kinesin-like protein KIF16B isoform X8 [Gallus gallus]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||
KISc_KIF1A_KIF1B | cd01365 | Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A ... |
2-365 | 0e+00 | ||||||||
Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively. : Pssm-ID: 276816 [Multi-domain] Cd Length: 361 Bit Score: 556.97 E-value: 0e+00
|
||||||||||||
FHA_KIF16B | cd22732 | forkhead associated (FHA) domain found in kinesin-like protein KIF16B; KIF16B, also called ... |
446-562 | 5.11e-80 | ||||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF16B; KIF16B, also called sorting nexin-23, is a plus end-directed microtubule-dependent motor protein involved in endosome transport and receptor recycling and degradation. It regulates the plus end motility of early endosomes and the balance between recycling and degradation of receptors such as EGF receptor (EGFR) and FGF receptor (FGFR). It regulates the Golgi to endosome transport of FGFR-containing vesicles during early development, a key process for developing basement membrane and epiblast and primitive endoderm lineages during early postimplantation development. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. : Pssm-ID: 438784 [Multi-domain] Cd Length: 117 Bit Score: 257.94 E-value: 5.11e-80
|
||||||||||||
PX_KIF16B_SNX23 | cd06874 | The phosphoinositide binding Phox Homology domain of KIF16B kinesin or Sorting Nexin 23; The ... |
1188-1315 | 1.51e-79 | ||||||||
The phosphoinositide binding Phox Homology domain of KIF16B kinesin or Sorting Nexin 23; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. KIF16B, also called sorting nexin 23 (SNX23), is a family-3 kinesin which harbors an N-terminal kinesin motor domain containing ATP and microtubule binding sites, a ForkHead Associated (FHA) domain, and a C-terminal PX domain. The PX domain of KIF16B binds to phosphatidylinositol-3-phosphate (PI3P) in early endosomes and plays a role in the transport of early endosomes to the plus end of microtubules. By regulating early endosome plus end motility, KIF16B modulates the balance between recycling and degradation of receptors. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. : Pssm-ID: 132784 Cd Length: 127 Bit Score: 256.92 E-value: 1.51e-79
|
||||||||||||
Smc super family | cl34174 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
597-1079 | 9.03e-17 | ||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; The actual alignment was detected with superfamily member COG1196: Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 86.14 E-value: 9.03e-17
|
||||||||||||
Kinesin_assoc super family | cl24686 | Kinesin-associated; |
364-476 | 1.56e-12 | ||||||||
Kinesin-associated; The actual alignment was detected with superfamily member pfam16183: Pssm-ID: 465047 [Multi-domain] Cd Length: 177 Bit Score: 67.17 E-value: 1.56e-12
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
KISc_KIF1A_KIF1B | cd01365 | Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A ... |
2-365 | 0e+00 | ||||||||
Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively. Pssm-ID: 276816 [Multi-domain] Cd Length: 361 Bit Score: 556.97 E-value: 0e+00
|
||||||||||||
KISc | smart00129 | Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play ... |
3-365 | 1.33e-150 | ||||||||
Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play important roles in intracellular transport of organelles and in cell division. Pssm-ID: 214526 [Multi-domain] Cd Length: 335 Bit Score: 457.80 E-value: 1.33e-150
|
||||||||||||
Kinesin | pfam00225 | Kinesin motor domain; |
9-358 | 5.64e-149 | ||||||||
Kinesin motor domain; Pssm-ID: 459720 [Multi-domain] Cd Length: 326 Bit Score: 453.18 E-value: 5.64e-149
|
||||||||||||
KIP1 | COG5059 | Kinesin-like protein [Cytoskeleton]; |
75-441 | 3.43e-81 | ||||||||
Kinesin-like protein [Cytoskeleton]; Pssm-ID: 227392 [Multi-domain] Cd Length: 568 Bit Score: 278.16 E-value: 3.43e-81
|
||||||||||||
FHA_KIF16B | cd22732 | forkhead associated (FHA) domain found in kinesin-like protein KIF16B; KIF16B, also called ... |
446-562 | 5.11e-80 | ||||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF16B; KIF16B, also called sorting nexin-23, is a plus end-directed microtubule-dependent motor protein involved in endosome transport and receptor recycling and degradation. It regulates the plus end motility of early endosomes and the balance between recycling and degradation of receptors such as EGF receptor (EGFR) and FGF receptor (FGFR). It regulates the Golgi to endosome transport of FGFR-containing vesicles during early development, a key process for developing basement membrane and epiblast and primitive endoderm lineages during early postimplantation development. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438784 [Multi-domain] Cd Length: 117 Bit Score: 257.94 E-value: 5.11e-80
|
||||||||||||
PX_KIF16B_SNX23 | cd06874 | The phosphoinositide binding Phox Homology domain of KIF16B kinesin or Sorting Nexin 23; The ... |
1188-1315 | 1.51e-79 | ||||||||
The phosphoinositide binding Phox Homology domain of KIF16B kinesin or Sorting Nexin 23; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. KIF16B, also called sorting nexin 23 (SNX23), is a family-3 kinesin which harbors an N-terminal kinesin motor domain containing ATP and microtubule binding sites, a ForkHead Associated (FHA) domain, and a C-terminal PX domain. The PX domain of KIF16B binds to phosphatidylinositol-3-phosphate (PI3P) in early endosomes and plays a role in the transport of early endosomes to the plus end of microtubules. By regulating early endosome plus end motility, KIF16B modulates the balance between recycling and degradation of receptors. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Pssm-ID: 132784 Cd Length: 127 Bit Score: 256.92 E-value: 1.51e-79
|
||||||||||||
PLN03188 | PLN03188 | kinesin-12 family protein; Provisional |
4-385 | 3.83e-72 | ||||||||
kinesin-12 family protein; Provisional Pssm-ID: 215621 [Multi-domain] Cd Length: 1320 Bit Score: 264.87 E-value: 3.83e-72
|
||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
597-1079 | 9.03e-17 | ||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 86.14 E-value: 9.03e-17
|
||||||||||||
PX | smart00312 | PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function ... |
1201-1274 | 2.21e-13 | ||||||||
PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function present in phox proteins, PLD isoforms, a PI3K isoform. Pssm-ID: 214610 Cd Length: 105 Bit Score: 67.37 E-value: 2.21e-13
|
||||||||||||
PX | pfam00787 | PX domain; PX domains bind to phosphoinositides. |
1216-1274 | 1.52e-12 | ||||||||
PX domain; PX domains bind to phosphoinositides. Pssm-ID: 459940 Cd Length: 84 Bit Score: 64.18 E-value: 1.52e-12
|
||||||||||||
Kinesin_assoc | pfam16183 | Kinesin-associated; |
364-476 | 1.56e-12 | ||||||||
Kinesin-associated; Pssm-ID: 465047 [Multi-domain] Cd Length: 177 Bit Score: 67.17 E-value: 1.56e-12
|
||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
599-1095 | 3.57e-12 | ||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 71.71 E-value: 3.57e-12
|
||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
603-877 | 1.63e-11 | ||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 69.32 E-value: 1.63e-11
|
||||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
600-869 | 2.20e-11 | ||||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 68.61 E-value: 2.20e-11
|
||||||||||||
COG5391 | COG5391 | Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function ... |
1220-1285 | 1.13e-05 | ||||||||
Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function prediction only]; Pssm-ID: 227680 [Multi-domain] Cd Length: 524 Bit Score: 49.80 E-value: 1.13e-05
|
||||||||||||
FHA | COG1716 | Forkhead associated (FHA) domain, binds pSer, pThr, pTyr [Signal transduction mechanisms]; |
471-551 | 1.54e-05 | ||||||||
Forkhead associated (FHA) domain, binds pSer, pThr, pTyr [Signal transduction mechanisms]; Pssm-ID: 441322 [Multi-domain] Cd Length: 96 Bit Score: 44.95 E-value: 1.54e-05
|
||||||||||||
Yop-YscD_cpl | pfam16697 | Inner membrane component of T3SS, cytoplasmic domain; Yop-YscD-cpl is the cytoplasmic domain ... |
471-555 | 2.57e-04 | ||||||||
Inner membrane component of T3SS, cytoplasmic domain; Yop-YscD-cpl is the cytoplasmic domain of Yop proteins like YscD from Proteobacteria. YscD forms part of the inner membrane component of the bacterial type III secretion injectosome apparatus. Pssm-ID: 465238 [Multi-domain] Cd Length: 94 Bit Score: 41.48 E-value: 2.57e-04
|
||||||||||||
wall_bind_EntB | NF040676 | cell wall-binding protein EntB; This HMM describes the cell wall-binding protein EntB, as ... |
607-822 | 2.21e-03 | ||||||||
cell wall-binding protein EntB; This HMM describes the cell wall-binding protein EntB, as found in Bacillus cereus. EntB is related to EntA, EntC, and EndD. All Ent family proteins have a signal peptide, an N-terminal SH3 domain and a C-terminal 3D (Asp-Asp-Asp) domain. EntB and EndC have a central region with a highly variable number of repeats resembling KAXEXX. The gene symbol derives from the notion that at least some members of the family function as enterotoxins, but more recent descriptions focus on roles in stress response and cell wall integrity. Pssm-ID: 468642 [Multi-domain] Cd Length: 476 Bit Score: 42.08 E-value: 2.21e-03
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||||
KISc_KIF1A_KIF1B | cd01365 | Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A ... |
2-365 | 0e+00 | ||||||||||
Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively. Pssm-ID: 276816 [Multi-domain] Cd Length: 361 Bit Score: 556.97 E-value: 0e+00
|
||||||||||||||
KISc | smart00129 | Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play ... |
3-365 | 1.33e-150 | ||||||||||
Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play important roles in intracellular transport of organelles and in cell division. Pssm-ID: 214526 [Multi-domain] Cd Length: 335 Bit Score: 457.80 E-value: 1.33e-150
|
||||||||||||||
Kinesin | pfam00225 | Kinesin motor domain; |
9-358 | 5.64e-149 | ||||||||||
Kinesin motor domain; Pssm-ID: 459720 [Multi-domain] Cd Length: 326 Bit Score: 453.18 E-value: 5.64e-149
|
||||||||||||||
KISc | cd00106 | Kinesin motor domain; Kinesin motor domain. This catalytic (head) domain has ATPase activity ... |
3-356 | 1.05e-136 | ||||||||||
Kinesin motor domain; Kinesin motor domain. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), in some its is found in the middle (M-type), or C-terminal (C-type). N-type and M-type kinesins are (+) end-directed motors, while C-type kinesins are (-) end-directed motors, i.e. they transport cargo towards the (-) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276812 [Multi-domain] Cd Length: 326 Bit Score: 420.89 E-value: 1.05e-136
|
||||||||||||||
KISc_KIF3 | cd01371 | Kinesin motor domain, kinesins II or KIF3_like proteins; Kinesin motor domain, kinesins II or ... |
3-358 | 3.13e-119 | ||||||||||
Kinesin motor domain, kinesins II or KIF3_like proteins; Kinesin motor domain, kinesins II or KIF3_like proteins. Subgroup of kinesins, which form heterotrimers composed of 2 kinesins and one non-motor accessory subunit. Kinesins II play important roles in ciliary transport, and have been implicated in neuronal transport, melanosome transport, the secretory pathway, and mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this group the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276822 [Multi-domain] Cd Length: 334 Bit Score: 374.49 E-value: 3.13e-119
|
||||||||||||||
KISc_KIF4 | cd01372 | Kinesin motor domain, KIF4-like subfamily; Kinesin motor domain, KIF4-like subfamily. Members ... |
3-358 | 4.00e-116 | ||||||||||
