-of-focus images
Despite the use of autofocusing routines on automated microscopes, out-of-focus images are a common and 
confounding artifact in HCS. The rate of occurrence can depend on the cell type being examined and how 
adherent the cells are to the bottom of the well. Two measures are particularly useful in out-of-focus image 
detection (15):

• Power log-log slope (PLLS): This measure evaluates the slope of the power spectral density of the pixel 
intensities on a log-log scale; the power spectrum density shows the strength of the spatial frequency 
variations as a function of frequency. It is always negative, and decreases in value as blur increases and 
high-frequency image components are lost. 
Typical in-focus values are in the range of -1.5 ~ -2; very negative values indicate a steep slope which 
means that the image is composed mostly of low spatial frequencies. It is recommended to plot the PLLS 
for a given channel as a histogram and examine outliers that are substantially less than -2.
⚬ Advantages: Because the PLLS of natural images is relatively invariant, this metric is useful as an 

unbiased estimator of focus.
⚬ Disadvantages: The presence of bright artifacts (e.g, fluorescent debris) in an otherwise in-focus 

image can produce artificially low PLLS values (Figure 3).
• Textural correlation: This measure evaluates the dependency of each pixel on the grayscale value of its 

neighbors, for a given spatial scale. Given the proper spatial scale, this measure shows the separation 
between blurry/in-focus images: as the correlation of an image increases, the blurriness of the image also 
increases. 
Of particular importance is the choice of spatial scale: a smaller spatial scale will pick up the blurring of 
smaller image features first, increasing the sensitivity. In general, it should be no larger than the diameter 
for a typical object (e.g, nucleus, speckle) in the channel of interest.
⚬ Advantages: Performance is generally insensitive to the amount of cell coverage.
⚬ Disadvantages: Dependence upon proper a priori selection of spatial scale. If the scale is too small, 

this metric starts reflecting the smaller in-focus image features rather than the amount of blur; too 
large a value, and it reflects the spatial proximity of similar cellular features.

The situation is more complicated if only a portion of the image is out-of-focus rather than the entire image (e.g., 
a section of a confluent cell cultures lifting off and "rolling up", causing a local change in the depth of field). In 
this case, the difference between such images and in-focus images will not be as distinct, but a more moderate 
shift in the metric values may still aid in establishing a reasonable cutoff.
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3.1.3. Features for detecting images containing saturated fluorescent artifacts
Saturation artifacts are another common aberration encountered in HCS. Unusually bright regions in an image 
can be caused by debris contamination, aggregation of fluorescent dye, and/or inappropriately high exposure 
time or detector gain settings. Such regions can produce inaccurate intensity measurements and may impair cell 
identification even when such a region is small or not terribly bright.

The following metrics can be measured and examined to detect saturation artifacts:

• A useful measure is the percentage of the image that is occupied by saturated pixels. (Here, we define 
saturation as the maximum value in the image as opposed to the maximum bit-depth allowed by the 
image format.) In normal cases, only a small percentage of the image is at this value. Images with a high 
percentage value typically indicate either bright artifacts or saturated objects (e.g., non-artifactual dead 
cells). Further examination is required to determine which is the case, and whether the image is 
salvageable.

• The standard deviation of the pixel intensity is also useful for detection of images where a bright artifact is 
present but is not bright enough to cause saturation (Figure 4).

3.2. Using machine learning for QC
Machine learning provides a more intuitive way to train a computer to differentiate unusable from acceptable 
images on the basis of a sample set of each (the training set) and is particularly useful for detection of unforeseen 
aberrations. PhenoRipper is an open-source unsupervised machine-learning tool that can detect major classes of 
similar images and can be useful for artifact detection (16). The advantage of taking the machine learning 
approach is that it does not require a priori knowledge of the important features which identify the artifact(s). 
Disadvantages include the time required to create the training set and the expertise to run the analysis (17)

For more on machine learning applications, see the section "Machine learning for HCS" below.

