casein kinase II subunit alpha' isoform X2 [Rattus norvegicus]
casein kinase II subunit alpha/alpha'( domain architecture ID 10197591)
casein kinase II subunit alpha/alpha' is the catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
STKc_CK2_alpha | cd14132 | Catalytic subunit (alpha) of the Serine/Threonine Kinase, Casein Kinase 2; STKs catalyze the ... |
22-298 | 3.01e-178 | |||||
Catalytic subunit (alpha) of the Serine/Threonine Kinase, Casein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK2 is a tetrameric protein with two catalytic (alpha) and two regulatory (beta) subunits. It is constitutively active and ubiquitously expressed, and is found in the cytoplasm, nucleus, as well as in the plasma membrane. It phosphorylates a wide variety of substrates including gylcogen synthase, cell cycle proteins, nuclear proteins (e.g. DNA topoisomerase II), and ion channels (e.g. ENaC), among others. It may be considered a master kinase controlling the activity or lifespan of many other kinases and exerting its effect over cell fate, gene expression, protein synthesis and degradation, and viral infection. CK2 is implicated in every stage of the cell cycle and is required for cell cycle progression. It plays crucial roles in cell differentiation, proliferation, and survival, and is thus implicated in cancer. CK2 is not an oncogene by itself but elevated CK2 levels create an environment that enhances the survival of tumor cells. The CK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. : Pssm-ID: 271034 [Multi-domain] Cd Length: 306 Bit Score: 494.75 E-value: 3.01e-178
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
STKc_CK2_alpha | cd14132 | Catalytic subunit (alpha) of the Serine/Threonine Kinase, Casein Kinase 2; STKs catalyze the ... |
22-298 | 3.01e-178 | |||||
Catalytic subunit (alpha) of the Serine/Threonine Kinase, Casein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK2 is a tetrameric protein with two catalytic (alpha) and two regulatory (beta) subunits. It is constitutively active and ubiquitously expressed, and is found in the cytoplasm, nucleus, as well as in the plasma membrane. It phosphorylates a wide variety of substrates including gylcogen synthase, cell cycle proteins, nuclear proteins (e.g. DNA topoisomerase II), and ion channels (e.g. ENaC), among others. It may be considered a master kinase controlling the activity or lifespan of many other kinases and exerting its effect over cell fate, gene expression, protein synthesis and degradation, and viral infection. CK2 is implicated in every stage of the cell cycle and is required for cell cycle progression. It plays crucial roles in cell differentiation, proliferation, and survival, and is thus implicated in cancer. CK2 is not an oncogene by itself but elevated CK2 levels create an environment that enhances the survival of tumor cells. The CK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271034 [Multi-domain] Cd Length: 306 Bit Score: 494.75 E-value: 3.01e-178
|
|||||||||
Pkinase | pfam00069 | Protein kinase domain; |
40-297 | 9.55e-44 | |||||
Protein kinase domain; Pssm-ID: 459660 [Multi-domain] Cd Length: 217 Bit Score: 149.32 E-value: 9.55e-44
|
|||||||||
S_TKc | smart00220 | Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ... |
40-297 | 1.59e-40 | |||||
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily. Pssm-ID: 214567 [Multi-domain] Cd Length: 254 Bit Score: 142.28 E-value: 1.59e-40
|
|||||||||
PLN00009 | PLN00009 | cyclin-dependent kinase A; Provisional |
38-297 | 1.93e-24 | |||||
cyclin-dependent kinase A; Provisional Pssm-ID: 177649 [Multi-domain] Cd Length: 294 Bit Score: 100.28 E-value: 1.93e-24
|
|||||||||
SPS1 | COG0515 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
38-219 | 7.39e-04 | |||||
Serine/threonine protein kinase [Signal transduction mechanisms]; Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 41.15 E-value: 7.39e-04
|
|||||||||
Name | Accession | Description | Interval | E-value | ||||||
STKc_CK2_alpha | cd14132 | Catalytic subunit (alpha) of the Serine/Threonine Kinase, Casein Kinase 2; STKs catalyze the ... |
22-298 | 3.01e-178 | ||||||
Catalytic subunit (alpha) of the Serine/Threonine Kinase, Casein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK2 is a tetrameric protein with two catalytic (alpha) and two regulatory (beta) subunits. It is constitutively active and ubiquitously expressed, and is found in the cytoplasm, nucleus, as well as in the plasma membrane. It phosphorylates a wide variety of substrates including gylcogen synthase, cell cycle proteins, nuclear proteins (e.g. DNA topoisomerase II), and ion channels (e.g. ENaC), among others. It may be considered a master kinase controlling the activity or lifespan of many other kinases and exerting its effect over cell fate, gene expression, protein synthesis and degradation, and viral infection. CK2 is implicated in every stage of the cell cycle and is required for cell cycle progression. It plays crucial roles in cell differentiation, proliferation, and survival, and is thus implicated in cancer. CK2 is not an oncogene by itself but elevated CK2 levels create an environment that enhances the survival of tumor cells. The CK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271034 [Multi-domain] Cd Length: 306 Bit Score: 494.75 E-value: 3.01e-178