Kinesin motor domain, KIF4-like subfamily; Kinesin motor domain, KIF4-like subfamily. Members of this group seem to perform a variety of functions, and have been implicated in neuronal organelle transport and chromosome segregation during mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276823 [Multi-domain] Cd Length: 341 Bit Score: 366.27 E-value: 4.00e-116
|
||||||||||||||
KISc_KIP3_like | cd01370 | Kinesin motor domain, KIP3-like subgroup; Kinesin motor domain, KIP3-like subgroup. The yeast ... |
3-358 | 1.29e-104 | ||||||||||
Kinesin motor domain, KIP3-like subgroup; Kinesin motor domain, KIP3-like subgroup. The yeast kinesin KIP3 plays a role in positioning the mitotic spindle. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276821 [Multi-domain] Cd Length: 345 Bit Score: 335.47 E-value: 1.29e-104
|
||||||||||||||
KISc_C_terminal | cd01366 | Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins; Kinesin motor domain, ... |
9-360 | 5.70e-100 | ||||||||||
Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins; Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins. Ncd is a spindle motor protein necessary for chromosome segregation in meiosis. KIFC2/KIFC3-like kinesins have been implicated in motility of the Golgi apparatus as well as dentritic and axonal transport in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this subgroup the motor domain is found at the C-terminus (C-type). C-type kinesins are (-) end-directed motors, i.e. they transport cargo towards the (-) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276817 [Multi-domain] Cd Length: 329 Bit Score: 322.24 E-value: 5.70e-100
|
||||||||||||||
KISc_CENP_E | cd01374 | Kinesin motor domain, CENP-E/KIP2-like subgroup; Kinesin motor domain, CENP-E/KIP2-like ... |
3-358 | 1.04e-99 | ||||||||||
Kinesin motor domain, CENP-E/KIP2-like subgroup; Kinesin motor domain, CENP-E/KIP2-like subgroup, involved in chromosome movement and/or spindle elongation during mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276825 [Multi-domain] Cd Length: 321 Bit Score: 321.20 E-value: 1.04e-99
|
||||||||||||||
KISc_KLP2_like | cd01373 | Kinesin motor domain, KIF15-like subgroup; Kinesin motor domain, KIF15-like subgroup. Members ... |
4-367 | 6.59e-99 | ||||||||||
Kinesin motor domain, KIF15-like subgroup; Kinesin motor domain, KIF15-like subgroup. Members of this subgroup seem to play a role in mitosis and meiosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276824 [Multi-domain] Cd Length: 347 Bit Score: 319.84 E-value: 6.59e-99
|
||||||||||||||
KISc_KHC_KIF5 | cd01369 | Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup; Kinesin motor domain, ... |
1-358 | 4.01e-97 | ||||||||||
Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup; Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup. Members of this group have been associated with organelle transport. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276820 [Multi-domain] Cd Length: 325 Bit Score: 314.27 E-value: 4.01e-97
|
||||||||||||||
KISc_BimC_Eg5 | cd01364 | Kinesin motor domain, BimC/Eg5 spindle pole proteins; Kinesin motor domain, BimC/Eg5 spindle ... |
1-367 | 7.44e-91 | ||||||||||
Kinesin motor domain, BimC/Eg5 spindle pole proteins; Kinesin motor domain, BimC/Eg5 spindle pole proteins, participate in spindle assembly and chromosome segregation during cell division. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276815 [Multi-domain] Cd Length: 353 Bit Score: 297.70 E-value: 7.44e-91
|
||||||||||||||
KIP1 | COG5059 | Kinesin-like protein [Cytoskeleton]; |
75-441 | 3.43e-81 | ||||||||||
Kinesin-like protein [Cytoskeleton]; Pssm-ID: 227392 [Multi-domain] Cd Length: 568 Bit Score: 278.16 E-value: 3.43e-81
|
||||||||||||||
FHA_KIF16B | cd22732 | forkhead associated (FHA) domain found in kinesin-like protein KIF16B; KIF16B, also called ... |
446-562 | 5.11e-80 | ||||||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF16B; KIF16B, also called sorting nexin-23, is a plus end-directed microtubule-dependent motor protein involved in endosome transport and receptor recycling and degradation. It regulates the plus end motility of early endosomes and the balance between recycling and degradation of receptors such as EGF receptor (EGFR) and FGF receptor (FGFR). It regulates the Golgi to endosome transport of FGFR-containing vesicles during early development, a key process for developing basement membrane and epiblast and primitive endoderm lineages during early postimplantation development. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438784 [Multi-domain] Cd Length: 117 Bit Score: 257.94 E-value: 5.11e-80
|
||||||||||||||
PX_KIF16B_SNX23 | cd06874 | The phosphoinositide binding Phox Homology domain of KIF16B kinesin or Sorting Nexin 23; The ... |
1188-1315 | 1.51e-79 | ||||||||||
The phosphoinositide binding Phox Homology domain of KIF16B kinesin or Sorting Nexin 23; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. KIF16B, also called sorting nexin 23 (SNX23), is a family-3 kinesin which harbors an N-terminal kinesin motor domain containing ATP and microtubule binding sites, a ForkHead Associated (FHA) domain, and a C-terminal PX domain. The PX domain of KIF16B binds to phosphatidylinositol-3-phosphate (PI3P) in early endosomes and plays a role in the transport of early endosomes to the plus end of microtubules. By regulating early endosome plus end motility, KIF16B modulates the balance between recycling and degradation of receptors. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Pssm-ID: 132784 Cd Length: 127 Bit Score: 256.92 E-value: 1.51e-79
|
||||||||||||||
PLN03188 | PLN03188 | kinesin-12 family protein; Provisional |
4-385 | 3.83e-72 | ||||||||||
kinesin-12 family protein; Provisional Pssm-ID: 215621 [Multi-domain] Cd Length: 1320 Bit Score: 264.87 E-value: 3.83e-72
|
||||||||||||||
KISc_KIF9_like | cd01375 | Kinesin motor domain, KIF9-like subgroup; Kinesin motor domain, KIF9-like subgroup; might play ... |
3-356 | 1.15e-69 | ||||||||||
Kinesin motor domain, KIF9-like subgroup; Kinesin motor domain, KIF9-like subgroup; might play a role in cell shape remodeling. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276826 [Multi-domain] Cd Length: 334 Bit Score: 237.48 E-value: 1.15e-69
|
||||||||||||||
KISc_KIF2_like | cd01367 | Kinesin motor domain, KIF2-like group; Kinesin motor domain, KIF2-like group. KIF2 is a ... |
4-356 | 1.61e-68 | ||||||||||
Kinesin motor domain, KIF2-like group; Kinesin motor domain, KIF2-like group. KIF2 is a protein expressed in neurons, which has been associated with axonal transport and neuron development; alternative splice forms have been implicated in lysosomal translocation. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this subgroup the motor domain is found in the middle (M-type) of the protein chain. M-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second (KIF2 may be slower). To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276818 [Multi-domain] Cd Length: 328 Bit Score: 233.73 E-value: 1.61e-68
|
||||||||||||||
KISc_KIF23_like | cd01368 | Kinesin motor domain, KIF23-like subgroup; Kinesin motor domain, KIF23-like subgroup. Members ... |
4-356 | 4.78e-68 | ||||||||||
Kinesin motor domain, KIF23-like subgroup; Kinesin motor domain, KIF23-like subgroup. Members of this group may play a role in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276819 [Multi-domain] Cd Length: 345 Bit Score: 233.05 E-value: 4.78e-68
|
||||||||||||||
KISc_KID_like | cd01376 | Kinesin motor domain, KIF22/Kid-like subgroup; Kinesin motor domain, KIF22/Kid-like subgroup. ... |
4-356 | 2.49e-67 | ||||||||||
Kinesin motor domain, KIF22/Kid-like subgroup; Kinesin motor domain, KIF22/Kid-like subgroup. Members of this group might play a role in regulating chromosomal movement along microtubules in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276827 [Multi-domain] Cd Length: 319 Bit Score: 230.08 E-value: 2.49e-67
|
||||||||||||||
FHA_KIF16 | cd22708 | forkhead associated (FHA) domain found in the kinesin-like protein KIF16 family; The KIF16 ... |
446-554 | 9.72e-65 | ||||||||||
forkhead associated (FHA) domain found in the kinesin-like protein KIF16 family; The KIF16 family includes StARD9/KIF16A and KIF16B. StARD9, also called START domain-containing protein 9, or kinesin-like protein KIF16A, is a microtubule-dependent motor protein required for spindle pole assembly during mitosis. It is required to stabilize the pericentriolar material (PCM). KIF16B, also called sorting nexin-23, is a plus end-directed microtubule-dependent motor protein involved in endosome transport and receptor recycling and degradation. It regulates the plus end motility of early endosomes and the balance between recycling and degradation of receptors such as EGF receptor (EGFR) and FGF receptor (FGFR). It regulates the Golgi to endosome transport of FGFR-containing vesicles during early development, a key process for developing basement membrane and epiblast and primitive endoderm lineages during early postimplantation development. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438760 [Multi-domain] Cd Length: 109 Bit Score: 214.44 E-value: 9.72e-65
|
||||||||||||||
FHA_KIF16A_STARD9 | cd22731 | forkhead associated (FHA) domain found in StAR-related lipid transfer protein 9 (StARD9); ... |
446-564 | 1.09e-49 | ||||||||||
forkhead associated (FHA) domain found in StAR-related lipid transfer protein 9 (StARD9); StARD9, also called START domain-containing protein 9, or kinesin-like protein KIF16A, is a microtubule-dependent motor protein required for spindle pole assembly during mitosis. It is required to stabilize the pericentriolar material (PCM). The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438783 [Multi-domain] Cd Length: 119 Bit Score: 171.50 E-value: 1.09e-49
|
||||||||||||||
FHA_PHLB1 | cd22713 | forkhead associated (FHA) domain found in pleckstrin homology-like domain family B member 1 ... |
438-561 | 5.49e-34 | ||||||||||
forkhead associated (FHA) domain found in pleckstrin homology-like domain family B member 1 (PHLDB1) and similar proteins; PHLDB1, also called protein LL5-alpha (LL5A), acts as an insulin-responsive protein that enhances Akt activation. PHLDB1 contains a pleckstrin homology domain, which binds phosphatidylinositol PI(3,4)P(2), PI(3,5)P(2), and PI(3,4,5)P(3), as well as a Forkhead-associated (FHA) domain and coiled coil regions. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438765 Cd Length: 120 Bit Score: 126.67 E-value: 5.49e-34
|
||||||||||||||
PX_RUN | cd07277 | The phosphoinositide binding Phox Homology domain of uncharacterized proteins containing PX ... |
1188-1309 | 1.06e-32 | ||||||||||
The phosphoinositide binding Phox Homology domain of uncharacterized proteins containing PX and RUN domains; The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to PI-enriched membranes. Members in this subfamily are uncharacterized proteins containing an N-terminal RUN domain and a C-terminal PX domain. PX domain harboring proteins have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction. The RUN domain is found in GTPases in the Rap and Rab families and may play a role in Ras-like signaling pathways. Pssm-ID: 132810 Cd Length: 118 Bit Score: 123.23 E-value: 1.06e-32
|
||||||||||||||
FHA_KIF1 | cd22705 | forkhead associated (FHA) domain found in the kinesin-like protein KIF1 family; The KIF1 ... |
453-553 | 3.44e-31 | ||||||||||