4. Normalization of HCS data
In the process of performing an HCS screen, invariably small differences between samples, including replicates, 
appear despite the screener's best efforts at standardization of the experimental protocol. These include both 
systematic (i.e., stemming from test conditions and procedure) and random errors (i.e., stemming from noise). 
Sources of systematic error include (18):

Figure 3: Illustration of PLLS performance for in-focus/out-of-focus MCF7 images. Left panel: Scatter plot of PLLS from the 
mitochondrial channel (x-axis) vs the phalloidin channel (y-axis) on a whole-image basis. If both channels were simultaneously 
blurred, we would expect that the measurements would cluster along a line. In this case, though, there are three clusters are apparent: 
clusters 1 and 2 represent images in which both channels are blurred/in-focus, and cluster 3 where one channel is in focus but the other 
is not. An example image from cluster 3 is shown, both the blurry mitochondrial (center panel) and in-focus phalloidin channels (right 
panel).
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1. Errors caused by reagent aging, or changes to compound concentrations due to reagent evaporation or 
cell decay.

2. Anomalies in liquid handling, malfunction of pipettes, robotic failures and reader effects
3. Variation in incubation time and temperature differences, temporal drift while measuring multiple wells 

and/or multiple plates and reader effects, and lighting or air flow present over the course of the entire 
screen

The combination of these effects may generate repeatable local artifacts (e.g., border, row or column effects) and 
global drifts recognizable as consistent trends in the per-plate measurement means/medians which result in row 
and/or column measurements that systematically over- or underestimate expected results (19).

In addition, the cellular population context (e.g. cell density) has a profound influence of cell behavior and may 
account significantly to cell-to-cell variability in response to treatment (20); correcting for these effects involve 
sophisticated methods of modeling the cellular population response (21).

The overall impact of these variations depends upon the subtlety of the cellular response in question. For 
example, even if a positioned plate layout is used (rather than a random layout), a strong biological response 
may be sufficient to overcome any plate effects that may occur by virtue of a high signal-to-noise ratio.

If this is not the case, normalization is necessary to remove these systematic variations and allow the detection of 
variation originating from experimental treatments. The following results are ideal:

1. The feature ranges observed across different wells with the same treatment should be similar.
2. The feature distributions of the controls (whether positive or negative) should be similar.

Examples of software packages that include a variety of plate normalization techniques include GeneData 
Screener (http://www.genedata.com) and Bioconductor (22).

Figure 4: Illustration of performance of the percentage of pixels at maximum intensity and the standard deviation of the pixel 
intensities. The inset to the left shows a example image from the box at top where the percentage measure is high. The inset to right 
shows an example image from the box at bottom where the image standard deviation is high but the percentage measure is low.
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4.1. Inter-plate normalization
For screening purposes, ideally the control wells should be present on all plates. Negative controls should be 
present at minimum, but preferably both positive and negative, and subject to the criteria described in the 
"Controls" section above, with the expectation that the cellular response in the control wells is consistently 
similar between all samples. However, this is rarely the case; it is not uncommon for the means and standard 
deviations of the collected measurements to vary from plate to plate. Hence, inter-plate normalization is needed 
to reduce variability between samples across plates.

The choice of normalization method will depend on the particular assay. Methods of inter-plate normalization 
include the following (6)(2):

• Fraction or percent of controls: The most straightforward approach is division of each sample value by 
the mean of the (negative or positive) control measurement of interest. This approach requires a large 
number of controls for sufficient estimation of the mean (see "Replicates" above), and is appropriate in 
instances where the data is tightly distributed and close to normal. Because information about the sample 
variation is not included, this measure is sensitive to outliers in the controls. A more robust version of this 
calculation is to substitute the median for the mean (although the sample variation is still not taken into 
account).

• Normalized percent inhibition: When a reliable positive control is available, this approach is calculated 

as  where xi is the measured value, x'i is the evaluated percentage, H is the 

mean of the high controls, L is the mean of low controls. However, see the caveats with the use of positive 
controls in "Controls" section above.

• Fraction or percent of samples: When a high proportion of wells are expected to produce little to no 
response (e.g., many RNAi studies), the mean of all samples on a plate can be used for the percent of 
controls formula in lieu of a negative control. A more robust version of this calculation is to substitute the 
median for the mean, subject to the caveats above.
⚬ This approach is recommended if the assay lacks good negative controls that work effectively across 

all plates, and can provide more accurate measures due to the larger number of samples as 
compared to controls while reducing the need for large numbers of controls (6).

⚬ A variation on this approach that is unique to HCS is normalization of nuclei intensity measures by 
the DNA content using the mode of the DNA intensities, in cases where the large majority of the 
cells are in interphase in the cell cycle.