|
||||||||||
STKc_CMGC | cd05118 | Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
40-297 | 7.90e-49 | ||||||
Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The CMGC family consists of Cyclin-Dependent protein Kinases (CDKs), Mitogen-activated protein kinases (MAPKs) such as Extracellular signal-regulated kinase (ERKs), c-Jun N-terminal kinases (JNKs), and p38, and other kinases. CDKs belong to a large subfamily of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Other members of the CMGC family include casein kinase 2 (CK2), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK), Glycogen Synthase Kinase 3 (GSK3), among many others. The CMGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270688 [Multi-domain] Cd Length: 249 Bit Score: 163.56 E-value: 7.90e-49
|
||||||||||
Pkinase | pfam00069 | Protein kinase domain; |
40-297 | 9.55e-44 | ||||||
Protein kinase domain; Pssm-ID: 459660 [Multi-domain] Cd Length: 217 Bit Score: 149.32 E-value: 9.55e-44
|
||||||||||
STKc_CDK_like | cd07829 | Catalytic domain of Cyclin-Dependent protein Kinase-like Serine/Threonine Kinases; STKs ... |
40-297 | 4.55e-42 | ||||||
Catalytic domain of Cyclin-Dependent protein Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. CDKs are partly regulated by their subcellular localization, which defines substrate phosphorylation and the resulting specific function. CDK1, CDK2, CDK4, and CDK6 have well-defined functions in the cell cycle, such as the regulation of the early G1 phase by CDK4 or CDK6, the G1/S phase transition by CDK2, or the entry of mitosis by CDK1. They also exhibit overlapping cyclin specificity and functions in certain conditions. Knockout mice with a single CDK deleted remain viable with specific phenotypes, showing that some CDKs can compensate for each other. For example, CDK4 can compensate for the loss of CDK6, however, double knockout mice with both CDK4 and CDK6 deleted die in utero. CDK8 and CDK9 are mainly involved in transcription while CDK5 is implicated in neuronal function. CDK7 plays essential roles in both the cell cycle as a CDK-Activating Kinase (CAK) and in transcription as a component of the general transcription factor TFIIH. The CDK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270823 [Multi-domain] Cd Length: 282 Bit Score: 146.86 E-value: 4.55e-42
|
||||||||||
S_TKc | smart00220 | Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ... |
40-297 | 1.59e-40 | ||||||
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily. Pssm-ID: 214567 [Multi-domain] Cd Length: 254 Bit Score: 142.28 E-value: 1.59e-40
|
||||||||||
STKc_CCRK | cd07832 | Catalytic domain of the Serine/Threonine Kinase, Cell Cycle-Related Kinase; STKs catalyze the ... |
39-298 | 2.08e-38 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cell Cycle-Related Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CCRK was previously called p42. It is a Cyclin-Dependent Kinase (CDK)-Activating Kinase (CAK) which is essential for the activation of CDK2. It is indispensable for cell growth and has been implicated in the progression of glioblastoma multiforme. In the heart, a splice variant of CCRK with a different C-terminal half is expressed; this variant promotes cardiac cell growth and survival and is significantly down-regulated during the development of heart failure. The CCRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270826 [Multi-domain] Cd Length: 287 Bit Score: 137.46 E-value: 2.08e-38
|
||||||||||
STKc_GSK3 | cd14137 | The catalytic domain of the Serine/Threonine Kinase, Glycogen Synthase Kinase 3; STKs catalyze ... |
94-297 | 2.96e-36 | ||||||
The catalytic domain of the Serine/Threonine Kinase, Glycogen Synthase Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GSK3 is a mutifunctional kinase involved in many cellular processes including cell division, proliferation, differentiation, adhesion, and apoptosis. In plants, GSK3 plays a role in the response to osmotic stress. In Caenorhabditis elegans, it plays a role in regulating normal oocyte-to-embryo transition and response to oxidative stress. In Chlamydomonas reinhardtii, GSK3 regulates flagellar length and assembly. In mammals, there are two isoforms, GSK3alpha and GSK3beta, which show both distinct and redundant functions. The two isoforms differ mainly in their N-termini. They are both involved in axon formation and in Wnt signaling.They play distinct roles in cardiogenesis, with GSKalpha being essential in cardiomyocyte survival, and GSKbeta regulating heart positioning and left-right symmetry. GSK3beta was first identified as a regulator of glycogen synthesis, but has since been determined to play other roles. It regulates the degradation of beta-catenin and IkB. Beta-catenin is the main effector of Wnt, which is involved in normal haematopoiesis and stem cell function. IkB is a central inhibitor of NF-kB, which is critical in maintaining leukemic cell growth. GSK3beta is enriched in the brain and is involved in regulating neuronal signaling pathways. It is implicated in the pathogenesis of many diseases including Type II diabetes, obesity, mood disorders, Alzheimer's disease, osteoporosis, and some types of cancer, among others. The GSK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271039 [Multi-domain] Cd Length: 293 Bit Score: 131.86 E-value: 2.96e-36