forkhead associated (FHA) domain found in the kinesin-like protein KIF1 family; The KIF1 family includes KIF1A, KIF1B, and KIF1C. KIF1A, also called axonal transporter of synaptic vesicles (ATSV), microtubule-based motor KIF1A, Unc-104- and KIF1A-related protein, or Unc-104, is an axonal transporter of synaptic vesicles, which is mutated in hereditary sensory and autonomic neuropathy type 2. It is also required for neuronal dense core vesicle (DCV) transport to dendritic spines and axons. The calcium-dependent interaction with CALM1 increases vesicle motility, and interaction with the scaffolding proteins PPFIA2 and TANC2 recruits DCVs to synaptic sites. KIF1B, also called Klp, is a motor for anterograde transport of mitochondria. It has a microtubule plus end-directed motility. Isoform 1 mediates the transport of synaptic vesicles in neuronal cells, while isoform 2 is required for induction of neuronal apoptosis. KIF1C is a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. It has a microtubule plus end-directed motility. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438757 [Multi-domain] Cd Length: 101 Bit Score: 118.10 E-value: 3.44e-31
|
||||||||||||||
FHA_KIF14 | cd22707 | forkhead associated (FHA) domain found in kinesin-like protein KIF14 and similar proteins; ... |
450-554 | 1.66e-26 | ||||||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF14 and similar proteins; KIF14 is a microtubule motor protein that binds to microtubules with high affinity through each tubulin heterodimer and has an ATPase activity. It plays a role in many processes like cell division, cytokinesis and in cell proliferation and apoptosis. KIF14 is a potential oncogene and is involved in the metastasis of various cancers. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438759 [Multi-domain] Cd Length: 108 Bit Score: 105.04 E-value: 1.66e-26
|
||||||||||||||
FHA_KIF1A | cd22726 | forkhead associated (FHA) domain found in kinesin-like protein KIF1A; KIF1A, also called ... |
454-562 | 1.66e-26 | ||||||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF1A; KIF1A, also called axonal transporter of synaptic vesicles (ATSV), microtubule-based motor KIF1A, Unc-104- and KIF1A-related protein, or Unc-104, is an axonal transporter of synaptic vesicles, which is mutated in hereditary sensory and autonomic neuropathy type 2. It is also required for neuronal dense core vesicle (DCV) transport to dendritic spines and axons. The calcium-dependent interaction with CALM1 increases vesicle motility, and interaction with the scaffolding proteins PPFIA2 and TANC2 recruits DCVs to synaptic sites. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438778 [Multi-domain] Cd Length: 115 Bit Score: 105.40 E-value: 1.66e-26
|
||||||||||||||
FHA_KIF1B | cd22727 | forkhead associated (FHA) domain found in kinesin-like protein KIF1B; KIF1B, also called Klp, ... |
454-556 | 4.69e-24 | ||||||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF1B; KIF1B, also called Klp, is a motor for anterograde transport of mitochondria. It has a microtubule plus end-directed motility. Isoform 1 mediates the transport of synaptic vesicles in neuronal cells, while isoform 2 is required for induction of neuronal apoptosis. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438779 [Multi-domain] Cd Length: 110 Bit Score: 98.18 E-value: 4.69e-24
|
||||||||||||||
Motor_domain | cd01363 | Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the ... |
75-288 | 7.78e-23 | ||||||||||
Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the P-loop NTPase family and provide the driving force in myosin and kinesin mediated processes. Some of the names do not match with what is given in the sequence list. This is because they are based on the current nomenclature by Kollmar/Sebe-Pedros. Pssm-ID: 276814 [Multi-domain] Cd Length: 170 Bit Score: 96.65 E-value: 7.78e-23
|
||||||||||||||
FHA_KIF28P | cd22709 | forkhead associated (FHA) domain found in kinesin-like protein KIF28P and similar proteins; ... |
454-554 | 1.45e-22 | ||||||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF28P and similar proteins; KIF28P, also called kinesin-like protein 6 (KLP6), is a microtubule-dependent motor protein required for mitochondrion morphology and transport of mitochondria in neuronal cells. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438761 [Multi-domain] Cd Length: 102 Bit Score: 93.43 E-value: 1.45e-22
|
||||||||||||||
FHA_KIF13 | cd22706 | forkhead associated (FHA) domain found in the kinesin-like protein KIF13 family; The KIF13 ... |
471-554 | 4.08e-21 | ||||||||||
forkhead associated (FHA) domain found in the kinesin-like protein KIF13 family; The KIF13 family includes KIF13A and KIF13B. KIF13A, also called kinesin-like protein RBKIN, is a plus end-directed microtubule-dependent motor protein involved in intracellular transport and in regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis, and cytokinesis. It mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, KIF13A is required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. It is also required for the abscission step in cytokinesis: it mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. KIF13B, also called kinesin-like protein GAKIN, is a novel kinesin-like protein that associates with the human homolog of the Drosophila discs large tumor suppressor in T lymphocytes. It is involved in reorganization of the cortical cytoskeleton. It regulates axon formation by promoting the formation of extra axons. KIF13B may be functionally important for the intracellular trafficking of membrane-associated guanylate kinase homologs (MAGUKs) and associated protein complexes. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438758 [Multi-domain] Cd Length: 101 Bit Score: 89.28 E-value: 4.08e-21
|
||||||||||||||
PX_domain | cd06093 | The Phox Homology domain, a phosphoinositide binding module; The PX domain is a ... |
1189-1274 | 9.11e-21 | ||||||||||
The Phox Homology domain, a phosphoinositide binding module; The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to membranes. Proteins containing PX domains interact with PIs and have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. Many members of this superfamily bind phosphatidylinositol-3-phosphate (PI3P) but in some cases, other PIs such as PI4P or PI(3,4)P2, among others, are the preferred substrates. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction, as in the cases of p40phox, p47phox, and some sorting nexins (SNXs). The PX domain is conserved from yeast to humans and is found in more than 100 proteins. The majority of PX domain-containing proteins are SNXs, which play important roles in endosomal sorting. Pssm-ID: 132768 [Multi-domain] Cd Length: 106 Bit Score: 88.57 E-value: 9.11e-21
|
||||||||||||||
FHA_KIF1C | cd22728 | forkhead associated (FHA) domain found in kinesin-like protein KIF1C; KIF1C is a new ... |
454-553 | 1.70e-19 | ||||||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF1C; KIF1C is a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. It has a microtubule plus end-directed motility. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438780 [Multi-domain] Cd Length: 102 Bit Score: 84.92 E-value: 1.70e-19
|
||||||||||||||
Microtub_bd | pfam16796 | Microtubule binding; This motor homology domain binds microtubules and lacks an ATP-binding ... |
3-162 | 8.38e-17 | ||||||||||
Microtubule binding; This motor homology domain binds microtubules and lacks an ATP-binding site. Pssm-ID: 465274 [Multi-domain] Cd Length: 144 Bit Score: 78.42 E-value: 8.38e-17
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
597-1079 | 9.03e-17 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 86.14 E-value: 9.03e-17
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
595-1073 | 3.58e-15 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 81.14 E-value: 3.58e-15
|
||||||||||||||
FHA_AFDN | cd22711 | forkhead associated (FHA) domain found in afadin and similar proteins; Afadin, also called ... |
453-554 | 2.56e-14 | ||||||||||
forkhead associated (FHA) domain found in afadin and similar proteins; Afadin, also called ALL1-fused gene from chromosome 6 protein, protein AF-6, Afadin adherens junction formation factor, or MLLT4, is a nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton. It is essential for the organization of adherens junctions. It may play a key role in the organization of epithelial structures of the embryonic ectoderm. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438763 [Multi-domain] Cd Length: 106 Bit Score: 70.04 E-value: 2.56e-14
|
||||||||||||||
PX_IRAS | cd06875 | The phosphoinositide binding Phox Homology domain of the Imidazoline Receptor ... |
1185-1279 | 7.06e-14 | ||||||||||
The phosphoinositide binding Phox Homology domain of the Imidazoline Receptor Antisera-Selected; The PX domain is a phosphoinositide binding (PI) module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Imidazoline Receptor Antisera-Selected (IRAS), also called nischarin, contains an N-terminal PX domain, leucine rich repeats, and a predicted coiled coil domain. The PX domain of IRAS binds to phosphatidylinositol-3-phosphate in membranes. Together with the coiled coil domain, it is essential for the localization of IRAS to endosomes. IRAS has been shown to interact with integrin and inhibit cell migration. Its interaction with alpha5 integrin causes a redistribution of the receptor from the cell surface to endosomal structures, suggesting that IRAS may function as a sorting nexin (SNX) which regulates the endosomal trafficking of integrin. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Pssm-ID: 132785 Cd Length: 116 Bit Score: 69.23 E-value: 7.06e-14
|
||||||||||||||
PX | smart00312 | PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function ... |
1201-1274 | 2.21e-13 | ||||||||||
PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function present in phox proteins, PLD isoforms, a PI3K isoform. Pssm-ID: 214610 Cd Length: 105 Bit Score: 67.37 E-value: 2.21e-13
|
||||||||||||||
PX | pfam00787 | PX domain; PX domains bind to phosphoinositides. |
1216-1274 | 1.52e-12 | ||||||||||
PX domain; PX domains bind to phosphoinositides. Pssm-ID: 459940 Cd Length: 84 Bit Score: 64.18 E-value: 1.52e-12
|
||||||||||||||
Kinesin_assoc | pfam16183 | Kinesin-associated; |
364-476 | 1.56e-12 | ||||||||||
Kinesin-associated; Pssm-ID: 465047 [Multi-domain] Cd Length: 177 Bit Score: 67.17 E-value: 1.56e-12
|
||||||||||||||
FHA_KIF13A | cd22729 | forkhead associated (FHA) domain found in kinesin-like protein KIF13A; KIF13A, also called ... |
456-564 | 2.73e-12 | ||||||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF13A; KIF13A, also called kinesin-like protein RBKIN, is a plus end-directed microtubule-dependent motor protein involved in intracellular transport and in regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis, and cytokinesis. It mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, KIF13A is required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. It is also required for the abscission step in cytokinesis: it mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438781 [Multi-domain] Cd Length: 109 Bit Score: 64.52 E-value: 2.73e-12
|
||||||||||||||
PX_SNX13 | cd06873 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 13; The PX domain is a ... |
1216-1274 | 3.23e-12 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 13; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX13, also called RGS-PX1, contains an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs. It specifically binds to the stimulatory subunit of the heterotrimeric G protein G(alpha)s, serving as its GTPase activating protein, through the RGS domain. It preferentially binds phosphatidylinositol-3-phosphate (PI3P) through the PX domain and is localized in early endosomes. SNX13 is involved in endosomal sorting of EGFR into multivesicular bodies (MVB) for delivery to the lysosome. Pssm-ID: 132783 Cd Length: 120 Bit Score: 64.60 E-value: 3.23e-12
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
599-1095 | 3.57e-12 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 71.71 E-value: 3.57e-12
|
||||||||||||||
