Exploring 3D Molecular Structures with iCn3D ProteinCodeathon@ISMB2022

Alexa M. Salsbury, Ph.D.

Overview

- Introduction
- iCn3D Orientation
 - Selection
 - Coloring
 - Style
- Interaction networks
- Mutation Analysis
- Continued learning materials

iCn3D

- Interactive, web-based 3D structure viewer
 - No installation needed!
- Users can
 - Visualize structure in 1D, 2D, and 3D
 - View sequence and structure alignments
 - Probe perturbations
 - Save/share links of their customized display

iCn3D Features of Interest

- Use iCn3D in Jupyter Notebook: pypi.org/project/icn3dpy
- 3D printing: structure.ncbi.nlm.nih.gov/icn3d/share.html?wt4TDqzhC2rhCYTD7
- Contact map: <u>structure.ncbi.nlm.nih.gov/icn3d/share.html?rnMbe26tNsAjJLGK9</u>
- Precalculated symmetry: <u>structure.ncbi.nlm.nih.gov/icn3d/share.html?bGH1BfLsiGFhhTDn8</u>
- Symmetry dynamically: structure.ncbi.nlm.nih.gov/icn3d/share.html?6NvhQ45XrnbuXyGe6
- Electron density map: structure.ncbi.nlm.nih.gov/icn3d/share.html?QpqNZ3k65ToYFvUB6
- EM map: structure.ncbi.nlm.nih.gov/icn3d/share.html?L4C4WYE85tYRiFeK7
- Transmembrane protein: structure.ncbi.nlm.nih.gov/icn3d/share.html?jMN16mJyR9STUx6E6
- Solvent Accessible Area: structure.ncbi.nlm.nih.gov/icn3d/share.html?xKSyfd1umbKstGh29

New Features!

- Virtual reality view
- Batch analysis

NCBI at BOSC 2022

Jiyao Wang, Ph.D.

Poster

From web-based 3D viewer to structural analysis tool in batch mode

July 13 12:30 - 14:30 CDT

Structure Database

- Updated monthly
- Derived from PDB records
- Additional information added, including:
 - Explicit chemical graph information
 - Validation (secondary structure elements)
 - Includes taxonomy
- Connects 3D to associated literature, molecular data, chemical data, and other NCBI tools

<u> </u>		Sign in to NCE
Structure Structure	Advanced	Search
· · · · · · · · · · · · · · · · · · ·		
	Structure	
	Three dimensional structures provide a wealth o macromolecules. They can be used to examine and more.	f information on the biological function and the evolutionary history of sequence-structure-function relationships, interactions, active sites,
ale farmer		
Using Structure	Structure Tools	More Resources
Using Structure Search	Structure Tools Macromolecular Resources Overview	More Resources
Using Structure Search How to (Quick Start) Guides	Structure Tools <u>Macromolecular Resources Overview</u> <u>iCn3D (web-based 3D viewer)</u>	More Resources PDB Protein
Using Structure Search How to (Quick Start) Guides Help	Structure Tools Macromolecular Resources Overview iCn3D (web-based 3D viewer) Cn3D (3D viewer application)	More Resources PDB Protein CDD
Using Structure Search How to (Quick Start) Guides Help News	Structure Tools Macromolecular Resources Overview iCn3D (web-based 3D viewer) Cn3D (3D viewer application) IBIS	More Resources PDB Protein CDD PubChem
Using Structure Search How to (Quick Start) Guides Help News FTP	Structure Tools Macromolecular Resources Overview iCn3D (web-based 3D viewer) Cn3D (3D viewer application) IBIS VAST	More Resources PDB Protein CDD PubChem NCBI Structure Group Resources & Research