⚬ However, the assumption that the reagents have no biological effect should be confirmed for the 
particular assay. For example, it is not recommended where most of the wells have been chosen 
precisely because the response is differentially expressed or the overall response level between 
samples is changed. The following screens would violate this assumption:

1. Confirmation screens in which phenotype-positive reagents are evaluated on the same assay 
plate.

2. Primary screens targeting structurally or functionally related genes.
• Z-score (or standard score) and robust z-score: The z-score transforms the measurement population 

distribution on each plate to a common distribution with zero mean and unit variance. The formula is 

 where xi is the measured value, x'i is the normalized output value and μ and σ are the 

mean and standard deviations, respectively. An advantage of this approach is the incorporation of the 
sample variation into the calculation. However, the method assumes a normal Gaussian distribution to the 
underlying data (which is often not the case in HCS) and is sensitive to outliers or otherwise non-
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symmetric distributions. For an approach which is more robust against outliers, the robust z-score uses 
the median for the mean and the median absolute deviation (MAD) for the standard deviation.

• Robust linear scaling: In this method, distributions are normalized by mapping the 1st percentile to 0 and 
the 99th percentile to 1 (21). This approach does not make assumptions about similarity of the 
distribution shape. However, this approach does not guarantee that the distributions of the controls will be 
identical between plates.

4.2. Intra-plate normalization
On a given plate, systematic errors generate repeatable local artifacts and smooth global drifts. These artifacts 
often becomes more noticeable upon visualization of the measurements and it is helpful to display well values 
graphically in their spatial layout, such as through the use of positional boxplots, heat maps of assay 
measurements on a plate layout and trellis map overviews of heat maps across multiple plates (23) (Figure 5).

In general, it is highly recommended to prospectively avoid such artifacts through sample preparation 
optimization. For example, plate edge effects can substantially mitigated by simply allowing newly cultured 
plates to incubate at room temperature for a period of time (14). Another approach is to simply avoid the edge 
effect by leaving the edge wells filled with liquid but unused for samples; special plates exist for this purpose (e.g., 
Aurora plates from Nexus Biosystems). However, in experiments that require a large number of samples to be 
processed, leaving the edge wells empty may not be practical in terms of cost.

4.2.1. Correction of systematic spatial effects
The following analytical approaches may be used if there is an observed positional effect:

1. Global parametric fitting: This approach fits a smooth function to the data based on the physical plate 
layout. The corresponding per-cell measurements at each position are then divided by the smoothed 
function. Care must be taken in selecting the function parameters. If the function is too smooth, it is then 
unable to accurately model the spatial variation due to systemic error; if the function is too rigid, it will 
over-fit the measurements and will not generalize to new data. Using splines to create the parametric 
surface is common.

2. Local filtering: Similar to the global parametric fitting approach, this method takes the physical plate 
layout into account. Assuming that the aberration is highly spatially localized, the measurements for each 
well are "denoised" using measures from adjacent wells, often the median calculated from a square 
neighborhood centered on the well to be normalized.

3. B-Score: This method locally corrects for systematic positional effects by iterative application of the 
Tukey median polish algorithm (19)(24). This approach is robust to outliers. However, it assumes that 
most samples in a plate have no biological effect (essentially using the entire plate as a negative control) 
and can produce artifacts if this assumption is violated.

4. Model-based: In either of the above cases, consideration must be given to whether all the samples on a 
plate can be used or just a subset. In a primary screen where the majority of the reagents can be assumed 
to have negligible or minor effect, the full set of samples can be used. In a confirmation screen, the spatial 
variation may be caused by samples that exhibit a moderate to large effect; hence, the representative 
samples should be drawn from the control wells. In this case, correction may be achieved using a 
diffusion model based on the control wells even though the location of the controls is often spatially 
constrained (25).

4.2.2. Illumination correction
The quantification of cellular fluorescence intensities and accurate segmentation of images is often hampered by 
variations in the illumination produced by the microscope optics and light sources. It is not uncommon for 
illumination to vary 1.5- to 2-fold across a single image when using standard microscope hardware.
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Image acquisition software may mitigate these artifacts through the use of a reference image of a uniformly 
fluorescent sample (e.g. free fluorescent dye), which is then divided or subtracted from each collected image. 
This approach is described in "Image Optimization and Background Correction" section in the introductory 
HCS chapter and has the advantage of convenience and utility in cases where the illumination might change over 
time, e.g., light source aging. Disadvantages of this approach include:

• The underlying assumption is that the screener properly creates the appropriate referencing images and 
that conditions do not change between the acquisition of the reference images and the collection of the 
experimental images.