|
||||||||||
STKc_CDK9_like | cd07840 | Catalytic domain of Cyclin-Dependent protein Kinase 9-like Serine/Threonine Kinases; STKs ... |
40-297 | 3.19e-35 | ||||||
Catalytic domain of Cyclin-Dependent protein Kinase 9-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK9 and CDK12 from higher eukaryotes, yeast BUR1, C-type plant CDKs (CdkC), and similar proteins. CDK9, BUR1, and CdkC are functionally equivalent. They act as a kinase for the C-terminal domain of RNA polymerase II and participate in regulating mutliple steps of gene expression including transcription elongation and RNA processing. CDK9 and CdkC associate with T-type cyclins while BUR1 associates with the cyclin BUR2. CDK12 is a unique CDK that contains an arginine/serine-rich (RS) domain, which is predominantly found in splicing factors. CDK12 interacts with cyclins L1 and L2, and participates in regulating transcription and alternative splicing. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK9-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270832 [Multi-domain] Cd Length: 291 Bit Score: 129.22 E-value: 3.19e-35
|
||||||||||
STKc_MAPK | cd07834 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase; STKs ... |
94-297 | 5.13e-33 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Typical MAPK pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPK kinase (MAP2K or MKK), which itself is phosphorylated and activated by a MAPK kinase kinase (MAP3K or MKKK). Each cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAP3K to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. There are three typical MAPK subfamilies: Extracellular signal-Regulated Kinase (ERK), c-Jun N-terminal Kinase (JNK), and p38. Some MAPKs are atypical in that they are not regulated by MAP2Ks. These include MAPK4, MAPK6, NLK, and ERK7. The MAPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270828 [Multi-domain] Cd Length: 329 Bit Score: 124.17 E-value: 5.13e-33
|
||||||||||
STKc_MPK1 | cd07857 | Catalytic domain of the Serine/Threonine Kinase, Fungal Mitogen-Activated Protein Kinase MPK1; ... |
40-296 | 6.58e-33 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Fungal Mitogen-Activated Protein Kinase MPK1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the MAPKs MPK1 from Saccharomyces cerevisiae, Pmk1 from Schizosaccharomyces pombe, and similar proteins. MPK1 (also called Slt2) and Pmk1 (also called Spm1) are stress-activated MAPKs that regulate the cell wall integrity pathway, and are therefore important in the maintainance of cell shape, cell wall construction, morphogenesis, and ion homeostasis. MPK1 is activated in response to cell wall stress including heat stimulation, osmotic shock, UV irradiation, and any agents that interfere with cell wall biogenesis such as chitin antagonists, caffeine, or zymolase. MPK1 is regulated by the MAP2Ks Mkk1/2, which are regulated by the MAP3K Bck1. Pmk1 is also activated by multiple stresses including elevated temperatures, hyper- or hypotonic stress, glucose deprivation, exposure to cell-wall damaging compounds, and oxidative stress. It is regulated by the MAP2K Pek1, which is regulated by the MAP3K Mkh1. MAPKs are important mediators of cellular responses to extracellular signals. The MPK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173750 [Multi-domain] Cd Length: 332 Bit Score: 124.05 E-value: 6.58e-33
|
||||||||||
STKc_MOK | cd07831 | Catalytic domain of the Serine/Threonine Kinase, MAPK/MAK/MRK Overlapping Kinase; STKs ... |
40-297 | 3.95e-30 | ||||||
Catalytic domain of the Serine/Threonine Kinase, MAPK/MAK/MRK Overlapping Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MOK, also called Renal tumor antigen 1 (RAGE-1), is widely expressed and is enriched in testis, kidney, lung, and brain. It is expressed in approximately 50% of renal cell carcinomas (RCC) and is a potential target for immunotherapy. MOK is stabilized by its association with the HSP90 molecular chaperone. It is induced by the transcription factor Cdx2 and may be involved in regulating intestinal epithelial development and differentiation. The MOK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270825 [Multi-domain] Cd Length: 282 Bit Score: 115.45 E-value: 3.95e-30
|
||||||||||
STKc_CDK7 | cd07841 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 7; STKs ... |
94-308 | 6.01e-30 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK7 plays essential roles in the cell cycle and in transcription. It associates with cyclin H and MAT1 and acts as a CDK-Activating Kinase (CAK) by phosphorylating and activating cell cycle CDKs (CDK1/2/4/6). In the brain, it activates CDK5. CDK7 is also a component of the general transcription factor TFIIH, which phosphorylates the C-terminal domain (CTD) of RNA polymerase II when it is bound with unphosphorylated DNA, as present in the pre-initiation complex. Following phosphorylation, the CTD dissociates from the DNA which allows transcription initiation. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK7 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270833 [Multi-domain] Cd Length: 298 Bit Score: 115.36 E-value: 6.01e-30