GETTING STARTED	RESOURCES	POPULAR	FEATURED	NCBI INFORMATION
ICBI Education	Chemicals & Bioassays	PubMed	Genetic Testing Registry	About NCBI
ICBI Help Manual	Data & Software	Bookshelf	GenBank	Research at NCBI
ICBI Handbook	DNA & RNA	PubMed Central	Reference Sequences	NCBI News & Blog
raining & Tutorials	Domains & Structures	BLAST	Gene Expression Omnibus	NCBI FTP Site
Submit Data	Genes & Expression	Nucleofide	Genome Data Viewer	NCBI on Facebook
	Genetics & Medicine	Genome	Human Genome	NCBI on Twitter
	Genomes & Maps	SNP	Mouse Genome	NCBI on YouTube
	Homology	Gene	Influenza Virus	Privacy Policy
	Literature	Protein	Primer-BLAST	
	Proteins	PubChem	Sequence Read Archive	
	Sequence Analysis			
	Taxonomy			
	Variation			

National Center for Biotechnology Information, U.S. National Library of Medicine

iCn3D Shortcuts

Rotate

- Left mouse button can be used to rotate the structure
- Key L left
- Key J right
- Key I up
- Key M down

Zoom

- Middle mouse button can be used to zoom
- Left Mouse + Shift can be used as an alternative to the middle mouse button
- Key Z zoom in
- Key X zoom out

Translate

- **Right mouse button** can be used to translate (slide) the structure to a different location within the 3D window
- Left Mouse + Ctrl can be used as an alternative to the right mouse button
- Arrow Left left
- Arrow Right right
- Arrow Up up
- Arrow Down down

Select

 Alt + Click (PC) or Option + Click (Mac)- can be used to select atom/residue/strand , hold Ctrl + Click to add another

iCn3D Demo (1/5)

- Click full-feature 3D viewer on the Molecular Graphic
- Or go to <u>https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html</u>
 - Input 1TUP > Load Biological Unit
- Orient yourself (see iCn3D Shortcuts for help)
- Hover over structure with your mouse to view residues
- Select > Select on 3D > Atom to see atomistic details
- You can revert to selecting by residues Select > Select on 3D >
 Residue

iCn3D Demo (2/5)

- Change styling with Style > Sidechains > Lines
- Explore different **Style** options
- Explore different **Color** options
 - Chain default, colors structural components differently
 - Rainbow N-term or 5' end is red and flows to blue for C-term or 3' end
 - Charge colors positively charged as blue, negatively charged as red, and neutral as gray
 - Atom colors C gray, O red, N blue, S yellow
 - Secondary, Hydrophobicity, and Solvent Accessibility options are useful for more in-depth analysis of structure

iCn3D Demo (3/5)

- Make specific selections with **Analysis > Defined Sets**
- Select nucleotides and change color with Color > Rainbow
- Select residues by sequence with Analysis > Seq. & Annotations
 - Uncheck annotations and click Details
 - Highlight residues from the sequence to select
- Close or minimize Seq. & Annotations when not using

iCn3D Demo (4/5)

• Explore ion interactions with **Select > By**

Distance

- Choose ions
- Set sphere radius to 5 Å
- Choose non-selected
- Change the style of these residues with

Style > Proteins > Stick

Save the selection by Select > Save
 Selection and give name like resi_5a_zn

Select a sphere around a set of re 🖪 🕿
1. Select the first set:
2. Sphere with a radius: 5 Å
3. Select the second set to apply the sphere: non-selected selected 1TUP
4. Display the sphere around the first set of atoms
Save interacting/contacting residue pairs in a file
Save the selected 🛛 🖉 🗃 😫
Name: resi_5a_: Save Clear

iCn3D Demo (5/5)

- View the ion interactions Analysis > Defined Sets > ions and your newly named selection resi_5a_zn and View > View
 Selection
- Change your background color with Style > Background
- Saving your files
 - As a PNG with File > Save Files > iCn3D PNG image
 - As an interactive link with **File > Share Link** and copy
 - For 3D printing with File > 3D Printing

iCn3D Exploration

5-minute exercise!

- If you select something accidentally Select > Clear Selection
- If you need to undo View > Undo
- Get additional help by:
 - Show Help > Help Docs
 - Help > Selection Hints
- Like what you've rendered? Share your interactive link in the chat!
- Ask us!

