RNA polyadenylate polymerase from the Asfarviridae family of viruses; Poly(A) polymerases ...
29-359
1.42e-164
RNA polyadenylate polymerase from the Asfarviridae family of viruses; Poly(A) polymerases (PAPs) catalyze the attachment of adenylates to the 3' ends of messenger RNA and other RNAs, forming poly(A) tails. PAP acts as a nucleic acid template-independent NMP-transferase, preferentially utilizing a single species of NTP, namely ATP. The polyadenylation state of an mRNA may correlate with the efficiency of its translation. The catalytic subunit of NCLDV PAPs contains two topologically identical subdomains with a nucleotidyltransferase fold, suggesting that an ancestral duplication was at the origin of these viral PAPs.
:
Pssm-ID: 410848 Cd Length: 336 Bit Score: 467.77 E-value: 1.42e-164
RNA polyadenylate polymerase from the Asfarviridae family of viruses; Poly(A) polymerases ...
29-359
1.42e-164
RNA polyadenylate polymerase from the Asfarviridae family of viruses; Poly(A) polymerases (PAPs) catalyze the attachment of adenylates to the 3' ends of messenger RNA and other RNAs, forming poly(A) tails. PAP acts as a nucleic acid template-independent NMP-transferase, preferentially utilizing a single species of NTP, namely ATP. The polyadenylation state of an mRNA may correlate with the efficiency of its translation. The catalytic subunit of NCLDV PAPs contains two topologically identical subdomains with a nucleotidyltransferase fold, suggesting that an ancestral duplication was at the origin of these viral PAPs.
Pssm-ID: 410848 Cd Length: 336 Bit Score: 467.77 E-value: 1.42e-164
RNA polyadenylate polymerase from the Asfarviridae family of viruses; Poly(A) polymerases ...
29-359
1.42e-164
RNA polyadenylate polymerase from the Asfarviridae family of viruses; Poly(A) polymerases (PAPs) catalyze the attachment of adenylates to the 3' ends of messenger RNA and other RNAs, forming poly(A) tails. PAP acts as a nucleic acid template-independent NMP-transferase, preferentially utilizing a single species of NTP, namely ATP. The polyadenylation state of an mRNA may correlate with the efficiency of its translation. The catalytic subunit of NCLDV PAPs contains two topologically identical subdomains with a nucleotidyltransferase fold, suggesting that an ancestral duplication was at the origin of these viral PAPs.
Pssm-ID: 410848 Cd Length: 336 Bit Score: 467.77 E-value: 1.42e-164
RNA polyadenylate polymerase of nucleocytoplasmic large DNA viruses; This model represents the ...
29-353
3.77e-94
RNA polyadenylate polymerase of nucleocytoplasmic large DNA viruses; This model represents the poly(A) polymerases (PAPs) from nucleocytoplasmic large DNA viruses (NCLDV), a group of giant eukaryotic double-stranded DNA viruses that make up the phylum Nucleocytoviricota. They are referred to as nucleocytoplasmic because they are often able to replicate in both the host's cell nucleus and cytoplasm. PAPs catalyze the attachment of adenylates to the 3' ends of messenger RNA and other RNAs, forming poly(A) tails. PAP acts as a nucleic acid template-independent NMP-transferase, preferentially utilizing a single species of NTP, namely ATP. The polyadenylation state of an mRNA may correlate with the efficiency of its translation. This group includes PAPs from the Poxviridae and Mimiviridae family of viruses. In Vaccinia virus, from the Poxviridae family, polyadenylation is crucial for virion maturation and is carried out by a heterodimer, formed by the catalytic subunit VP55 and the processivity factor (VP39), which is required for the formation of long poly(A) tails. PAPs from Acanthamoeba polyphaga mimivirus and Megavirus chiliensis, which belong to the Mimiviridae family, are homodimeric and intrinsically self-processive, generating >700 nucleotides long poly(A) tails. Homodimerization is required for PAP activity; monomers are able to bind RNA but are enzymatically inactive. Thus, while other PAPs form heterodimers with processivity factors, the Mimiviridae PAPs become processive upon homodimerization. The catalytic subunit of NCLDV PAPs contains two topologically identical subdomains with a nucleotidyltransferase fold, suggesting that an ancestral duplication was at the origin of these viral PAPs.