PX_MONaKA | cd06871 | The phosphoinositide binding Phox Homology domain of Modulator of Na,K-ATPase; The PX domain ... |
1200-1272 | 1.52e-11 | ||||||||||
The phosphoinositide binding Phox Homology domain of Modulator of Na,K-ATPase; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. MONaKA (Modulator of Na,K-ATPase) binds the plasma membrane ion transporter, Na,K-ATPase, and modulates its enzymatic and ion pump activities. It modulates brain Na,K-ATPase and may be involved in regulating electrical excitability and synaptic transmission. MONaKA contains an N-terminal PX domain and a C-terminal catalytic kinase domain. The PX domain interacts with PIs and plays a role in targeting proteins to PI-enriched membranes. Pssm-ID: 132781 Cd Length: 120 Bit Score: 62.76 E-value: 1.52e-11
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
603-877 | 1.63e-11 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 69.32 E-value: 1.63e-11
|
||||||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
600-869 | 2.20e-11 | ||||||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 68.61 E-value: 2.20e-11
|
||||||||||||||
FHA_KIF13B | cd22730 | forkhead associated (FHA) domain found in kinesin-like protein KIF13B; KIF13B, also called ... |
456-554 | 9.29e-11 | ||||||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF13B; KIF13B, also called kinesin-like protein GAKIN, is a novel kinesin-like protein that associates with the human homolog of the Drosophila discs large tumor suppressor in T lymphocytes. It is involved in reorganization of the cortical cytoskeleton. It regulates axon formation by promoting the formation of extra axons. KIF13B may be functionally important for the intracellular trafficking of membrane-associated guanylate kinase homologs (MAGUKs) and associated protein complexes. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438782 [Multi-domain] Cd Length: 99 Bit Score: 59.93 E-value: 9.29e-11
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
599-1077 | 1.25e-10 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 66.11 E-value: 1.25e-10
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
597-895 | 2.30e-10 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 65.46 E-value: 2.30e-10
|
||||||||||||||
SMC_N | pfam02463 | RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ... |
601-868 | 3.73e-10 | ||||||||||
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. Pssm-ID: 426784 [Multi-domain] Cd Length: 1161 Bit Score: 64.61 E-value: 3.73e-10
|
||||||||||||||
PX_SNARE | cd06897 | The phosphoinositide binding Phox Homology domain of SNARE proteins from fungi; The PX domain ... |
1189-1287 | 8.99e-10 | ||||||||||
The phosphoinositide binding Phox Homology domain of SNARE proteins from fungi; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. This subfamily is composed of fungal proteins similar to Saccharomyces cerevisiae Vam7p. They contain an N-terminal PX domain and a C-terminal SNARE domain. The SNARE (Soluble NSF attachment protein receptor) family of proteins are integral membrane proteins that serve as key factors for vesicular trafficking. Vam7p is anchored at the vacuolar membrane through the specific interaction of its PX domain with phosphatidylinositol-3-phosphate (PI3P) present in bilayers. It plays an essential role in vacuole fusion. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. Pssm-ID: 132807 Cd Length: 108 Bit Score: 57.28 E-value: 8.99e-10
|
||||||||||||||
PX_SNX22 | cd06880 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 22; The PX domain is a ... |
1188-1272 | 1.04e-09 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 22; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX22 may be involved in recruiting other proteins to the membrane via protein-protein and protein-ligand interaction. The biological function of SNX22 is not yet known. Pssm-ID: 132790 Cd Length: 110 Bit Score: 57.28 E-value: 1.04e-09
|
||||||||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
600-1071 | 2.08e-09 | ||||||||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 62.09 E-value: 2.08e-09
|
||||||||||||||
SMC_N | pfam02463 | RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ... |
595-933 | 3.57e-09 | ||||||||||
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. Pssm-ID: 426784 [Multi-domain] Cd Length: 1161 Bit Score: 61.53 E-value: 3.57e-09
|
||||||||||||||
PX_SNX20_21_like | cd07279 | The phosphoinositide binding Phox Homology domain of Sorting Nexins 20 and 21; The PX domain ... |
1223-1273 | 4.24e-09 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexins 20 and 21; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily consists of SNX20, SNX21, and similar proteins. SNX20 interacts with P-Selectin glycoprotein ligand-1 (PSGL-1), a surface-expressed mucin that acts as a ligand for the selectin family of adhesion proteins. It may function in the sorting and cycling of PSGL-1 into endosomes. SNX21, also called SNX-L, is distinctly and highly-expressed in fetal liver and may be involved in protein sorting and degradation during embryonic liver development. Pssm-ID: 132812 Cd Length: 112 Bit Score: 55.41 E-value: 4.24e-09
|
||||||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
596-790 | 5.71e-09 | ||||||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 60.52 E-value: 5.71e-09
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
597-1093 | 1.61e-08 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 59.30 E-value: 1.61e-08
|
||||||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
586-809 | 1.68e-08 | ||||||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 58.24 E-value: 1.68e-08
|
||||||||||||||
DUF4670 | pfam15709 | Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins ... |
600-771 | 1.72e-08 | ||||||||||
Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins in this family are typically between 373 and 763 amino acids in length. Pssm-ID: 464815 [Multi-domain] Cd Length: 522 Bit Score: 58.81 E-value: 1.72e-08
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
645-960 | 1.87e-08 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 59.18 E-value: 1.87e-08
|
||||||||||||||
PX_CISK | cd06870 | The phosphoinositide binding Phox Homology Domain of Cytokine-Independent Survival Kinase; The ... |
1202-1272 | 3.12e-08 | ||||||||||
The phosphoinositide binding Phox Homology Domain of Cytokine-Independent Survival Kinase; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Cytokine-independent survival kinase (CISK), also called Serum- and Glucocorticoid-induced Kinase 3 (SGK3), plays a role in cell growth and survival. It is expressed in most tissues and is most abundant in the embryo and adult heart and spleen. It was originally discovered in a screen for antiapoptotic genes. It phosphorylates and inhibits the proapoptotic proteins, Bad and FKHRL1. CISK/SGK3 also regulates many transporters, ion channels, and receptors. It plays a critical role in hair follicle morphogenesis and hair cycling. N-terminal to a catalytic kinase domain, CISK contains a PX domain which binds highly phosphorylated PIs, directs membrane localization, and regulates the enzyme's activity. Pssm-ID: 132780 Cd Length: 109 Bit Score: 52.80 E-value: 3.12e-08
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
616-909 | 4.95e-08 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 57.77 E-value: 4.95e-08
|
||||||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
578-870 | 5.74e-08 | ||||||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 57.38 E-value: 5.74e-08
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
600-808 | 5.97e-08 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 57.39 E-value: 5.97e-08
|
||||||||||||||
PX_MDM1p | cd06876 | The phosphoinositide binding Phox Homology domain of yeast MDM1p; The PX domain is a ... |
1218-1276 | 6.04e-08 | ||||||||||
The phosphoinositide binding Phox Homology domain of yeast MDM1p; The PX domain is a phosphoinositide binding (PI) module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Yeast MDM1p is a filament-like protein localized in punctate structures distributed throughout the cytoplasm. It plays an important role in nuclear and mitochondrial transmission to daughter buds. Members of this subfamily show similar domain architectures as some sorting nexins (SNXs). Some members are similar to SNX19 in that they contain an N-terminal PXA domain, a central PX domain, and a C-terminal domain that is conserved in some SNXs. Others are similar to SNX13 and SNX14, which also harbor these three domains as well as a regulator of G protein signaling (RGS) domain in between the PXA and PX domains. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Pssm-ID: 132786 Cd Length: 133 Bit Score: 52.70 E-value: 6.04e-08
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
640-973 | 6.85e-08 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 57.37 E-value: 6.85e-08
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
598-929 | 8.85e-08 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 57.07 E-value: 8.85e-08
|
||||||||||||||
Cast | pfam10174 | RIM-binding protein of the cytomatrix active zone; This is a family of proteins that form part ... |
597-806 | 9.96e-08 | ||||||||||
RIM-binding protein of the cytomatrix active zone; This is a family of proteins that form part of the CAZ (cytomatrix at the active zone) complex which is involved in determining the site of synaptic vesicle fusion. The C-terminus is a PDZ-binding motif that binds directly to RIM (a small G protein Rab-3A effector). The family also contains four coiled-coil domains. Pssm-ID: 431111 [Multi-domain] Cd Length: 766 Bit Score: 56.75 E-value: 9.96e-08
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
596-909 | 1.08e-07 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 56.61 E-value: 1.08e-07
|
||||||||||||||
FHA | cd00060 | forkhead associated (FHA) domain superfamily; Forkhead-associated (FHA) domains are small ... |
455-551 | 1.15e-07 | ||||||||||
forkhead associated (FHA) domain superfamily; Forkhead-associated (FHA) domains are small phosphopeptide recognition modules mostly found in eubacteria and eukaryotes. It is about 95-120 residues long that fold into an 11-stranded beta-sandwich. FHA domains can mediate the recognition of phosphorylated and non-phosphorylated substrates, as well as protein oligomerization. They specifically recognize threonine phosphorylation (pThr) accompanying activation of protein serine/threonine kinases. FHA domains show diverse ligand specificity. They may recognize the pTXXD motif, the pTXXI/L motif, and TQ clusters (singly and multiply phosphorylated). In eukaryotes, FHA superfamily members include forkhead-type transcription factors, as well as other signaling proteins, such as many regulatory proteins, kinases, phosphatases, motor proteins called kinesins, and metabolic enzymes. Many of them localize to the nucleus, where they participate in establishing or maintaining cell cycle checkpoints, DNA repair, or transcriptional regulation. FHA domains play important roles in human diseases, particularly in relation to DNA damage responses and cancers. In bacteria, FHA domain-containing proteins may participate in injection of viral proteins into host cells, transmembrane transporters, and cell division. FHA domain-containing proteins rarely include more than one copy of the domain. The only exception in eukaryotes is the checkpoint kinase Rad53 from Saccharomyces cerevisiae, which harbors two FHA domains (FHA1 and FHA2) flanking a central kinase domain. The two FHA domains recognize different phosphorylated targets and function independently from one another. In contrast, Mycobacterium tuberculosis ABC transporter Rv1747 contains two FHA domains but only one of them is essential for protein function. Pssm-ID: 438714 [Multi-domain] Cd Length: 92 Bit Score: 50.74 E-value: 1.15e-07