• Some software only allows one white reference image to be used to correct all wavelengths, which ignores 
differences in their respective optical paths and spectral characteristics.

• The fact that a uniformly fluorescent control is in a different chemical environment than a real sample is 
not taken into account.

• Typical methods do not account for different exposure times between the standard image and each 
collected image, although more sophisticated software allows for using a linear fit based on a series of 
images using a variety of exposure times for each wavelength.

A retrospective (i.e., post image acquisition) approach is an alternative (26). It bases the correction on all (or a 
sufficiently large subset of) the images from a plate for a given wavelength. This approach assumes that the actual 
cellular intensity distribution is distorted by a multiplicative non-uniform illumination function (additional 
sources of bias may also be considered if needed). This approach is applied to each wavelength condition 
because the spectral characteristics of the filters differ in addition to non-uniformities introduced by the 

Figure 5: Heat map of values from a hypothetical 384-well plate containing edge effects.

14 Assay Guidance Manual

http://www.ncbi.nlm.nih.gov/books/NBK100913/


excitation lamp. Furthermore, it should be applied to each plate for a given image acquisition run unless it can 
be shown that observed patterns are consistent across plates. The methodology is as follows:

1. For all images of a given wavelength, smooth the image by applying a median filter. Because we do not 
want the small-scale cellular features to obscure the underlying large-scale illumination heterogeneity, the 
size of the filter should large enough that any cells in the image are heavily blurred.

2. Estimate the illumination function by calculating the per-pixel average of all the smoothed images.
3. Rescale the illumination function so that the range is (1, ∞) by dividing by the minimum pixel value, or 

more robustly, by the 2ndpercentile pixel value (to avoid division-by-zero problems)
4. Obtain the corrected image by dividing the original image by the illumination correction function 

(Figure 6).

5. Measurement of image features
The quantitative extraction and measurement of features is performed by biological image analysis tools (e.g., 
CellProfiler (27), Fiji (28) and commercial software sold with HCS instruments). In addition to features that are 
straightforwardly related to the intended biological question, the extraction of additional features lends itself to 
serendipitous discoveries if mined correctly. A couple of examples illustrate this point:

• A phenotypic screen of 15 diverse morphologies in Drosophila cells revealed that cells with actin blebs and 
actin located in the periphery also tended to contain a 4N DNA content, a cell cycle relationship that 
would most likely not have been uncovered outside of an HCS context (29).

• Another study used a diffuse GFP reporter to look for clathrin-coated pit (plasma membrane) and 
intracellular vesicle formation. The researchers also took the opportunity measure GFP signal representing 
translocation to the nucleus. Unexpectedly, such an effect was uncovered which was compound-specific 
effect and not previously described in literature (30).

Measured image features fall into the following types (31) (some of which are described under "Feature 
Extraction" in the introductory HCS chapter):

• Counts: The number of objects or sub-cellular objects per compartment (e.g., foci per cell in a DNA 
damage experiment). The number of objects per image may also be useful as a quality control statistic.

• Size and shape: Size is a descriptor of the pixel area occupied by a specific labelled compartment and 
includes such measures as area, perimeter and major axis length. Shape measures describe specific spatial 
features. Some examples include the aspect ratio (ratio of the height vs width of the smallest enclosing 
rectangle) as a measure of elongation, or compactness (ratio of the squared perimeter and the area). 
Zernike features (coefficients of a Zernike polynomial fit to a binary image of an object) are also useful as 
descriptors of shape.

• Intensity: The amount of a particular marker at a pixel position, assuming that the total intensity is 
proportional to the amount of substance labeled. The idea is that the presence or absence of the marker 
reflects a specific cellular state. For example, the total intensity of a DNA label in the nucleus is related to 
DNA content, which is useful for cell-cycle phase identification. Intensity measurements include the 
minimum, maximum, various aggregate statistics (sum, mean, median) as well as correlation coefficients 
of intensity between channels with different markers (useful for co-localization). If the target marker 
changes position, e.g. translocation from the nucleus from the cytoplasm, then the correlation coefficient 
of the stain between the two sub-compartments can provide a larger signal dynamic range than only 
measuring intensity in either the sub-compartment independently.

