U.S. flag

An official website of the United States government

Display Settings:

Format

Send to:

Choose Destination

Links from SRA

Accession: PRJNA553574 ID: 553574

Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data [Transcriptomics] (human)

See Genome Information for Homo sapiens
We experimented how well various supervised machine learning methods such as decision tree, partial least squares discriminant analysis (PLSDA), support vector machine and random forest perform in classifying endometriosis from the control samples trained on both transcriptomics and methylomics data. More...
AccessionPRJNA553574; GEO: GSE134056
Data TypeTranscriptome or Gene expression
ScopeMultiisolate
OrganismHomo sapiens[Taxonomy ID: 9606]
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo; Homo sapiens
PublicationsAkter S et al., "Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data.", Front Genet, 2019;10:766
SubmissionRegistration date: 9-Jul-2019
University of Missouri
RelevanceMedical
Project Data:
Resource NameNumber
of Links
Sequence data
SRA Experiments38
Publications
PubMed1
PMC1
Other datasets
BioSample38
GEO DataSets1
GEO Data Details
ParameterValue
Data volume, Supplementary Mbytes2
SRA Data Details
ParameterValue
Data volume, Gbases166
Data volume, Mbytes60776

Supplemental Content

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center