|
||||||||||
STKc_MAPK15-like | cd07852 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase 15 and ... |
40-307 | 1.43e-29 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase 15 and similar MAPKs; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Human MAPK15 is also called Extracellular signal Regulated Kinase 8 (ERK8) while the rat protein is called ERK7. ERK7 and ERK8 display both similar and different biochemical properties. They autophosphorylate and activate themselves and do not require upstream activating kinases. ERK7 is constitutively active and is not affected by extracellular stimuli whereas ERK8 shows low basal activity and is activated by DNA-damaging agents. ERK7 and ERK8 also have different substrate profiles. Genome analysis shows that they are orthologs with similar gene structures. ERK7 and ERK 8 may be involved in the signaling of some nuclear receptor transcription factors. ERK7 regulates hormone-dependent degradation of estrogen receptor alpha while ERK8 down-regulates the transcriptional co-activation androgen and glucocorticoid receptors. MAPKs are important mediators of cellular responses to extracellular signals. The MAPK15 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270841 [Multi-domain] Cd Length: 337 Bit Score: 115.35 E-value: 1.43e-29
|
||||||||||
STKc_CDKL | cd07833 | Catalytic domain of Cyclin-Dependent protein Kinase Like Serine/Threonine Kinases; STKs ... |
94-297 | 2.68e-29 | ||||||
Catalytic domain of Cyclin-Dependent protein Kinase Like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDKL1-5 and similar proteins. Some CDKLs, like CDKL1 and CDKL3, may be implicated in transformation and others, like CDKL3 and CDKL5, are associated with mental retardation when impaired. CDKL2 plays a role in learning and memory. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270827 [Multi-domain] Cd Length: 288 Bit Score: 113.57 E-value: 2.68e-29
|
||||||||||
STKc_CDK1_CdkB_like | cd07835 | Catalytic domain of Cyclin-Dependent protein Kinase 1-like Serine/Threonine Kinases and of ... |
40-297 | 3.77e-29 | ||||||
Catalytic domain of Cyclin-Dependent protein Kinase 1-like Serine/Threonine Kinases and of Plant B-type Cyclin-Dependent protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK, CDK2, and CDK3. CDK1 is also called Cell division control protein 2 (Cdc2) or p34 protein kinase, and is regulated by cyclins A, B, and E. The CDK1/cyclin A complex controls G2 phase entry and progression while the CDK1/cyclin B complex is critical for G2 to M phase transition. CDK2 is regulated by cyclin E or cyclin A. Upon activation by cyclin E, it phosphorylates the retinoblastoma (pRb) protein which activates E2F mediated transcription and allows cells to move into S phase. The CDK2/cyclin A complex plays a role in regulating DNA replication. Studies in knockout mice revealed that CDK1 can compensate for the loss of the cdk2 gene as it can also bind cyclin E and drive G1 to S phase transition. CDK3 is regulated by cyclin C and it phosphorylates pRB specifically during the G0/G1 transition. This phosphorylation is required for cells to exit G0 efficiently and enter the G1 phase. The plant-specific B-type CDKs are expressed from the late S to the M phase of the cell cycle. They are characterized by the cyclin binding motif PPT[A/T]LRE. They play a role in controlling mitosis and integrating developmental pathways, such as stomata and leaf development. CdkB has been shown to associate with both cyclin B, which controls G2/M transition, and cyclin D, which acts as a mediator in linking extracellular signals to the cell cycle. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270829 [Multi-domain] Cd Length: 283 Bit Score: 112.77 E-value: 3.77e-29
|
||||||||||
STKc_Cdc7 | cd14019 | Catalytic domain of the Serine/Threonine Kinase, Cell Division Cycle 7 kinase; STKs catalyze ... |
38-297 | 5.25e-29 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cell Division Cycle 7 kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Cdc7 kinase (or Hsk1 in fission yeast) is a critical regulator in the initiation of DNA replication. It forms a complex with a Dbf4-related regulatory subunit, a cyclin-like molecule that activates the kinase in late G1 phase, and is also referred to as Dbf4-dependent kinase (DDK). Its main targets are mini-chromosome maintenance (MCM) proteins. Cdc7 kinase may also have additional roles in meiosis, checkpoint responses, the maintenance and repair of chromosome structures, and cancer progression. The Cdc7 kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270921 [Multi-domain] Cd Length: 252 Bit Score: 111.54 E-value: 5.25e-29
|
||||||||||
STKc_Pho85 | cd07836 | Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase Pho85; ... |
40-297 | 7.46e-28 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase Pho85; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Pho85 is a multifunctional CDK in yeast. It is regulated by 10 different cyclins (Pcls) and plays a role in G1 progression, cell polarity, phosphate and glycogen metabolism, gene expression, and in signaling changes in the environment. It is not essential for yeast viability and is the functional homolog of mammalian CDK5, which plays a role in central nervous system development. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The Pho85 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143341 [Multi-domain] Cd Length: 284 Bit Score: 109.49 E-value: 7.46e-28