|
||||||||||||||
CwlO1 | COG3883 | Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function ... |
599-774 | 1.48e-07 | ||||||||||
Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function unknown]; Pssm-ID: 443091 [Multi-domain] Cd Length: 379 Bit Score: 55.22 E-value: 1.48e-07
|
||||||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
996-1097 | 1.57e-07 | ||||||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 56.08 E-value: 1.57e-07
|
||||||||||||||
PX_PI3K_C2 | cd06883 | The phosphoinositide binding Phox Homology Domain of Class II Phosphoinositide 3-Kinases; The ... |
1194-1278 | 2.35e-07 | ||||||||||
The phosphoinositide binding Phox Homology Domain of Class II Phosphoinositide 3-Kinases; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. The Phosphoinositide 3-Kinase (PI3K) family of enzymes catalyzes the phosphorylation of the 3-hydroxyl group of the inositol ring of phosphatidylinositol. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They are also involved in the regulation of clathrin-mediated membrane trafficking as well as ATP-dependent priming of neurosecretory granule exocytosis. PI3Ks are divided into three main classes (I, II, and III) based on their substrate specificity, regulation, and domain structure. Class II PI3Ks preferentially use PI as a substrate to produce PI3P, but can also phosphorylate PI4P to produce PI(3,4)P2. They function as monomers and do not associate with any regulatory subunits. Class II enzymes contain an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, an ATP-binding cataytic domain, a PX domain, and a second C2 domain at the C-terminus. Class II PI3Ks include three vertebrate isoforms (alpha, beta, and gamma), the Drosophila PI3K_68D, and similar proteins. Pssm-ID: 132793 Cd Length: 109 Bit Score: 50.43 E-value: 2.35e-07
|
||||||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
603-1077 | 2.93e-07 | ||||||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 55.07 E-value: 2.93e-07
|
||||||||||||||
SMC_N | pfam02463 | RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ... |
597-881 | 3.72e-07 | ||||||||||
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. Pssm-ID: 426784 [Multi-domain] Cd Length: 1161 Bit Score: 54.98 E-value: 3.72e-07
|
||||||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
691-913 | 4.04e-07 | ||||||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 54.68 E-value: 4.04e-07
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
596-1077 | 7.01e-07 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 53.91 E-value: 7.01e-07
|
||||||||||||||
sbcc | TIGR00618 | exonuclease SbcC; All proteins in this family for which functions are known are part of an ... |
601-1077 | 8.18e-07 | ||||||||||
exonuclease SbcC; All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] Pssm-ID: 129705 [Multi-domain] Cd Length: 1042 Bit Score: 53.82 E-value: 8.18e-07
|
||||||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
591-938 | 9.68e-07 | ||||||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 53.53 E-value: 9.68e-07
|
||||||||||||||
PX_SNX19_like_plant | cd06872 | The phosphoinositide binding Phox Homology domain of uncharacterized SNX19-like plant proteins; ... |
1212-1273 | 1.16e-06 | ||||||||||
The phosphoinositide binding Phox Homology domain of uncharacterized SNX19-like plant proteins; The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to PI-enriched membranes. Members in this subfamily are uncharacterized plant proteins containing an N-terminal PXA domain, a central PX domain, and a C-terminal domain that is conserved in some sorting nexins (SNXs). This is the same domain architecture found in SNX19. SNX13 and SNX14 also contain these three domains but also contain a regulator of G protein signaling (RGS) domain in between the PXA and PX domains. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction. Pssm-ID: 132782 Cd Length: 107 Bit Score: 48.29 E-value: 1.16e-06
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
833-1081 | 1.33e-06 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 53.14 E-value: 1.33e-06
|
||||||||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
691-1077 | 1.42e-06 | ||||||||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 52.85 E-value: 1.42e-06
|
||||||||||||||
PX_SNX8_Mvp1p_like | cd06866 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 8 and yeast Mvp1p; The PX ... |
1205-1273 | 1.71e-06 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 8 and yeast Mvp1p; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX8 and the yeast counterpart Mvp1p are involved in sorting and delivery of late-Golgi proteins, such as carboxypeptidase Y, to vacuoles. Pssm-ID: 132776 Cd Length: 105 Bit Score: 47.99 E-value: 1.71e-06
|
||||||||||||||
Cast | pfam10174 | RIM-binding protein of the cytomatrix active zone; This is a family of proteins that form part ... |
590-1103 | 1.84e-06 | ||||||||||
RIM-binding protein of the cytomatrix active zone; This is a family of proteins that form part of the CAZ (cytomatrix at the active zone) complex which is involved in determining the site of synaptic vesicle fusion. The C-terminus is a PDZ-binding motif that binds directly to RIM (a small G protein Rab-3A effector). The family also contains four coiled-coil domains. Pssm-ID: 431111 [Multi-domain] Cd Length: 766 Bit Score: 52.52 E-value: 1.84e-06
|
||||||||||||||
FHA_RADIL-like | cd22712 | forkhead associated (FHA) domain found in the Ras-associating and dilute domain-containing ... |
451-554 | 2.04e-06 | ||||||||||
forkhead associated (FHA) domain found in the Ras-associating and dilute domain-containing protein (Radil)-like family; The Radil-like family includes Radil and Ras-interacting protein 1 (Rain). Radil acts as an important small GTPase Rap1 effector required for cell spreading and migration. It regulates neutrophil adhesion and motility by linking Rap1 to beta2-integrin activation. Rain, also called Rasip1, is an endothelial-specific Ras-interacting protein required for the proper formation of vascular structures that develop via both vasculogenesis and angiogenesis. It acts as a critical and vascular-specific regulator of GTPase signaling, cell architecture, and adhesion, which is essential for endothelial cell morphogenesis and blood vessel tubulogenesis. Rain interacts with Ras in a GTP-dependent manner and may serve as an effector for endomembrane-associated Ras. Both Radil and Rain contain an FHA domain. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438764 [Multi-domain] Cd Length: 120 Bit Score: 48.07 E-value: 2.04e-06
|
||||||||||||||
PX_SNX15_like | cd06881 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 15-like proteins; The PX ... |
1220-1272 | 2.05e-06 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 15-like proteins; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Members of this subfamily have similarity to sorting nexin 15 (SNX15), which contains an N-terminal PX domain and a C-terminal Microtubule Interacting and Trafficking (MIT) domain. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNX15 plays a role in protein trafficking processes in the endocytic pathway and the trans-Golgi network. The PX domain of SNX15 interacts with the PDGF receptor and is responsible for the membrane association of the protein. Other members of this subfamily contain an additional C-terminal kinase domain, similar to human RPK118, which binds sphingosine kinase and the antioxidant peroxiredoxin-3 (PRDX3). RPK118 may be involved in the transport of proteins such as PRDX3 from the cytoplasm to its site of function in the mitochondria. Pssm-ID: 132791 Cd Length: 117 Bit Score: 48.09 E-value: 2.05e-06
|
||||||||||||||
sbcc | TIGR00618 | exonuclease SbcC; All proteins in this family for which functions are known are part of an ... |
605-1038 | 2.42e-06 | ||||||||||
exonuclease SbcC; All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] Pssm-ID: 129705 [Multi-domain] Cd Length: 1042 Bit Score: 52.28 E-value: 2.42e-06
|
||||||||||||||
PX_SNX25 | cd06878 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 25; The PX domain is a ... |
1219-1272 | 3.09e-06 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 25; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. The function of SNX25 is not yet known. It has been found in exosomes from human malignant pleural effusions. SNX25 shows the same domain architecture as SNX13 and SNX14, containing an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs. Pssm-ID: 132788 Cd Length: 127 Bit Score: 47.75 E-value: 3.09e-06
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
651-998 | 4.28e-06 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 51.60 E-value: 4.28e-06
|
||||||||||||||
SCP-1 | pfam05483 | Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major ... |
601-1094 | 5.46e-06 | ||||||||||
Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major component of the transverse filaments of the synaptonemal complex. Synaptonemal complexes are structures that are formed between homologous chromosomes during meiotic prophase. Pssm-ID: 114219 [Multi-domain] Cd Length: 787 Bit Score: 50.88 E-value: 5.46e-06
|
||||||||||||||
CCDC158 | pfam15921 | Coiled-coil domain-containing protein 158; CCDC158 is a family of proteins found in eukaryotes. ... |
604-1077 | 5.76e-06 | ||||||||||
Coiled-coil domain-containing protein 158; CCDC158 is a family of proteins found in eukaryotes. The function is not known. Pssm-ID: 464943 [Multi-domain] Cd Length: 1112 Bit Score: 50.89 E-value: 5.76e-06
|
||||||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
712-1076 | 7.17e-06 | ||||||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 50.51 E-value: 7.17e-06
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
597-929 | 7.45e-06 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 50.91 E-value: 7.45e-06
|
||||||||||||||
TPH | pfam13868 | Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of ... |
599-871 | 8.90e-06 | ||||||||||
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain. Pssm-ID: 464007 [Multi-domain] Cd Length: 341 Bit Score: 49.53 E-value: 8.90e-06
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
607-1134 | 9.00e-06 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 50.45 E-value: 9.00e-06
|
||||||||||||||
PRK02224 | PRK02224 | DNA double-strand break repair Rad50 ATPase; |
603-1079 | 9.01e-06 | ||||||||||
DNA double-strand break repair Rad50 ATPase; Pssm-ID: 179385 [Multi-domain] Cd Length: 880 Bit Score: 50.42 E-value: 9.01e-06
|
||||||||||||||
COG5391 | COG5391 | Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function ... |
1220-1285 | 1.13e-05 | ||||||||||
Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function prediction only]; Pssm-ID: 227680 [Multi-domain] Cd Length: 524 Bit Score: 49.80 E-value: 1.13e-05
|
||||||||||||||
FHA | COG1716 | Forkhead associated (FHA) domain, binds pSer, pThr, pTyr [Signal transduction mechanisms]; |
471-551 | 1.54e-05 | ||||||||||
Forkhead associated (FHA) domain, binds pSer, pThr, pTyr [Signal transduction mechanisms]; Pssm-ID: 441322 [Multi-domain] Cd Length: 96 Bit Score: 44.95 E-value: 1.54e-05
|
||||||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
998-1132 | 1.77e-05 | ||||||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 49.53 E-value: 1.77e-05
|
||||||||||||||
PX_SNX20 | cd07300 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 20; The PX domain is a ... |
1223-1277 | 3.70e-05 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 20; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX20 interacts with P-Selectin glycoprotein ligand-1 (PSGL-1), a surface-expressed mucin that acts as a ligand for the selectin family of adhesion proteins. The PX domain of SNX20 binds PIs and targets the SNX20/PSGL-1 complex to endosomes. SNX20 may function in the sorting and cycling of PSGL-1 into endosomes. Pssm-ID: 132833 Cd Length: 114 Bit Score: 44.42 E-value: 3.70e-05