P53 DNA-binding

- P53 binds to regulatory sites in the genome and:
 - Initiates protein production that stops cell division until damage is repaired
 - Initiates apoptosis
- Rich in + charged amino acids (Arg, His, Lys)
 - + charged amino acids commonly interact with negatively charged nucleic acid backbones
 - Usually interact at the major grove

P53 DNA- binding (from PDB)

Mutation Example 1

- Go to back to <u>iCn3D</u>
- What residues seem important to P53-binding domain?

Select > by Distance

Take a closer look at these residues

Style > Protein > Stick

- Lys120 points into the major groove to make basspecific contact. How might a mutation affect interactions?
 - Analysis > Mutation > 1TUP B_120 A and select Interactions

	Select a sphere around a set of re 🖩 🕿	
	1. Select the first set: nucleotides proteins water	
	2. Sphere with a radius: 3.5 Å	
n?	3. Select the second set to apply the sphere:	
	4. Display the sphere around the first set of atoms	
	Save interacting/contacting residue pairs in a file	
	the major groove to make a base-specific DNA contact. In contrast, here, Lys117 and the L1 loop in each subunit has moved nearly 15 Å away from the DNA and adopts some α -helical structure. The DNA contacts made by each subunit are essentially as reported by Cho <i>et al.</i> (1994). Three minor variations, which are also observed in the other p53DBD/DNA structures, are seen in each subunit.	
Ļ	Oncoge	en
	Show the mutations in 3D	×
elect	specified as "[PDB ID]_[Chain ID]_[Residue Number]_[One Letter Mutation Residue]". E. mutation of N501Y in the E chain of PDB 6M0J can be specified as "6M0J_E_501_Y".	g.
	Mutations: 1TUP_B_120_A	
	30 with scap	

Mutation Discussion 1

• K120A mutation results in loss of interaction with the DNA groove

Wild type K120

Mutant A120

Mutation Example 2

5-minute exercise!

- Literature shows that Arg248 and Arg273 are common P53 mutations implicated in disease
- Use the Mutation analysis to understand how these mutations may affect interactions

1TUP_B_248_W 1TUP_B_273_H Distinct pattern of p53 phosphorylation in human tumors

Phosphorylation of mutant p53 in tumor-derived cell cultures To determine the pattern of mutant p53 phosphorylation and acetylation in tumor-derived cell lines under normal growth conditions we analysed 18 cell lines with defined p53 mutations. Cell lines used for phospho-analysis were derived from seven tumor types and included a total of nine different mutations. Several tumor-derived cell lines with the same hot spot mutation (R248W or R273H) were included in this analysis to enable comparison of the phosphorylation pattern among different tumors that have the same mutation. As controls for this analysis, we used two non-transformed fibroblast cell lines (GM00038 and TIG) known to harbor wild type p53. Additional analysis has been carried out in parallel on tumor-derived tissues and cell lines that harbor wild type p53, thus allowing comparison of the phosphorylation pattern of wild type and mutant forms of p53 within the tumor environment.

Mutation Discussion 2

• <u>R248W mutation</u> results in loss of hydrogen and salt bridge interactions

Wild type R248

Mutant W248

Mutation Discussion 3

• <u>R273H mutation</u> results in loss of hydrogen bond interactions

Wild type R273

Mutant H273

Continue learning about iCn3D

Tutorials and help documents are available here.

Cn3D		Menu			
phaFold-related gallery wit	h live examples	About iCn3D Live Gallery Tutorial > Search Structure	Use iCn3D iCn3D Videos		Sequences and Apportations
t ID <u>A0A044R7Z7</u> : ALPHAFOLD MONOMER V2	Summary Details Annotations: An of States and All Indext Demains All Custom 2 D Demains Desaile Bonds Cross-Linkages Show All Chains Proteins: Annotations of ADA0448727_A Add Track Conserved Demains Defails Demains D	Citing iCn3D Source Code > Develop > Help Doc	URL Parameters Commands	Confident (90 > pLDDT > 20) Low (70 > pLDDT > 20)	Summary Details Annotations: All All Conserved Domains Cution 30 Demains Disulfide Bonds Cross-Linkages Show All Chains Save + Selection: Name: lec_1 Save Claving Save Claving Save Claving Save Claving Save Claving Save State Save Claving Save Claving Save Claving Save State Save Claving Save State Save State Save State Save Claving Save State Save Claving Save State Save State Save

Continue learning about NCBI Resources

 Join us for workshops, webinars, or codeathons!