|
||||||||||
STKc_p38 | cd07851 | Catalytic domain of the Serine/Threonine Kinase, p38 Mitogen-Activated Protein Kinase; STKs ... |
94-310 | 1.95e-27 | ||||||
Catalytic domain of the Serine/Threonine Kinase, p38 Mitogen-Activated Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38 kinases are mitogen-activated protein kinases (MAPKs), serving as important mediators of cellular responses to extracellular signals. They function in the regulation of the cell cycle, cell development, cell differentiation, senescence, tumorigenesis, apoptosis, pain development and pain progression, and immune responses. p38 kinases are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. p38 substrates include other protein kinases and factors that regulate transcription, nuclear export, mRNA stability and translation. p38 kinases are drug targets for the inflammatory diseases psoriasis, rheumatoid arthritis, and chronic pulmonary disease. Vertebrates contain four isoforms of p38, named alpha, beta, gamma, and delta, which show varying substrate specificity and expression patterns. p38alpha and p38beta are ubiquitously expressed, p38gamma is predominantly found in skeletal muscle, and p38delta is found in the heart, lung, testis, pancreas, and small intestine. The p38 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143356 [Multi-domain] Cd Length: 343 Bit Score: 109.69 E-value: 1.95e-27
|
||||||||||
STKc_p38beta | cd07878 | Catalytic domain of the Serine/Threonine Kinase, p38beta Mitogen-Activated Protein Kinase ... |
94-310 | 2.77e-27 | ||||||
Catalytic domain of the Serine/Threonine Kinase, p38beta Mitogen-Activated Protein Kinase (also called MAPK11); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38beta/MAPK11 is widely expressed in tissues and shows more similarity with p38alpha than with the other isoforms. Both are sensitive to pyridinylimidazoles and share some common substrates such as MAPK activated protein kinase 2 (MK2) and the transcription factors ATF2, c-Fos and, ELK-1. p38beta is involved in regulating the activation of the cyclooxygenase-2 promoter and the expression of TGFbeta-induced alpha-smooth muscle cell actin. p38 kinases are mitogen-activated protein kinases (MAPKs), serving as important mediators of cellular responses to extracellular signals. They are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. The p38beta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143383 [Multi-domain] Cd Length: 343 Bit Score: 109.37 E-value: 2.77e-27
|
||||||||||
STKc_p38alpha | cd07877 | Catalytic domain of the Serine/Threonine Kinase, p38alpha Mitogen-Activated Protein Kinase ... |
94-310 | 1.49e-26 | ||||||
Catalytic domain of the Serine/Threonine Kinase, p38alpha Mitogen-Activated Protein Kinase (also called MAPK14); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38alpha/MAPK14 is expressed in most tissues and is the major isoform involved in the immune and inflammatory response. It is the central p38 MAPK involved in myogenesis. It plays a role in regulating cell cycle check-point transition and promoting cell differentiation. p38alpha also regulates cell proliferation and death through crosstalk with the JNK pathway. Its substrates include MAPK activated protein kinase 2 (MK2), MK5, and the transcription factors ATF2 and Mitf. p38 kinases MAPKs, serving as important mediators of cellular responses to extracellular signals. They are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. The p38alpha subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143382 [Multi-domain] Cd Length: 345 Bit Score: 107.43 E-value: 1.49e-26
|
||||||||||
STKc_CDC2L1 | cd07843 | Catalytic domain of the Serine/Threonine Kinase, Cell Division Cycle 2-like 1; STKs catalyze ... |
144-297 | 3.89e-26 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cell Division Cycle 2-like 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDC2L1, also called PITSLRE, exists in different isoforms which are named using the alias CDK11(p). The CDC2L1 gene produces two protein products, CDK11(p110) and CDK11(p58). CDC2L1 is also represented by the caspase-processed CDK11(p46). CDK11(p110), the major isoform, associates with cyclin L and is expressed throughout the cell cycle. It is involved in RNA processing and the regulation of transcription. CDK11(p58) associates with cyclin D3 and is expressed during the G2/M phase of the cell cycle. It plays roles in spindle morphogenesis, centrosome maturation, sister chromatid cohesion, and the completion of mitosis. CDK11(p46) is formed from the larger isoforms by caspases during TNFalpha- and Fas-induced apoptosis. It functions as a downstream effector kinase in apoptotic signaling pathways and interacts with eukaryotic initiation factor 3f (eIF3f), p21-activated kinase (PAK1), and Ran-binding protein (RanBPM). CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDC2L1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173741 [Multi-domain] Cd Length: 293 Bit Score: 105.00 E-value: 3.89e-26