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
600-809 | 4.19e-05 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 48.14 E-value: 4.19e-05
|
||||||||||||||
CwlO1 | COG3883 | Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function ... |
993-1113 | 4.30e-05 | ||||||||||
Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function unknown]; Pssm-ID: 443091 [Multi-domain] Cd Length: 379 Bit Score: 47.52 E-value: 4.30e-05
|
||||||||||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
597-758 | 4.47e-05 | ||||||||||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 47.85 E-value: 4.47e-05
|
||||||||||||||
DUF4659 | pfam15558 | Domain of unknown function (DUF4659); This family of proteins is found in eukaryotes. Proteins ... |
602-808 | 5.60e-05 | ||||||||||
Domain of unknown function (DUF4659); This family of proteins is found in eukaryotes. Proteins in this family are typically between 427 and 674 amino acids in length. There are two completely conserved residues (D and I) that may be functionally important. Pssm-ID: 464768 [Multi-domain] Cd Length: 374 Bit Score: 46.95 E-value: 5.60e-05
|
||||||||||||||
PX_SNX16 | cd07276 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 16; The PX domain is a ... |
1211-1274 | 6.12e-05 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 16; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX16 contains a central PX domain followed by a coiled-coil region. SNX16 is localized in early and recycling endosomes through the binding of its PX domain to phosphatidylinositol-3-phosphate (PI3P). It plays a role in epidermal growth factor (EGF) signaling by regulating EGF receptor membrane trafficking. Pssm-ID: 132809 Cd Length: 110 Bit Score: 43.55 E-value: 6.12e-05
|
||||||||||||||
PX_SNX27 | cd06886 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 27; The PX domain is a ... |
1185-1277 | 6.21e-05 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 27; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX27 contains an N-terminal PDZ domain followed by a PX domain and a Ras-Associated (RA) domain. It binds G protein-gated potassium (Kir3) channels, which play a role in neuronal excitability control, through its PDZ domain. SNX27 downregulates Kir3 channels by promoting their movement in the endosome, reducing surface expression and increasing degradation. SNX27 also associates with 5-hydroxytryptamine type 4 receptor (5-HT4R), cytohesin associated scaffolding protein (CASP), and diacylglycerol kinase zeta, and may play a role in their intracellular trafficking and endocytic recycling. The SNX27 PX domain preferentially binds to phosphatidylinositol-3-phosphate (PI3P) and is important for targeting to the early endosome. Pssm-ID: 132796 Cd Length: 106 Bit Score: 43.55 E-value: 6.21e-05
|
||||||||||||||
tolA | PRK09510 | cell envelope integrity inner membrane protein TolA; Provisional |
584-755 | 7.74e-05 | ||||||||||
cell envelope integrity inner membrane protein TolA; Provisional Pssm-ID: 236545 [Multi-domain] Cd Length: 387 Bit Score: 46.72 E-value: 7.74e-05
|
||||||||||||||
PX_p40phox | cd06882 | The phosphoinositide binding Phox Homology domain of the p40phox subunit of NADPH oxidase; The ... |
1200-1274 | 8.62e-05 | ||||||||||
The phosphoinositide binding Phox Homology domain of the p40phox subunit of NADPH oxidase; The PX domain is a phosphoinositide binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. p40phox contains an N-terminal PX domain, a central SH3 domain that binds p47phox, and a C-terminal PB1 domain that interacts with p67phox. It is a cytosolic subunit of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox) which plays a crucial role in the cellular response to bacterial infection. NADPH oxidase catalyzes the transfer of electrons from NADPH to oxygen during phagocytosis forming superoxide and reactive oxygen species. p40phox positively regulates NADPH oxidase in both phosphatidylinositol-3-phosphate (PI3P)-dependent and PI3P-independent manner. The PX domain is a phospholipid-binding module involved in the membrane targeting of proteins. The p40phox PX domain binds to PI3P, an abundant lipid in phagosomal membranes, playing an important role in the localization of NADPH oxidase. The PX domain of p40phox is also involved in protein-protein interaction. Pssm-ID: 132792 Cd Length: 123 Bit Score: 43.58 E-value: 8.62e-05
|
||||||||||||||
DR0291 | COG1579 | Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ... |
600-772 | 9.99e-05 | ||||||||||
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only]; Pssm-ID: 441187 [Multi-domain] Cd Length: 236 Bit Score: 45.30 E-value: 9.99e-05
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
747-1077 | 1.32e-04 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 46.60 E-value: 1.32e-04
|
||||||||||||||
COG1340 | COG1340 | Uncharacterized coiled-coil protein, contains DUF342 domain [Function unknown]; |
600-805 | 1.53e-04 | ||||||||||
Uncharacterized coiled-coil protein, contains DUF342 domain [Function unknown]; Pssm-ID: 440951 [Multi-domain] Cd Length: 297 Bit Score: 45.29 E-value: 1.53e-04
|
||||||||||||||
SMC_N | pfam02463 | RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ... |
354-1003 | 1.55e-04 | ||||||||||
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. Pssm-ID: 426784 [Multi-domain] Cd Length: 1161 Bit Score: 46.50 E-value: 1.55e-04
|
||||||||||||||
sbcc | TIGR00618 | exonuclease SbcC; All proteins in this family for which functions are known are part of an ... |
601-851 | 1.86e-04 | ||||||||||
exonuclease SbcC; All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] Pssm-ID: 129705 [Multi-domain] Cd Length: 1042 Bit Score: 46.12 E-value: 1.86e-04
|
||||||||||||||
PX_FISH | cd06888 | The phosphoinositide binding Phox Homology domain of Five SH protein; The PX domain is a ... |
1205-1265 | 2.00e-04 | ||||||||||
The phosphoinositide binding Phox Homology domain of Five SH protein; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Five SH (FISH), also called Tks5, is a scaffolding protein and Src substrate that is localized in podosomes, which are electron-dense structures found in Src-transformed fibroblasts, osteoclasts, macrophages, and some invasive cancer cells. FISH contains an N-terminal PX domain and five Src homology 3 (SH3) domains. FISH binds and regulates some members of the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. It is required for podosome formation, degradation of the extracellular matrix, and cancer cell invasion. This subfamily also includes proteins with a different number of SH3 domains than FISH, such as Tks4, which contains four SH3 domains instead of five. The Tks4 adaptor protein is required for the formation of functional podosomes. It has overlapping, but not identical, functions as FISH. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. Pssm-ID: 132798 Cd Length: 119 Bit Score: 42.41 E-value: 2.00e-04
|
||||||||||||||
TPH | pfam13868 | Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of ... |
599-862 | 2.09e-04 | ||||||||||
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain. Pssm-ID: 464007 [Multi-domain] Cd Length: 341 Bit Score: 45.29 E-value: 2.09e-04
|
||||||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
854-1079 | 2.11e-04 | ||||||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 45.88 E-value: 2.11e-04
|
||||||||||||||
PX_SNX1_2_like | cd06859 | The phosphoinositide binding Phox Homology domain of Sorting Nexins 1 and 2; The PX domain is ... |
1220-1273 | 2.28e-04 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexins 1 and 2; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily consists of SNX1, SNX2, and similar proteins. They harbor a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. Both domains have been shown to determine the specific membrane-targeting of SNX1. SNX1 and SNX2 are components of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures effcient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. Pssm-ID: 132769 [Multi-domain] Cd Length: 114 Bit Score: 42.18 E-value: 2.28e-04
|
||||||||||||||
PX_UP2_fungi | cd06869 | The phosphoinositide binding Phox Homology domain of uncharacterized fungal proteins; The PX ... |
1205-1274 | 2.36e-04 | ||||||||||
The phosphoinositide binding Phox Homology domain of uncharacterized fungal proteins; The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to PI-enriched membranes. Members in this subfamily are uncharacterized fungal proteins containing a PX domain. PX domain harboring proteins have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction. Pssm-ID: 132779 Cd Length: 119 Bit Score: 42.27 E-value: 2.36e-04
|
||||||||||||||
PX_Vps5p | cd06861 | The phosphoinositide binding Phox Homology domain of yeast sorting nexin Vps5p; The PX domain ... |
1217-1273 | 2.56e-04 | ||||||||||
The phosphoinositide binding Phox Homology domain of yeast sorting nexin Vps5p; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Vsp5p is the yeast counterpart of human SNX1 and is part of the retromer complex, which functions in the endosome-to-Golgi retrieval of vacuolar protein sorting receptor Vps10p, the Golgi-resident membrane protein A-ALP, and endopeptidase Kex2. The PX domain of Vps5p binds phosphatidylinositol-3-phosphate (PI3P). Similar to SNX1, Vps5p contains a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. Both domains have been shown to determine the specific membrane-targeting of SNX1. Pssm-ID: 132771 Cd Length: 112 Bit Score: 41.95 E-value: 2.56e-04
|
||||||||||||||
Yop-YscD_cpl | pfam16697 | Inner membrane component of T3SS, cytoplasmic domain; Yop-YscD-cpl is the cytoplasmic domain ... |
471-555 | 2.57e-04 | ||||||||||
Inner membrane component of T3SS, cytoplasmic domain; Yop-YscD-cpl is the cytoplasmic domain of Yop proteins like YscD from Proteobacteria. YscD forms part of the inner membrane component of the bacterial type III secretion injectosome apparatus. Pssm-ID: 465238 [Multi-domain] Cd Length: 94 Bit Score: 41.48 E-value: 2.57e-04
|
||||||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
677-926 | 3.18e-04 | ||||||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 45.11 E-value: 3.18e-04
|
||||||||||||||
CCDC158 | pfam15921 | Coiled-coil domain-containing protein 158; CCDC158 is a family of proteins found in eukaryotes. ... |
597-909 | 3.39e-04 | ||||||||||
Coiled-coil domain-containing protein 158; CCDC158 is a family of proteins found in eukaryotes. The function is not known. Pssm-ID: 464943 [Multi-domain] Cd Length: 1112 Bit Score: 45.11 E-value: 3.39e-04
|
||||||||||||||
UPF0242 | pfam06785 | Uncharacterized protein family (UPF0242) N-terminus; This region includes an N-terminal ... |
697-793 | 3.75e-04 | ||||||||||
Uncharacterized protein family (UPF0242) N-terminus; This region includes an N-terminal transmembrane region and a C-terminal coiled-coil. Pssm-ID: 429117 [Multi-domain] Cd Length: 194 Bit Score: 43.27 E-value: 3.75e-04
|
||||||||||||||
Caldesmon | pfam02029 | Caldesmon; |
604-836 | 3.90e-04 | ||||||||||
Caldesmon; Pssm-ID: 460421 [Multi-domain] Cd Length: 495 Bit Score: 44.47 E-value: 3.90e-04
|
||||||||||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
599-909 | 4.93e-04 | ||||||||||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 44.12 E-value: 4.93e-04
|
||||||||||||||
DUF4670 | pfam15709 | Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins ... |
604-807 | 5.14e-04 | ||||||||||
Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins in this family are typically between 373 and 763 amino acids in length. Pssm-ID: 464815 [Multi-domain] Cd Length: 522 Bit Score: 44.17 E-value: 5.14e-04