NCBI Insights Blog

Follow us on social media:

Twitter LinkedIn **Facebook**

Home > NCBI Outreach Events:	My NCBI Password Retirement		
NCBI Outre Webinars, a	ach Events: V and Codeatho	Vorkshops, ons	 Details Frequently Asked Questions My NCBI Login Transition Tips
What's New? We have expanded our outrea workshops, and codeathons.	ach offerings and invite you to ap	ply to attend our webinars,	Follow NCBI NCBI Home NCBI Datasets
Search Upcoming			NCBI News Archive
Search and apply for upcoming	NCBI webinars, workshops, codeath	ons, and other outreach activities.	NCBI ListServes & RSS Feeds
Keywords	Location	Select Date Range	 NCBI Outreach Events: Workshops, Webinars and Codeathons
Select Some Options	Select Some	Options	About This Blog
Events		=	Subscribe
24 MAR VIRTUAL	05 APR	12 APR VIRTUAL	RSS - Posts Archives
Learn How to Report Public Using My Bibliography		Learn Hon to Report Publi Using My Bibliography	Select Month
Learn How to	Exploring 3D	Learn How to	
Report Your	Molecular	Report Your	
O 2022-03-24 @ 01:00 PM - 2022-03-24 @ 02:30 PM	Q 2022-04-05 @ 01:00 PM - 2022-04-05 @ 04:00 PM	O 2022-04-12 @ 01:00 PM - 2022-04-12 @ 02:30 PM	
Online Event	Online Event	Online Event	
NCBI Workshop	NCBI Workshop	NCBI Workshop	

Exploring 3D Molecular Structures with iCn3D Supplemental Learning Materials

Alexa M. Salsbury, Ph.D.

Structural Biology

1952-1953- Pioneering DNA

structure work by Wilkins,

Franklin, Watson, & Crick.

Now- over 175,000

structures are publicly

available!

structural experiments showed

how information could be

1956-1960- Rich & Davies'

transferred from DNA to RNA.

1957- The first protein with a crystal structure was solved in by Kendrew and co-workers

Impact of Structures on New Drug Approvals

H National Library of Medicine National Center for Biotechnology Information Westbrook & Burley (2019) *Structure 27,* 211-217 Galkina Cleary *et al.* (2018) *PNAS 115*, 2329-2334

Impact of Structures on Anti-Cancer Drug Approvals

79 NEW ANTI-CANCER DRUGS Approved 2010-2018

74 of these new drugs

had a total of **2412** unique structures in the PDB explaining target biology and facilitating discovery/development

Structure-guided drug discovery \rightarrow >70% of small-molecule drugs

Westbrook & Burley (2019) Structure 27, 211-217

To keep you alive, your body

must:

- Convert oxygen to usable energy
- Digest food and recover nutrients
- Build and maintain body tissue
- Fight off invasions and detoxify poisons

Proteins do all these things!

Protein Structure

- Primary- sequence of amino acids
- Secondary- hydrogen bonding of the peptide backbone that causes amino acids to fold into a repeating pattern
- **Tertiary-** 3D folding pattern of a protein due to side chain interactions
- Quaternary- protein consisting of more than one polypeptide

Classification of Proteins – Size

- Most peptides and proteins have 2-2000 amino acids
- Assuming average MW per amino acid of 110 daltons, MW range for peptides and proteins in range 220-220,000 daltons
- Some proteins consist of single polypeptide chain and are monomeric
- Others consist of multiple polypeptide chains (sometimes identical, sometimes not) and are <u>oligometric</u>

valine-glycine-alanine

dipeptide (2 amino acids)

oligopeptide (3-10 amino acids)

polypeptide (>10 amino acids)

protein (generally 300-1000 amino acids)

A. Amino Acids with Electrically Charged Side Chains

Functional definition:

Enzymes: Accelerate biochemical reactions

- Structural: Form biological structures
- Transport: Carry biochemically important substances
- Defense: Protect the body from foreign invaders

Structural definition:

- Globular: Complex folds, irregularly shaped tertiary structures
- Fibrous: Extended, simple folds -- generally structural proteins

Cellular localization definition:

Membrane: In direct physical contact with a membrane; generally water insoluble.