|
||||||||||
STKc_MAK_like | cd07830 | Catalytic domain of Male germ cell-Associated Kinase-like Serine/Threonine Kinases; STKs ... |
40-297 | 3.96e-26 | ||||||
Catalytic domain of Male germ cell-Associated Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of human MAK and MAK-related kinase (MRK), Saccharomyces cerevisiae Ime2p, Schizosaccharomyces pombe Mei4-dependent protein 3 (Mde3) and Pit1, Caenorhabditis elegans dyf-5, Arabidopsis thaliana MHK, and similar proteins. These proteins play important roles during meiosis. MAK is highly expressed in testicular cells specifically in the meiotic phase, but is not essential for spermatogenesis and fertility. It functions as a coactivator of the androgen receptor in prostate cells. MRK, also called Intestinal Cell Kinase (ICK), is expressed ubiquitously, with highest expression in the ovary and uterus. A missense mutation in MRK causes endocrine-cerebro-osteodysplasia, suggesting that this protein plays an important role in the development of many organs. MAK and MRK may be involved in regulating cell cycle and cell fate. Ime2p is a meiosis-specific kinase that is important during meiotic initiation and during the later stages of meiosis. Mde3 functions downstream of the transcription factor Mei-4 which is essential for meiotic prophase I. The MAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270824 [Multi-domain] Cd Length: 283 Bit Score: 104.54 E-value: 3.96e-26
|
||||||||||
STKc_CDK5 | cd07839 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 5; STKs ... |
40-297 | 7.14e-26 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK5 is unusual in that it is regulated by non-cyclin proteins, p35 and p39. It is highly expressed in the nervous system and is critical in normal neural development and function. It plays a role in neuronal migration and differentiation, and is also important in synaptic plasticity and learning. CDK5 also participates in protecting against cell death and promoting angiogenesis. Impaired CDK5 activity is implicated in Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease and acute neuronal injury. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143344 [Multi-domain] Cd Length: 284 Bit Score: 104.05 E-value: 7.14e-26
|
||||||||||
STKc_ERK5 | cd07855 | Catalytic domain of the Serine/Threonine Kinase, Extracellular signal-Regulated Kinase 5; ... |
94-297 | 1.40e-25 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Extracellular signal-Regulated Kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ERK5 (also called Big MAPK1 (BMK1) or MAPK7) has a unique C-terminal extension, making it approximately twice as big as other MAPKs. This extension contains transcriptional activation capability which is inhibited by the N-terminal half. ERK5 is activated in response to growth factors and stress by a cascade that leads to its phosphorylation by the MAP2K MEK5, which in turn is regulated by the MAP3Ks MEKK2 and MEKK3. Activated ERK5 phosphorylates its targets including myocyte enhancer factor 2 (MEF2), Sap1a, c-Myc, and RSK. It plays a role in EGF-induced cell proliferation during the G1/S phase transition. Studies on knockout mice revealed that ERK5 is essential for cardiovascular development and plays an important role in angiogenesis. It is also critical for neural differentiation and survival. The ERK5 pathway has been implicated in the pathogenesis of many diseases including cancer, cardiac hypertrophy, and atherosclerosis. MAPKs are important mediators of cellular responses to extracellular signals. The ERK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270842 [Multi-domain] Cd Length: 336 Bit Score: 104.37 E-value: 1.40e-25
|
||||||||||
STKc_BUR1 | cd07866 | Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase (CDK), ... |
35-297 | 8.31e-25 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase (CDK), Bypass UAS Requirement 1, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BUR1, also called SGV1, is a yeast CDK that is functionally equivalent to mammalian CDK9. It associates with the cyclin BUR2. BUR genes were orginally identified in a genetic screen as factors involved in general transcription. The BUR1/BUR2 complex phosphorylates the C-terminal domain of RNA polymerase II. In addition, this complex regulates histone modification by phosporylating Rad6 and mediating the association of the Paf1 complex with chromatin. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The BUR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270849 [Multi-domain] Cd Length: 311 Bit Score: 101.62 E-value: 8.31e-25
|
||||||||||
STKc_TEY_MAPK | cd07858 | Catalytic domain of the Serine/Threonine Kinases, Plant TEY Mitogen-Activated Protein Kinases; ... |