Pssm-ID: 410842 Cd Length: 335 Bit Score: 288.19 E-value: 3.77e-94
RNA polyadenylate polymerase from Faustovirus; Poly(A) polymerases (PAPs) catalyze the ...
31-226
1.60e-45
RNA polyadenylate polymerase from Faustovirus; Poly(A) polymerases (PAPs) catalyze the attachment of adenylates to the 3' ends of messenger RNA and other RNAs, forming poly(A) tails. PAP acts as a nucleic acid template-independent NMP-transferase, preferentially utilizing a single species of NTP, namely ATP. The polyadenylation state of an mRNA may correlate with the efficiency of its translation. The catalytic subunit of NCLDV PAPs contains two topologically identical subdomains with a nucleotidyltransferase fold, suggesting that an ancestral duplication was at the origin of these viral PAPs.
Pssm-ID: 410847 Cd Length: 351 Bit Score: 162.04 E-value: 1.60e-45
RNA polyadenylate polymerase from the Mimiviridae family of viruses; Poly(A) polymerases (PAPs) ...
27-189
1.12e-29
RNA polyadenylate polymerase from the Mimiviridae family of viruses; Poly(A) polymerases (PAPs) catalyze the attachment of adenylates to the 3' ends of messenger RNA and other RNAs, forming poly(A) tails. PAP acts as a nucleic acid template-independent NMP-transferase, preferentially utilizing a single species of NTP, namely ATP. The polyadenylation state of an mRNA may correlate with the efficiency of its translation. PAPs from Acanthamoeba polyphaga mimivirus and Megavirus chiliensis, which belong to the Mimiviridae family, are homodimeric and intrinsically self-processive, generating >700 nucleotides long poly(A) tails. Homodimerization is required for PAP activity; monomers are able to bind RNA but are enzymatically inactive. Thus, while other PAPs form heterodimers with processivity factors, the Mimiviridae PAPs become processive upon homodimerization. mRNA polyadenylation in Mimiviridae occurs at hairpin-forming palindromic sequences terminating viral transcripts. The catalytic subunit of Mimiviridae PAPs contains two topologically identical subdomains with a nucleotidyltransferase fold, suggesting that an ancestral duplication was at the origin of these viral PAPs.
Pssm-ID: 410844 Cd Length: 449 Bit Score: 120.47 E-value: 1.12e-29
RNA polyadenylate polymerase from the Marseilleviridae family of viruses; Poly(A) polymerases ...
31-187
3.55e-23
RNA polyadenylate polymerase from the Marseilleviridae family of viruses; Poly(A) polymerases (PAPs) catalyze the attachment of adenylates to the 3' ends of messenger RNA and other RNAs, forming poly(A) tails. PAP acts as a nucleic acid template-independent NMP-transferase, preferentially utilizing a single species of NTP, namely ATP. The polyadenylation state of an mRNA may correlate with the efficiency of its translation. The catalytic subunit of NCLDV PAPs contains two topologically identical subdomains with a nucleotidyltransferase fold, suggesting that an ancestral duplication was at the origin of these viral PAPs.
Pssm-ID: 410846 Cd Length: 316 Bit Score: 99.55 E-value: 3.55e-23
RNA polyadenylate polymerase from the Phycodnaviridae family of viruses; Poly(A) polymerases ...
32-188
2.84e-22
RNA polyadenylate polymerase from the Phycodnaviridae family of viruses; Poly(A) polymerases (PAPs) catalyze the attachment of adenylates to the 3' ends of messenger RNA and other RNAs, forming poly(A) tails. PAP acts as a nucleic acid template-independent NMP-transferase, preferentially utilizing a single species of NTP, namely ATP. The polyadenylation state of an mRNA may correlate with the efficiency of its translation. The catalytic subunit of NCLDV PAPs contains two topologically identical subdomains with a nucleotidyltransferase fold, suggesting that an ancestral duplication was at the origin of these viral PAPs.
Pssm-ID: 410845 Cd Length: 357 Bit Score: 97.93 E-value: 2.84e-22
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options