|
||||||||||||||
rad50 | TIGR00606 | rad50; All proteins in this family for which functions are known are involvedin recombination, ... |
602-1073 | 5.23e-04 | ||||||||||
rad50; All proteins in this family for which functions are known are involvedin recombination, recombinational repair, and/or non-homologous end joining.They are components of an exonuclease complex with MRE11 homologs. This family is distantly related to the SbcC family of bacterial proteins.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). Pssm-ID: 129694 [Multi-domain] Cd Length: 1311 Bit Score: 44.65 E-value: 5.23e-04
|
||||||||||||||
PX_SNX17_31 | cd06885 | The phosphoinositide binding Phox Homology domain of Sorting Nexins 17 and 31; The PX domain ... |
1224-1284 | 5.28e-04 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexins 17 and 31; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Members of this subfamily include sorting nexin 17 (SNX17), SNX31, and similar proteins. They contain an N-terminal PX domain followed by a truncated FERM (4.1, ezrin, radixin, and moesin) domain and a unique C-terminal region. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX17 is known to regulate the trafficking and processing of a number of proteins. It binds some members of the low-density lipoprotein receptor (LDLR) family such as LDLR, VLDLR, ApoER2, and others, regulating their endocytosis. It also binds P-selectin and may regulate its lysosomal degradation. SNX17 is highly expressed in neurons. It binds amyloid precursor protein (APP) and may be involved in its intracellular trafficking and processing to amyloid beta peptide, which plays a central role in the pathogenesis of Alzheimer's disease. The biological function of SNX31 is unknown. Pssm-ID: 132795 Cd Length: 104 Bit Score: 40.78 E-value: 5.28e-04
|
||||||||||||||
sbcc | TIGR00618 | exonuclease SbcC; All proteins in this family for which functions are known are part of an ... |
597-1077 | 5.68e-04 | ||||||||||
exonuclease SbcC; All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] Pssm-ID: 129705 [Multi-domain] Cd Length: 1042 Bit Score: 44.57 E-value: 5.68e-04
|
||||||||||||||
CALCOCO1 | pfam07888 | Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are ... |
703-1077 | 5.98e-04 | ||||||||||
Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are similar to the coiled-coil transcriptional coactivator protein coexpressed by Mus musculus (CoCoA/CALCOCO1). This protein binds to a highly conserved N-terminal domain of p160 coactivators, such as GRIP1, and thus enhances transcriptional activation by a number of nuclear receptors. CALCOCO1 has a central coiled-coil region with three leucine zipper motifs, which is required for its interaction with GRIP1 and may regulate the autonomous transcriptional activation activity of the C-terminal region. Pssm-ID: 462303 [Multi-domain] Cd Length: 488 Bit Score: 44.12 E-value: 5.98e-04
|
||||||||||||||
tolA | PRK09510 | cell envelope integrity inner membrane protein TolA; Provisional |
632-758 | 6.76e-04 | ||||||||||
cell envelope integrity inner membrane protein TolA; Provisional Pssm-ID: 236545 [Multi-domain] Cd Length: 387 Bit Score: 43.64 E-value: 6.76e-04
|
||||||||||||||
MAP7 | pfam05672 | MAP7 (E-MAP-115) family; The organization of microtubules varies with the cell type and is ... |
597-753 | 6.97e-04 | ||||||||||
MAP7 (E-MAP-115) family; The organization of microtubules varies with the cell type and is presumably controlled by tissue-specific microtubule-associated proteins (MAPs). The 115-kDa epithelial MAP (E-MAP-115/MAP7) has been identified as a microtubule-stabilising protein predominantly expressed in cell lines of epithelial origin. The binding of this microtubule associated protein is nucleotide independent. Pssm-ID: 461709 [Multi-domain] Cd Length: 153 Bit Score: 41.56 E-value: 6.97e-04
|
||||||||||||||
FHA_RADIL | cd22733 | forkhead associated (FHA) domain found in Ras-associating and dilute domain-containing protein ... |
452-554 | 7.39e-04 | ||||||||||
forkhead associated (FHA) domain found in Ras-associating and dilute domain-containing protein (Radil); Radil acts as an important small GTPase Rap1 effector required for cell spreading and migration. It regulates neutrophil adhesion and motility through linking Rap1 to beta2-integrin activation. It contains an FHA domain. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438785 Cd Length: 113 Bit Score: 40.55 E-value: 7.39e-04
|
||||||||||||||
PX_UP1_plant | cd06879 | The phosphoinositide binding Phox Homology domain of uncharacterized plant proteins; The PX ... |
1203-1287 | 8.50e-04 | ||||||||||
The phosphoinositide binding Phox Homology domain of uncharacterized plant proteins; The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to PI-enriched membranes. Members in this subfamily are uncharacterized fungal proteins containing a PX domain. PX domain harboring proteins have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction. Pssm-ID: 132789 Cd Length: 138 Bit Score: 41.16 E-value: 8.50e-04
|
||||||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
917-1079 | 8.70e-04 | ||||||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 43.21 E-value: 8.70e-04
|
||||||||||||||
PX_PI3K_C2_alpha | cd07289 | The phosphoinositide binding Phox Homology Domain of the Alpha Isoform of Class II ... |
1203-1278 | 9.12e-04 | ||||||||||
The phosphoinositide binding Phox Homology Domain of the Alpha Isoform of Class II Phosphoinositide 3-Kinases; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. The Phosphoinositide 3-Kinase (PI3K) family of enzymes catalyzes the phosphorylation of the 3-hydroxyl group of the inositol ring of phosphatidylinositol. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. PI3Ks are divided into three main classes (I, II, and III) based on their substrate specificity, regulation, and domain structure. Class II PI3Ks preferentially use PI as a substrate to produce PI3P, but can also phosphorylate PI4P to produce PI(3,4)P2. They function as monomers and do not associate with any regulatory subunits. Class II enzymes contain an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, an ATP-binding cataytic domain, a PX domain, and a second C2 domain at the C-terminus. The class II alpha isoform, PI3K-C2alpha, plays key roles in clathrin assembly and clathrin-mediated membrane trafficking, insulin signaling, vascular smooth muscle contraction, and the priming of neurosecretory granule exocytosis. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. Pssm-ID: 132822 Cd Length: 109 Bit Score: 40.30 E-value: 9.12e-04
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
743-1077 | 9.84e-04 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 43.51 E-value: 9.84e-04
|
||||||||||||||
PX_SNX14 | cd06877 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 14; The PX domain is a ... |
1189-1273 | 1.04e-03 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 14; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX14 may be involved in recruiting other proteins to the membrane via protein-protein and protein-ligand interaction. It is expressed in the embryonic nervous system of mice, and is co-expressed in the motoneurons and the anterior pituary with Islet-1. SNX14 shows a similar domain architecture as SNX13, containing an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs. Pssm-ID: 132787 Cd Length: 119 Bit Score: 40.44 E-value: 1.04e-03
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
955-1077 | 1.08e-03 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 43.39 E-value: 1.08e-03
|
||||||||||||||
PX_HS1BP3 | cd06868 | The phosphoinositide binding Phox Homology domain of HS1BP3; The PX domain is a ... |
1220-1273 | 1.13e-03 | ||||||||||
The phosphoinositide binding Phox Homology domain of HS1BP3; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Hematopoietic lineage cell-specific protein-1 (HS1) binding protein 3 (HS1BP3) associates with HS1 proteins through their SH3 domains, suggesting a role in mediating signaling. It has been reported that HS1BP3 might affect the IL-2 signaling pathway in hematopoietic lineage cells. Mutations in HS1BP3 may also be associated with familial Parkinson disease and essential tremor. HS1BP3 contains a PX domain, a leucine zipper, motifs similar to immunoreceptor tyrosine-based inhibitory motif and proline-rich regions. The PX domain interacts with PIs and plays a role in targeting proteins to PI-enriched membranes. Pssm-ID: 132778 Cd Length: 120 Bit Score: 40.09 E-value: 1.13e-03
|
||||||||||||||
Rabaptin | pfam03528 | Rabaptin; |
597-799 | 1.25e-03 | ||||||||||
Rabaptin; Pssm-ID: 367545 [Multi-domain] Cd Length: 486 Bit Score: 43.17 E-value: 1.25e-03
|
||||||||||||||
Caldesmon | pfam02029 | Caldesmon; |
599-773 | 1.40e-03 | ||||||||||
Caldesmon; Pssm-ID: 460421 [Multi-domain] Cd Length: 495 Bit Score: 42.93 E-value: 1.40e-03
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
833-1077 | 1.40e-03 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 43.00 E-value: 1.40e-03
|
||||||||||||||
PX_Bem1p | cd06890 | The phosphoinositide binding Phox Homology domain of Bem1p; The PX domain is a ... |
1188-1276 | 1.56e-03 | ||||||||||
The phosphoinositide binding Phox Homology domain of Bem1p; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Members of this subfamily bear similarity to Saccharomyces cerevisiae Bem1p, containing two Src Homology 3 (SH3) domains at the N-terminus, a central PX domain, and a C-terminal PB1 domain. Bem1p is a scaffolding protein that is critical for proper Cdc42p activation during bud formation in yeast. During budding and mating, Bem1p migrates to the plasma membrane where it can serve as an adaptor for Cdc42p and some other proteins. Bem1p also functions as an effector of the G1 cyclin Cln3p and the cyclin-dependent kinase Cdc28p in promoting vacuolar fusion. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. The PX domain of Bem1p specifically binds phosphatidylinositol-4-phosphate (PI4P). Pssm-ID: 132800 Cd Length: 112 Bit Score: 39.58 E-value: 1.56e-03
|
||||||||||||||
DUF4659 | pfam15558 | Domain of unknown function (DUF4659); This family of proteins is found in eukaryotes. Proteins ... |
599-779 | 1.59e-03 | ||||||||||
Domain of unknown function (DUF4659); This family of proteins is found in eukaryotes. Proteins in this family are typically between 427 and 674 amino acids in length. There are two completely conserved residues (D and I) that may be functionally important. Pssm-ID: 464768 [Multi-domain] Cd Length: 374 Bit Score: 42.33 E-value: 1.59e-03
|
||||||||||||||
DR0291 | COG1579 | Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ... |
640-808 | 1.60e-03 | ||||||||||
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only]; Pssm-ID: 441187 [Multi-domain] Cd Length: 236 Bit Score: 41.83 E-value: 1.60e-03
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
592-1085 | 1.75e-03 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 42.74 E-value: 1.75e-03
|
||||||||||||||
wall_bind_EntB | NF040676 | cell wall-binding protein EntB; This HMM describes the cell wall-binding protein EntB, as ... |
607-822 | 2.21e-03 | ||||||||||
cell wall-binding protein EntB; This HMM describes the cell wall-binding protein EntB, as found in Bacillus cereus. EntB is related to EntA, EntC, and EndD. All Ent family proteins have a signal peptide, an N-terminal SH3 domain and a C-terminal 3D (Asp-Asp-Asp) domain. EntB and EndC have a central region with a highly variable number of repeats resembling KAXEXX. The gene symbol derives from the notion that at least some members of the family function as enterotoxins, but more recent descriptions focus on roles in stress response and cell wall integrity. Pssm-ID: 468642 [Multi-domain] Cd Length: 476 Bit Score: 42.08 E-value: 2.21e-03