• Texture: A description of the spatial regularity or smoothness/coarseness of an object, which is useful for 
characterizing the finer patterns of localization. Textural features can be statistical (statistical properties of 
the grey levels of the points comprising a surface), structural (arrangements of regular patterns), or 
spectral (periodicity in the frequency domain).
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• Location: The position of an object with respect to some other feature. Typically, the (x,y) location of an 
object within the image is not itself biologically relevant. However, relative positional features (e.g., 
absolute distance of foci from the border of an enclosing organelle) may be indicative of some 
physiological change.

• Clustering: A description of the spatial relationship of an object with respect to other objects. Examples of 
measures include the percentage of the perimeter touching a neighboring object and the number of 
neighbors per object.

It should be noted that while some of the suggested features are often difficult to use as direct readouts and are 
not biologically intuitive to interpret (e.g., texture and some shape features), they are often beneficial for machine 
learning approaches (see the section "Machine learning for HCS" below for more details). While spreadsheets are 
commonly used for storing cellular measurements, in order to contain the vast amount of per-cell information, 
across millions of cells, a database is a more feasible option for data storage and interrogation.

6. Machine learning for HCS
Generically, machine learning is defined as the use of algorithms capable of building a model from existing data 
as input and generalizing the model to make predictions about unknown data as output (32). The measurement 
of a large number of features lends itself to the use of machine-learning approaches for automated scoring of 

Figure 6: Top left: Example of uneven illumination from the left to the right within each field of view in a tiled grid of 5 x 4 images from 
a cell microarray. Top right: Correction of anomalies by CellProfiler. Bottom: Impact of anomalies and correction on Drosophila Kc167 
DNA content data. Adapted from (27), copyright Carpenter et al.
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samples, especially in cases where visual inspection or hand-annotation of images is time- and cost-prohibitive. 
In the context of HCS, machine-learning algorithms make predictions about images (or regions of images) based 
on prior training. We describe below two domains in HCS where machine-learning has proven useful: 
identifying regions of interest in images and scoring phenotypes (a brief discussion of machine-learning for 
quality control application is above).

6.1. Machine learning for image segmentation
Typically, the first step to an HCS workflow is the identification of the image foreground from the background, 
i.e, finding which pixels belong to each object of interest. For fluorescent images, often one of a number of 
thresholding algorithms is suitable for this purpose (33).

However, in cases where the pixel intensity of the foreground is not markedly different from that of the 
background (e.g, brightfield images), machine-learning approaches can be useful in classifying pixels as 
foreground and background based on other features, such as local intensity variation or texture. Because it is not 
trivial to choose a priori features that identify the foreground, a common approach is to extract a large number 
of image features, hand-select example foreground and background regions and then use machine learning to 
find combinations of features that identify the foreground class (or classes) of pixels from the background.

One open-source pixel classification tool is Ilastik (34). It classifies each pixel in an image by calculating sets of 
features that are linear combinations of the intensities of neighborhood pixels in order to identify textures and 
edges in the neighborhood of the pixel (35). The software then calculates a membership probability for each class 
based on these features using supervised machine learning based on hand-annotated pixels.

6.2. Machine learning for scoring phenotypes
Machine-learning can in theory be used to identify samples of interest based on features calculated from entire 
images. However, the actual application of this approach is rare in HCS, so we focus more on machine-learning 
based on per-cell features.

6.2.1. Feature extraction and normalization
Using one or two features for scoring phenotypes is a common approach, especially when the biological 
relevance of the features of interest are well-defined (17). However, hand-selecting the features necessary to 
distinguish phenotypes of interest versus negative controls is often intractable, especially if the phenotype is 
subtle, or simple linear combinations are insufficient. A machine learning approach lends itself well to this task, 
provided a sufficient variety of features are provided as "raw material." For more details on the types of features 
that can be extracted see the section "Measurement of image features" above. For complex phenotypes, the 
features that will contribute to the discriminating power of the classifiers will probably not be known in advance. 
Thus, in general, it is advisable to extract as many features as is practical and to use a machine-learning 
algorithm capable of choosing among them.

In many HCS experiments, the phenotype is dramatic enough that plate-to-plate variation and batch effects are 
the only confounding effects of concern and they can be removed adequately using the techniques mentioned in 
the prior section.

However, for more subtle phenotypes, the screener will need to model and remove the confounding effects more 
precisely in order to avoid obscuring the distinctions between phenotypes of interest.