Soluble: Water soluble; can be anywhere in the cell

Protein Domains

- Structural Domain
 - Discrete independently folding unit of a protein
- Conserved Domain (sequence-based)
 - Protein region with recognizable position-specific pattern of sequence conservation
- Sequence-based domains often roughly correspond to structural domains
- Domains often have distinct, identifiable functions

Nucleic Acid Structure

- Primary- sequence of nucleotides
- Secondary- base pairing interactions between polymers (DNA) or within a single polymer (RNA)
- Tertiary- 3D folding pattern
- Quaternary- interactions of nucleic acids with other molecules (DNA, RNA, or Protein)

Experimental techniques

Single crystal X-ray diffraction (SC-XRD)

Nuclear magnetic resonance (NMR)

Cryo-electron microscopy (Cryo-EM)

Three main research techniques for structural biology. According to the statistics of PDB (<u>https://www.rcsb.org/</u>)

X-ray Crystallography

- Requires crystals, which can be hard to make
- Can handle very large proteins and complexes (e.g. ribosome)
- Provides a "flash picture" with little or no data about motions
- Can include packing artifacts from crystallization

Nuclear Magnetic Resonance

- Requires highly concentrated, C13/N15-labeled protein solutions
- Limited to relatively small proteins (<30 kDa)
- Sensitive to molecular motions
- High protein concentrations may induce non-biological binding

Cryo-electron microscopy

- Requires expensive equipment
- Only small amount of sample
- Rapid freezing sample allows sample to maintain a closer-tonative state
- Useful for biomolecules with high molecular weight

Experimental techniques

	Advantages	Disadvantages
X-ray crystallography	 Well developed High resolution Broad molecular weight range 	 Difficult sample prep Static crystalline state
NMR	 High resolution 3D structure in solution Good for dynamic study 	 Difficult sample prep High sample purity needed Static crystalline state captured
Cryo-EM	 Simple sample prep Structure in native state Small sample size needed 	 Lower resolution Works best for samples with high molecular weight EM equipment is costly

Structure Prediction Overview

- When no or incomplete structure is available
- Prominent research focus of bioinformatics and theoretical chemists
 - Drug discovery
 - Biotechnology/bioengineering
- Predicted structures aren't housed in most structural databases
 - Structure prediction websites, such as <u>AlphaFold</u> Protein Structure Database, are housed separately

Structure Prediction Methods

- Comparative Modeling
 - Prediction is based on amino acid sequence and structures of similar molecules available
- Fold recognition
 - Predicts folded structure by aligning a protein of unknown structure and a protein of known structure for low levels of sequence identity (<25%)
- Ab initio
 - Predicts the structure of proteins from the sequence and using molecular energy calculations (Schrodinger equation)

Structure Prediction Example

Impact on COVID-19 research

- Researchers have provided key insights into the SARS-CoV-2 proteins through structure prediction
 - Identified critical residues
 - Contextualized variant perturbations
 - Improved understanding of molecular recognition
- Spike fusion glycoprotein example
 - Challenging to characterize experimentally
 - Modeling + molecular dynamics helped researchers understand the roles of glycans on the dynamics of the protein

Casalino et al, *Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein*, PMID:33140034

Where do I find structures?

RCSB Protein Data Bank

NCBI Structure Database

Protein Data Bank (PDB)

~20 New Structures are deposited daily Each structure contains:

- 3D atomic coordinates
- Mandatory Metadata
 - Author Information
 - Primary citation
 - Experimental Data
 - Polymer sequence(s)- proteins, DNA, RNA
 - Small Chemical component structures- ligands, inhibitors, etc.