|
||||||||||||||
TPH | pfam13868 | Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of ... |
596-803 | 2.32e-03 | ||||||||||
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain. Pssm-ID: 464007 [Multi-domain] Cd Length: 341 Bit Score: 41.83 E-value: 2.32e-03
|
||||||||||||||
PX_SNX21 | cd07301 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 21; The PX domain is a ... |
1223-1272 | 2.33e-03 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 21; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX21, also called SNX-L, is distinctly and highly-expressed in fetal liver and may be involved in protein sorting and degradation during embryonic liver development. Pssm-ID: 132834 Cd Length: 112 Bit Score: 39.02 E-value: 2.33e-03
|
||||||||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
696-1076 | 2.87e-03 | ||||||||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 42.08 E-value: 2.87e-03
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
599-1079 | 2.97e-03 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 41.98 E-value: 2.97e-03
|
||||||||||||||
mukB | PRK04863 | chromosome partition protein MukB; |
999-1077 | 3.18e-03 | ||||||||||
chromosome partition protein MukB; Pssm-ID: 235316 [Multi-domain] Cd Length: 1486 Bit Score: 42.25 E-value: 3.18e-03
|
||||||||||||||
sbcc | TIGR00618 | exonuclease SbcC; All proteins in this family for which functions are known are part of an ... |
604-1065 | 3.71e-03 | ||||||||||
exonuclease SbcC; All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] Pssm-ID: 129705 [Multi-domain] Cd Length: 1042 Bit Score: 41.88 E-value: 3.71e-03
|
||||||||||||||
PX_SNX15 | cd07288 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 15; The PX domain is a ... |
1221-1283 | 3.87e-03 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 15; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX15 contains an N-terminal PX domain and a C-terminal Microtubule Interacting and Trafficking (MIT) domain. It plays a role in protein trafficking processes in the endocytic pathway and the trans-Golgi network. The PX domain of SNX15 interacts with the PDGF receptor and is responsible for the membrane association of the protein. Pssm-ID: 132821 Cd Length: 118 Bit Score: 38.80 E-value: 3.87e-03
|
||||||||||||||
PX_RPK118_like | cd07287 | The phosphoinositide binding Phox Homology domain of RPK118-like proteins; The PX domain is a ... |
1220-1273 | 4.41e-03 | ||||||||||
The phosphoinositide binding Phox Homology domain of RPK118-like proteins; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Members of this subfamily bear similarity to human RPK118, which contains an N-terminal PX domain, a Microtubule Interacting and Trafficking (MIT) domain, and a kinase domain. RPK118 binds sphingosine kinase, a key enzyme in the synthesis of sphingosine 1-phosphate (SPP), a lipid messenger involved in many cellular events. RPK118 may be involved in transmitting SPP-mediated signaling. It also binds the antioxidant peroxiredoxin-3 (PRDX3) and may be involved in the transport of PRDX3 from the cytoplasm to its site of function in the mitochondria. Members of this subfamily also show similarity to sorting nexin 15 (SNX15), which contains PX and MIT domains but does not contain a kinase domain. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNX15 plays a role in protein trafficking processes in the endocytic pathway and the trans-Golgi network. The PX domain of SNX15 interacts with the PDGF receptor and is responsible for the membrane association of the protein. Pssm-ID: 132820 Cd Length: 118 Bit Score: 38.41 E-value: 4.41e-03
|
||||||||||||||
PX_YPT35 | cd07280 | The phosphoinositide binding Phox Homology domain of the fungal protein YPT35; The PX domain ... |
1208-1272 | 4.79e-03 | ||||||||||
The phosphoinositide binding Phox Homology domain of the fungal protein YPT35; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. This subfamily is composed of YPT35 proteins from the fungal subkingdom Dikarya. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. The PX domain of YPT35 binds to phosphatidylinositol 3-phosphate (PI3P). It also serves as a protein interaction domain, binding to members of the Yip1p protein family, which localize to the ER and Golgi. YPT35 is mainly associated with endosomes and together with Yip1p proteins, may be involved in a specific function in the endocytic pathway. Pssm-ID: 132813 Cd Length: 120 Bit Score: 38.46 E-value: 4.79e-03
|
||||||||||||||
tolA_full | TIGR02794 | TolA protein; TolA couples the inner membrane complex of itself with TolQ and TolR to the ... |
599-758 | 5.06e-03 | ||||||||||
TolA protein; TolA couples the inner membrane complex of itself with TolQ and TolR to the outer membrane complex of TolB and OprL (also called Pal). Most of the length of the protein consists of low-complexity sequence that may differ in both length and composition from one species to another, complicating efforts to discriminate TolA (the most divergent gene in the tol-pal system) from paralogs such as TonB. Selection of members of the seed alignment and criteria for setting scoring cutoffs are based largely conserved operon struction. //The Tol-Pal complex is required for maintaining outer membrane integrity. Also involved in transport (uptake) of colicins and filamentous DNA, and implicated in pathogenesis. Transport is energized by the proton motive force. TolA is an inner membrane protein that interacts with periplasmic TolB and with outer membrane porins ompC, phoE and lamB. [Transport and binding proteins, Other, Cellular processes, Pathogenesis] Pssm-ID: 274303 [Multi-domain] Cd Length: 346 Bit Score: 40.60 E-value: 5.06e-03
|
||||||||||||||
DUF3584 | pfam12128 | Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. ... |
691-1031 | 5.09e-03 | ||||||||||
Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 943 to 1234 amino acids in length. This family contains a P-loop motif suggesting it is a nucleotide binding protein. It may be involved in replication. Pssm-ID: 432349 [Multi-domain] Cd Length: 1191 Bit Score: 41.36 E-value: 5.09e-03
|
||||||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
595-1076 | 5.16e-03 | ||||||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 41.44 E-value: 5.16e-03
|
||||||||||||||
tolA_full | TIGR02794 | TolA protein; TolA couples the inner membrane complex of itself with TolQ and TolR to the ... |
632-756 | 5.24e-03 | ||||||||||
TolA protein; TolA couples the inner membrane complex of itself with TolQ and TolR to the outer membrane complex of TolB and OprL (also called Pal). Most of the length of the protein consists of low-complexity sequence that may differ in both length and composition from one species to another, complicating efforts to discriminate TolA (the most divergent gene in the tol-pal system) from paralogs such as TonB. Selection of members of the seed alignment and criteria for setting scoring cutoffs are based largely conserved operon struction. //The Tol-Pal complex is required for maintaining outer membrane integrity. Also involved in transport (uptake) of colicins and filamentous DNA, and implicated in pathogenesis. Transport is energized by the proton motive force. TolA is an inner membrane protein that interacts with periplasmic TolB and with outer membrane porins ompC, phoE and lamB. [Transport and binding proteins, Other, Cellular processes, Pathogenesis] Pssm-ID: 274303 [Multi-domain] Cd Length: 346 Bit Score: 40.60 E-value: 5.24e-03
|
||||||||||||||
PTZ00266 | PTZ00266 | NIMA-related protein kinase; Provisional |
708-793 | 5.26e-03 | ||||||||||
NIMA-related protein kinase; Provisional Pssm-ID: 173502 [Multi-domain] Cd Length: 1021 Bit Score: 41.26 E-value: 5.26e-03
|
||||||||||||||
DUF3584 | pfam12128 | Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. ... |
655-808 | 5.54e-03 | ||||||||||
Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 943 to 1234 amino acids in length. This family contains a P-loop motif suggesting it is a nucleotide binding protein. It may be involved in replication. Pssm-ID: 432349 [Multi-domain] Cd Length: 1191 Bit Score: 41.36 E-value: 5.54e-03
|
||||||||||||||
FHA_Ki67 | cd22673 | forkhead associated (FHA) domain found in proliferation marker protein Ki-67 and similar ... |
473-551 | 5.76e-03 | ||||||||||
forkhead associated (FHA) domain found in proliferation marker protein Ki-67 and similar proteins; Ki-67, also called antigen identified by monoclonal antibody Ki-67, antigen KI-67, or antigen Ki67, acts as a biological surfactant to disperse mitotic chromosomes. It is required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly. Ki-67 binds DNA with a preference for supercoiled DNA and AT-rich DNA. It may also play a role in chromatin organization. Ki-67 contains an FHA domain at its N-terminus. The FHA domain is a small phosphopeptide recognition module. Pssm-ID: 438725 [Multi-domain] Cd Length: 95 Bit Score: 37.58 E-value: 5.76e-03
|
||||||||||||||
DR0291 | COG1579 | Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ... |
597-754 | 5.91e-03 | ||||||||||
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only]; Pssm-ID: 441187 [Multi-domain] Cd Length: 236 Bit Score: 39.91 E-value: 5.91e-03
|
||||||||||||||
GumC | COG3206 | Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; |
955-1115 | 6.02e-03 | ||||||||||
Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442439 [Multi-domain] Cd Length: 687 Bit Score: 40.77 E-value: 6.02e-03
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
642-929 | 6.10e-03 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 41.28 E-value: 6.10e-03
|
||||||||||||||
SCP-1 | pfam05483 | Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major ... |
579-795 | 6.12e-03 | ||||||||||
Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major component of the transverse filaments of the synaptonemal complex. Synaptonemal complexes are structures that are formed between homologous chromosomes during meiotic prophase. Pssm-ID: 114219 [Multi-domain] Cd Length: 787 Bit Score: 40.86 E-value: 6.12e-03
|
||||||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
993-1077 | 6.54e-03 | ||||||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 40.52 E-value: 6.54e-03
|
||||||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
889-1076 | 7.06e-03 | ||||||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 41.05 E-value: 7.06e-03
|
||||||||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
634-1093 | 9.14e-03 | ||||||||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 40.54 E-value: 9.14e-03
|
||||||||||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
691-809 | 9.19e-03 | ||||||||||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 40.15 E-value: 9.19e-03
|
||||||||||||||
PX_SNX19 | cd06893 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 19; The PX domain is a ... |
1218-1273 | 9.97e-03 | ||||||||||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 19; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX19 contains an N-terminal PXA domain, a central PX domain, and a C-terminal domain that is conserved in some SNXs. These domains are also found in SNX13 and SNX14, which also contain a regulator of G protein signaling (RGS) domain in between the PXA and PX domains. SNX19 interacts with IA-2, a major autoantigen found in type-1 diabetes. It inhibits the conversion of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to PI(3,4,5)P3, which leads in the decrease of protein phosphorylation in the Akt signaling pathway, resulting in apoptosis. SNX19 may also be implicated in coronary heart disease and thyroid oncocytic tumors. Pssm-ID: 132803 [Multi-domain] Cd Length: 132 Bit Score: 37.91 E-value: 9.97e-03
|
||||||||||||||
Blast search parameters | ||||
|