For further details related to normalization, see the "Normalization" section above.
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6.2.2. Supervised machine-learning for identification of particular phenotype 
sub-populations
For rare phenotypes that are nonetheless recognizable by eye, a researcher can generate a classifier to recognize 
cells with the phenotype of interest. Software packages that perform this task are Definiens Cellenger (36) and 
CellProfiler Analyst (29). Here we describe the workflow for CellProfiler Analyst, which is open-source 
(available at http://www.cellprofiler.org).

6.2.2.1. Creating a classifier

In CellProfiler Analyst, an interactive training session with iterative feedback is used to create a classifier for 
supervised machine learning as follows:

1. The software presents cells to the researcher for sorting, either selected randomly from the assay or taken 
from a specific plate with positive or negative controls. The screener manually sorts these into phenotypic 
"bins" to create a training set. Preferably, the screener will sort clear examples of the phenotype(s) in 
question; cells with an uncertain phenotype can be ignored, while keeping in mind that all cells will 
eventually be scored by the computer. Here, we refer to cells showing a phenotype of interest as "positives” 
(Figure 7).

Additional bins can be added, but as few bins as necessary should be used for the relevant downstream 
analysis as adding too many bins can decrease the overall accuracy.

If uncertain about the classification of a particular object, it can be ignored or removed from the list of 
objects under consideration. However, keep in mind that the final scoring will ultimately assign all 
objects to a class.

A note of caution: Sampling of a phenotype from only the control samples can lead to "overfitting," a 
scenario in which the machine-learning algorithm preferentially learns features which are irrelevant to 
the phenotype itself (e.g., spatial plate effects), leading to a classifier which does not generalize well and 
has poor predictive performance. It is thus preferred to select individual cells from a variety of images in 
the experiment.

2. After enough initial examples are acquired for the training set (typically, a few dozen or so), the screener 
then requests the computer to generate a tentative classifier based on the sorted cells.The screener sets the 
number of rules for distinguishing the cells in each of the classification bins. Here, we define a rule as a 
feature and cutoff representing a decision about the cell. It is recommended to use a smaller number of 
rules (e.g., five) at the early stages of defining a training set in order to accumulate cells spanning the full 
range of the phenotype and avoid training for a too-narrow definition of the phenotype (Figure 8).

3. At this point, the goal is to refine the rules by adding more cells to the training set. The screener then 
requests cells that the classifier deems as belonging to a particular phenotype.

4. The screener refines the training set, correcting errors by moving misclassified cells to the correct bin and 
re-training the classifier by generating a new set of rules (Figure 9).

5. By repeating the two steps above, the classifier becomes more accurate. If needed, the number of rules 
should be increased to improve accuracy (see below). At this point, the screener should save the training 
set for future refinement, to re-generate scores and for experimental records. It is advisable to do so 
before proceeding to scoring the entire experiment because scoring may take a long time for large 
screens.

6. When the accuracy of the classifier is sufficient, the screener can then scores all cells in the experiment so 
that the number of positive cells in each sample can be calculated (Figure 10).
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6.2.2.2. Obtaining rules during the training phase and assessing classier accuracy

When the first pass at sorting sample cells is finished, the maximum number of rules allowed needs to be 
specified prior to generating the initial set of rules.

During the initial training step, it is best to use a small number of rules (typically 5 to 10) in order to avoid 
defining the phenotype too narrowly. Doing so will help insure identification of the minimal set of features 
covering the wide range of object characteristics represented in the training set.

As training proceeds, if the number of misclassifications does not improve, the number of rules may be 
increased to allow the machine-learning algorithm to capture more subtle distinctions between phenotypes. 
However, using more rules does not always result in greater accuracy. In particular, increasing the number of 
rules above 100 is unlikely to improve classification accuracy and is computationally expensive to calculate.

Based on prior experience with 14 phenotypes in human cells, an upper limit of 50 rules is recommended for 
complex object classes (that is, to the human eye, one that involves the assessment of many features of the objects 
simultaneously) (29).

The most accurate way to gauge the performance of a classifier is to fetch a large number of objects of a given 
phenotype from the whole experiment. The fraction of the retrieved objects correctly matching the requested 
phenotype indicates the classifier’s general performance. For example, if a screener fetches 100 positive objects 
but find upon inspection that 5 of the retrieved objects are not positives, then the classifier is estimated to have a 

Figure 7: Twenty unclassified cells are presented to the screener for initial sorting using the CellProfiler Analyst phenotype 
classification tool.
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positive predictive value of 95% on individual cells. Note that the classifiers' ability to detect positives and 
negatives must be interpreted in the context of the actual prevalence of individual phenotypes, which may be 
difficult to assess a priori. For studies or screens where the data is gathered over time, re-training the classifiers 
on the larger data set can increase their robustness.