94-310 | 9.69e-25 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Plant TEY Mitogen-Activated Protein Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Plant MAPKs are typed based on the conserved phosphorylation motif present in the activation loop, TEY and TDY. This subfamily represents the TEY subtype of plant MAPKs and is further subdivided into three groups (A, B, and C). Group A is represented by AtMPK3, AtMPK6, Nicotiana tabacum BTF4 (NtNTF4), among others. They are mostly involved in environmental and hormonal responses. AtMPK3 and AtMPK6 are also key regulators for stomatal development and patterning. Group B is represented by AtMPK4, AtMPK13, and NtNTF6, among others. They may be involved in both cell division and environmental stress response. AtMPK4 also participates in regulating innate immunity. Group C is represented by AtMPK1, AtMPK2, NtNTF3, Oryza sativa MAPK4 (OsMAPK4), among others. They may also be involved in stress responses. AtMPK1 and AtMPK2 are activated following mechanical injury and in the presence of stress chemicals such as jasmonic acid, hydrogen peroxide and abscisic acid. OsMAPK4 is also called OsMSRMK3 for Multiple Stress-Responsive MAPK3. In plants, MAPKs are associated with physiological, developmental, hormonal, and stress responses. Some plants show numerous gene duplications of MAPKs; Arabidopsis thaliana harbors at least 20 MAPKs, named AtMPK1-20. The TEY MAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143363 [Multi-domain] Cd Length: 337 Bit Score: 102.06 E-value: 9.69e-25
|
||||||||||
STKc_PCTAIRE_like | cd07844 | Catalytic domain of PCTAIRE-like Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
86-297 | 1.50e-24 | ||||||
Catalytic domain of PCTAIRE-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PCTAIRE-like proteins show unusual expression patterns with high levels in post-mitotic tissues, suggesting that they may be involved in regulating post-mitotic cellular events. They share sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The association of PCTAIRE-like proteins with cyclins has not been widely studied, although PFTAIRE-1 has been shown to function as a CDK which is regulated by cyclin D3 as well as the membrane-associated cyclin Y. The PCTAIRE-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270835 [Multi-domain] Cd Length: 286 Bit Score: 100.53 E-value: 1.50e-24
|
||||||||||
PLN00009 | PLN00009 | cyclin-dependent kinase A; Provisional |
38-297 | 1.93e-24 | ||||||
cyclin-dependent kinase A; Provisional Pssm-ID: 177649 [Multi-domain] Cd Length: 294 Bit Score: 100.28 E-value: 1.93e-24
|
||||||||||
STKc_CDK2_3 | cd07860 | Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase 2 and 3; ... |
94-297 | 2.03e-24 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase 2 and 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK2 is regulated by cyclin E or cyclin A. Upon activation by cyclin E, it phosphorylates the retinoblastoma (pRb) protein which activates E2F mediated transcription and allows cells to move into S phase. The CDK2/cyclin A complex plays a role in regulating DNA replication. CDK2, together with CDK4, also regulates embryonic cell proliferation. Despite these important roles, mice deleted for the cdk2 gene are viable and normal except for being sterile. This may be due to compensation provided by CDK1 (also called Cdc2), which can also bind cyclin E and drive the G1 to S phase transition. CDK3 is regulated by cyclin C and it phosphorylates pRB specifically during the G0/G1 transition. This phosphorylation is required for cells to exit G0 efficiently and enter the G1 phase. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK2/3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270844 [Multi-domain] Cd Length: 284 Bit Score: 100.27 E-value: 2.03e-24
|
||||||||||
STKc_CdkB_plant | cd07837 | Catalytic domain of the Serine/Threonine Kinase, Plant B-type Cyclin-Dependent protein Kinase; ... |
38-297 | 5.49e-24 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Plant B-type Cyclin-Dependent protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The plant-specific B-type CDKs are expressed from the late S to the M phase of the cell cycle. They are characterized by the cyclin binding motif PPT[A/T]LRE. They play a role in controlling mitosis and integrating developmental pathways, such as stomata and leaf development. CdkB has been shown to associate with both cyclin B, which controls G2/M transition, and cyclin D, which acts as a mediator in linking extracellular signals to the cell cycle. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CdkB subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270830 [Multi-domain] Cd Length: 294 Bit Score: 99.14 E-value: 5.49e-24
|
||||||||||
STKc_ERK1_2_like | cd07849 | Catalytic domain of Extracellular signal-Regulated Kinase 1 and 2-like Serine/Threonine ... |
94-311 | 7.84e-24 | ||||||
Catalytic domain of Extracellular signal-Regulated Kinase 1 and 2-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the mitogen-activated protein kinases (MAPKs) ERK1, ERK2, baker's yeast Fus3, and similar proteins. MAPK pathways are important mediators of cellular responses to extracellular signals. ERK1/2 activation is preferentially by mitogenic factors, differentiation stimuli, and cytokines, through a kinase cascade involving the MAPK kinases MEK1/2 and a MAPK kinase kinase from the Raf family. ERK1/2 have numerous substrates, many of which are nuclear and participate in transcriptional regulation of many cellular processes. They regulate cell growth, cell proliferation, and cell cycle progression from G1 to S phase. Although the distinct roles of ERK1 and ERK2 have not been fully determined, it is known that ERK2 can maintain most functions in the absence of ERK1, and that the deletion of ERK2 is embryonically lethal. The MAPK, Fus3, regulates yeast mating processes including mating-specific gene expression, G1 arrest, mating projection, and cell fusion. This ERK1/2-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270839 [Multi-domain] Cd Length: 336 Bit Score: 99.69 E-value: 7.84e-24