6LU7

The crystal structure of COVID-19 main protease in complex with an inhibitor N3

DOI: 10.2210/pdb6LU7/pdb

Classification: VIRAL PROTEIN

Organism(s): Severe acute respiratory syndrome coronavirus 2, synthetic construct Expression System: Escherichia coli BL21(DE3) Mutation(s): No ④

Deposited: 2020-01-26 Released: 2020-02-05 Deposition Author(s): Liu, X., Zhang, B., Jin, Z., Yang, H., Rao, Z.

Experimental Data Snapshot Method: X-RAY DIFFRACTION Resolution: 2.16 Å R-Value Free: 0.235 R-Value Work: 0.202 R-Value Observed: 0.204

Literature

Structure of Mprofrom SARS-CoV-2 and discovery of its inhibitors.

<u>Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L.W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z., Yang, H.</u> (2020) Nature **582**: 289-293

PubMed: <u>32272481</u> Search on PubMed DOI: 10.1038/s41586-020-2223-y Primary Citation of Related Structures: 7BQY, 6LU7

PubMed Abstract:

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19) ¹⁻⁴. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited ...•

Download Primary Citation -

Structure Database

- Updated monthly
- Derived from PDB records
- Additional information added, including:
 - Explicit chemical graph information
 - Validation (secondary structure elements)
 - Includes taxonomy
- Connects 3D to associated literature, molecular data, chemical data, and other NCBI tools

<u> </u>		Sign in to NCE
Structure Structure	Advanced	Search
· · · · · · · · · · · · · · · · · · ·		
	Structure	
	Three dimensional structures provide a wealth o macromolecules. They can be used to examine and more.	f information on the biological function and the evolutionary history of sequence-structure-function relationships, interactions, active sites,
ale farmer		
Using Structure	Structure Tools	More Resources
Using Structure Search	Structure Tools Macromolecular Resources Overview	More Resources
Using Structure Search How to (Quick Start) Guides	Structure Tools <u>Macromolecular Resources Overview</u> <u>iCn3D (web-based 3D viewer)</u>	More Resources PDB Protein
Using Structure Search How to (Quick Start) Guides Help	Structure Tools Macromolecular Resources Overview iCn3D (web-based 3D viewer) Cn3D (3D viewer application)	More Resources PDB Protein CDD
Using Structure Search How to (Quick Start) Guides Help News	Structure Tools Macromolecular Resources Overview iCn3D (web-based 3D viewer) Cn3D (3D viewer application) IBIS	More Resources PDB Protein CDD PubChem
Using Structure Search How to (Quick Start) Guides Help News FTP	Structure Tools Macromolecular Resources Overview iCn3D (web-based 3D viewer) Cn3D (3D viewer application) IBIS VAST	More Resources PDB Protein CDD PubChem NCBI Structure Group Resources & Research

GETTING STARTED	RESOURCES	POPULAR	FEATURED	NCBI INFORMATION
ICBI Education	Chemicals & Bioassays	PubMed	Genetic Testing Registry	About NCBI
ICBI Help Manual	Data & Software	Bookshelf	GenBank	Research at NCBI
ICBI Handbook	DNA & RNA	PubMed Central	Reference Sequences	NCBI News & Blog
raining & Tutorials	Domains & Structures	BLAST	Gene Expression Omnibus	NCBI FTP Site
Submit Data	Genes & Expression	Nucleofide	Genome Data Viewer	NCBI on Facebook
	Genetics & Medicine	Genome	Human Genome	NCBI on Twitter
	Genomes & Maps	SNP	Mouse Genome	NCBI on YouTube
	Homology	Gene	Influenza Virus	Privacy Policy
	Literature	Protein	Primer-BLAST	
	Proteins	PubChem	Sequence Read Archive	
	Sequence Analysis			
	Taxonomy			
	Variation			

National Center for Biotechnology Information, U.S. National Library of Medicine

Search Tips

Entrez is a molecular biology database system that provides access to a wealth of NCBI data

More Entrez Help is available on the NCBI website

Finding structures with Entrez

"term1"[field1] AND/OR/NOT "term2"[field2] AND/OR/NOT ...