Cross-validation is a standard method for estimating classifier accuracy, with important caveats discussed below. 
One version of this approach is to use a sub-sample of the training set for training a classifier and then use the 
remainder of the training set for testing. The optimal number of rules may be assessed by plotting the cross-
validation accuracy for the training set as an increasing number of rules are used, where values closer to 1 
indicate better performance. Two features of the plot are useful for guiding further classification:

1. If the accuracy increases (that is, slopes upward) at larger numbers of rules, adding more rules is likely to 
help improve the classifier (if the line slopes downward, this may indicate more training examples are 
needed).

2. If the accuracy is displayed for two sub-sampling percentages (say, 50% and 95% of the examples are used 
for training), and the two curves are essentially the same, adding more cells to the training set is unlikely 
to improve performance.

A note of caution: The accuracy in these plots should not be interpreted as the actual accuracy for the overall 
experiment. These plots tend to be pessimistic, as the training set usually includes a disproportionate number of 
difficult-to-classify examples (Figure 11).

The relationship between accuracy on individual cells versus accuracy for scoring wells for follow-up is 
complicated, because false positives and false negatives are often not evenly distributed across wells in an 

Figure 8: The set of rules after initial sorting using the CellProfiler Analyst classifier tool. In this example, only 2 rules were found out 
of the specified maximum of 5, both pertaining to the mean pH3 intensity of the nuclei channel, indicating that this feature was 
sufficient to achieve perfect classification on the training set.
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experiment. In practice, improving accuracy on individual cells leads to better accuracy on wells, and in general, 
the actual goal is per-well accuracy more than per-cell accuracy.

7. Whole-organism HCS
For those experiments in which the molecular mechanisms in question cannot yet be reduced to biochemical or 
cell-based assays, screeners can search for chemical or genetic regulators of biological processes in whole model 
organisms rather than isolated cells or proteins. The advantages of performing HCS in an intact, physiological 
system include the increase in likelihood that the findings from such experiments accurately translate into the 
context of the human body (e.g., in terms of toxicity and bioavailability), simplification of the path to clinical 
trials, and reduction of the failure of potential therapeutics at later stages of testing.

While a number of small animals are amenable to whole-organism HCS (e.g., zebrafish embryos, Drosophila 
fruit fly larvae, etc), this section of the chapter will focus on novel HCS techniques developed for the 
Caenorhabditis elegans roundworm.

7.1. C. elegans HCS
The nematode C. elegans is a increasingly popular choice for enabling HCS in whole organisms due to the 
following advantages:

• Manually-analyzed RNAi and chemical screens are well-proven in this organism, with dozens completed 
(37).

Figure 9: Illustration of the iterative machine learning workflow. Adapted from (29), copyright The National Academy of Sciences of 
the USA.
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• Many existing assays can be adapted to HCS; instrumentation exists to handle and culture C. elegans in 
HTS-compatible multi-well plates.

• Its organ systems have high physiologic similarity and genetic conservation with humans.
• C. elegans is particularly suited to assays involving visual phenotypes: physiologic abnormalities and 

fluorescent markers are easily observed because the worm is mostly transparent.
• The worms follow a stereotypic development pattern that yields identically-appearing adults, such that 

deviations from wild-type are more readily apparent.

Figure 10: Illustration of the final cell scoring workflow. Adapted from (29), copyright The National Academy of Sciences of the USA.
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Microscopy imaging and flow cytometry are the primary HCS methods for C. elegans, as plate readers do not 
offer per-worm or morphological readouts and often cannot measure bulk fluorescence from worm samples due 
to their spatial heterogeneity within the well.

• Flow cytometers: Systems such as the COPAS Biosort (Union Biometrica) can be used for the automatic 
sorting of various "large" objects, including C. elegans, using the object size and intensity of fluorescent 
markers. Such a system is capable of differentiating some phenotypes using fluorescent intensity changes 
as the readout (e.g., isolating of mutants with reduced RFP-to-GFP intensity ratios as compared to wild-
type worms (38) or signature extraction based on GFP intensity profiles created along the length of the 
worm (39)). One limitation of this approach is low spatial resolution. Another disadvantage is that 
retrieval of worms from the multi-well plates typically used in screening becomes a rate-limiting step, 
reducing the throughput.

• Automated microscopy: Defining worm phenotypes in HCS has also been enabled through the use of 
image data. Standard 6- or 12-well assays can be miniaturized to 96- or 384 well plates by dispensing a 
precise number of worms within a specified size/age range into the desired number of multiwell plates 
(using a COPAS sorter, for example). The worms are typically transferred from agar to liquid media to 
minimize imaging artifacts. A paralytic drug may be added to slow worm movement, minimizing 

Figure 11: Plot displaying the cross-validation accuracy of a 3-class classifier with 30 rules. Note that the accuracy does not increase for 
more than 10 rules.

Advanced Assay Development Guidelines for Image-Based High Content Screening and Analysis 23



misalignment between subsequently imaged channels. Alternately, microfluidics may also be used to 
stabilize worm position (40).

Below is an HCS image analysis workflow tailored for worms dispensed into multi-well plates (41), using 
brightfield images of each well, along with the corresponding images from additional fluorescence wavelengths:

1. Well identification: In order to restrict worm detection to the region of interest, delineate the well 
boundary within the brightfield image; the well interior is typically brighter than the well exterior, 
lending itself to simple thresholding. In order to avoid artifacts at the well edge, use morphological 
erosion to contract the well border by a few pixels.

2. Illumination correction and masking of pixel intensities: Often the brightfield image will exhibit 
illumination heterogeneities which must be corrected prior to worm detection (see the 
"Illumination_correction" section above). Calculate an illumination correction function (ICF) from the 
brightfield image and then correct the image by dividing by the ICF. It is recommended to mask the 
image using the eroded well image and use the result for creating the ICF, otherwise the ICF will be 
distorted by the sharp features at the well edge. At this point, the illumination-corrected image is then 
masked with the eroded well image in order to restrict worm identification to the well area.

3. Worm foreground identification: Identify the worms as the image foreground using image thresholding 
on the brightfield image. Because the brightfield images are usually high-contrast, an automatic 
thresholding method such as Otsu is typically effective here. It is helpful to impose size criteria in order to 
remove objects that are likely to be spurious, e.g, debris, embryos, and other artifacts.

4. Make population-averaged measurements if desired: At this point, quantification of the additional 
fluorescent markers within the worm regions can be performed. For example, if a viability stain (e.g., 
SYTOX Orange) was used as part of a live/dead assay, image segmentation (i.e. partitioning the 
foreground pixels into individual worms) is not necessary, and the workflow would continue by 
identifying the SYTOX-positive pixels from the fluorescent image using automatic thresholding, 
measuring the total pixel area occupied by the worm foreground and the SYTOX foreground, and 
calculating the ratio of the SYTOX foreground total area and the worm foreground area to yield the final 
per-well readout of worm death.

5. Make per-worm measurements if desired: For some assays, it is preferable to identify individual animals 
rather than a whole-well readout (e.g., pathogen screens). While non-touching worms can usually be 
delineated in brightfield images based on the differences in intensities between foreground and 
background, image intensity alone is not sufficient for touching and overlapping worms. For these assays, 
algorithms are required that separate touching and overlapping worms. Moreover, edges and intensity 
variations within the worms often mislead conventional segmentation algorithms. Here, we describe a 
recent algorithm that employs a probabilistic shape model using intrinsic geometrical properties of the 
worms (such as length, width profile, and limited variability in posture) as part of an automated 
segmentation method (distributed as a toolbox in CellProfiler) (42) (Figure 12)

a. Identify worms as described in the above workflow: in this case, however, only the brightfield 
images are acquired from each well

b. Construct a worm "model": Once the worm foreground is obtained, construct a model of the 
variations in worm morphology by creating a training set of non-touching representative worms. 
This is done by saving binary images of a number of non-touching worms and using the "Training" 
mode of the UntangleWorms module in the CellProfiler worm toolbox.

c. Apply the worm model to worm clusters: Once the model is created, apply the model on the 
images using the "Untangle" mode of the UntangleWorms module. The result of this operation will 
be identify the individual worms from the worm clusters as well as exclude artifacts such as debris, 
embryos, etc.

d. Quantify fluorescent markers: Measure the various features available for each worm, such as 
morphology, intensity, texture, etc. The delineated worms can also be mapped to a common atlas 
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(using StraightenWorms) so that spatial distribution of staining patterns may be quantified 
(Figure 12).
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