- Use field limits and Boolean operators
- Put phrases in quotes

Search Examples

National Library of Medicine National Center for Biotechnology Information

PDB File

	HEADER	ISOMERA	SE/DNA	04-OCT-07 2RGR	
	TITLE	TOPOISO	MERASE IIA	BOUND TO G-SEGMENT DNA	
	COMPND	MOL ID:	1;		
	COMPND	2 MOLECU	LE: DNA TOP	OISOMERASE 2;	
	COMPND	3 CHAIN:	A;		
	COMPND	4 FRAGME	NT: DNA BIN	DING AND CLEAVAGE DOMAIN (RESIDUES 419-	
	COMPND	5 1177);			
	COMPND	6 SYNONY	M: DNA TOPO	ISOMERASE II;	
	COMPND	7 EC: 5.	99.1.3;		
	COMPND	8 ENGINE	ERED: YES;		
	COMPND	9 MOL_ID	: 2;		
	COMPND	10 MOLECU	LE: DNA;		
	COMPND	11 CHAIN:	С;		
	COMPND	12 ENGINE	ERED: YES;		
	COMPND	13 MOL_ID	: 3;		
	COMPND	14 MOLECU	LE: DNA;		
	COMPND	15 CHAIN:	D;		
	COMPND	16 ENGINE	ERED: YES		
	SOURCE	MOL_ID:	1;		
	SOURCE	2 ORGANI	SM_SCIENTIF	IC: SACCHAROMYCES CEREVISIAE;	
	SOURCE	3 ORGANI	SM_COMMON:	BAKER'S YEAST;	
	SOURCE	4 ORGANI	REMARK 2		
	SOURCE	5 GENE:	REMARK 2	RESOLUTION. 3.00 ANGSTROMS.	
	SOURCE	6 EXPRES	REMARK 3		
	SOURCE	7 EXPRES	REMARK 3	REFINEMENT.	
	SOURCE	8 EXPRES	REMARK 3	PROGRAM : PHENIX	
	SOURCE	9 EXPRES	i		
	SOURCE	10 EXPRES	REMARK 280		
	SOURCE	11 EXPRES	REMARK 280	CRYSTAL	
	SOURCE	12 MOL_ID	REMARK 280	SOLVENT CONTENT, VS (%): 59.90	
	SOURCE	13 SYNTHE	REMARK 280	MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): 3.07	
	SOURCE	14 MOL_ID	REMARK 280		
	SOURCE	15 SYNTHE	REMARK 280	CRYSTALLIZATION CONDITIONS: 12-20% PEG 1000, 100-250 MM MC	GCL2,
			REMARK 280	100 MM SODIUM CACODYLATE, PH 7.0, VAPOR DIFFUSION, HANGIN	1G
Medi	CINE		REMARK 280	DROP, TEMPERATURE 277K	
,			REMARK 290		

NIH National Library of N National Center for Biotechnology

PDB File: Data

More about PDB Data

Computational Structural Biology

- Structure Prediction- inference of 3D structure from sequence data
- Molecular Docking- predicts the orientation of one molecule to another
- Molecular Dynamics Simulations- analyzes physical movements of atoms and molecules over time

Computational Structural Biology

- Structure Prediction- inference of 3D structure from sequence data
- Molecular Docking- predicts the orientation of one molecule to another
- Molecular Dynamics Simulations- analyzes physical movements of atoms and molecules over time

- Rely on experimental information from public databases
 - NCBI Databases and RCSB Protein Data Bank

Homology Modeling vs Ab initio Prediction

Ab initio Prediction	Comparative Modeling
Applicable to any sequence	Applicable to only those sequences with recognizable similarity to a template structure
Not very accurate (>4Å RMSD)	Fairly accurate (<3Å RMSD), similar to low resolution X-ray structure
Attempted for proteins of <100 residues	Not limited by size
Accuracy and applicability are limited by our understanding of the protein folding problem	Accuracy and applicability are limited by the number of known folds