|
||||||||||
STKc_CDK12 | cd07864 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 12; STKs ... |
34-296 | 2.48e-23 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 12; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK12 is also called Cdc2-related protein kinase 7 (CRK7) or Cdc2-related kinase arginine/serine-rich (CrkRS). It is a unique CDK that contains an RS domain, which is predominantly found in splicing factors. CDK12 is widely expressed in tissues. It interacts with cyclins L1 and L2, and plays roles in regulating transcription and alternative splicing. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK12 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270847 [Multi-domain] Cd Length: 302 Bit Score: 97.57 E-value: 2.48e-23
|
||||||||||
STKc_CDK8_like | cd07842 | Catalytic domain of Cyclin-Dependent protein Kinase 8-like Serine/Threonine Kinases; STKs ... |
148-297 | 4.93e-23 | ||||||
Catalytic domain of Cyclin-Dependent protein Kinase 8-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK8, CDC2L6, and similar proteins. CDK8 functions as a negative or positive regulator of transcription, depending on the scenario. Together with its regulator, cyclin C, it reversibly associates with the multi-subunit core Mediator complex, a cofactor that is involved in regulating RNA polymerase II-dependent transcription. CDC2L6 also associates with Mediator in complexes lacking CDK8. In VP16-dependent transcriptional activation, CDK8 and CDC2L6 exerts opposing effects by positive and negative regulation, respectively, in similar conditions. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK8-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270834 [Multi-domain] Cd Length: 316 Bit Score: 96.97 E-value: 4.93e-23
|
||||||||||
STKc_p38gamma | cd07880 | Catalytic domain of the Serine/Threonine Kinase, p38gamma Mitogen-Activated Protein Kinase ... |
140-310 | 7.88e-23 | ||||||
Catalytic domain of the Serine/Threonine Kinase, p38gamma Mitogen-Activated Protein Kinase (also called MAPK12); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38gamma/MAPK12 is predominantly expressed in skeletal muscle. Unlike p38alpha and p38beta, p38gamma is insensitive to pyridinylimidazoles. It displays an antagonizing function compared to p38alpha. p38gamma inhibits, while p38alpha stimulates, c-Jun phosphorylation and AP-1 mediated transcription. p38gamma also plays a role in the signaling between Ras and the estrogen receptor and has been implicated to increase cell invasion and breast cancer progression. In Xenopus, p38gamma is critical in the meiotic maturation of oocytes. p38 kinases are MAPKs, serving as important mediators of cellular responses to extracellular signals. They are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. The p38gamma subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143385 [Multi-domain] Cd Length: 343 Bit Score: 96.94 E-value: 7.88e-23
|
||||||||||
STKc_CDK1_euk | cd07861 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 1 from higher ... |
144-297 | 2.25e-22 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 1 from higher eukaryotes; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK1 is also called Cell division control protein 2 (Cdc2) or p34 protein kinase, and is regulated by cyclins A, B, and E. The CDK1/cyclin A complex controls G2 phase entry and progression. CDK1/cyclin A2 has also been implicated as an important regulator of S phase events. The CDK1/cyclin B complex is critical for G2 to M phase transition. It induces mitosis by activating nuclear enzymes that regulate chromatin condensation, nuclear membrane degradation, mitosis-specific microtubule and cytoskeletal reorganization. CDK1 also associates with cyclin E and plays a role in the entry into S phase. CDK1 transcription is stable throughout the cell cycle but is modulated in some pathological conditions. It may play a role in regulating apoptosis under these conditions. In breast cancer cells, HER2 can mediate apoptosis by inactivating CDK1. Activation of CDK1 may contribute to HIV-1 induced apoptosis as well as neuronal apoptosis in neurodegenerative diseases. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270845 [Multi-domain] Cd Length: 285 Bit Score: 94.41 E-value: 2.25e-22
|
||||||||||
STKc_p38delta | cd07879 | Catalytic domain of the Serine/Threonine Kinase, p38delta Mitogen-Activated Protein Kinase ... |
143-299 | 8.81e-22 | ||||||
Catalytic domain of the Serine/Threonine Kinase, p38delta Mitogen-Activated Protein Kinase (also called MAPK13); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38delta/MAPK13 is found in skeletal muscle, heart, lung, testis, pancreas, and small intestine. It regulates microtubule function by phosphorylating Tau. It activates the c-jun promoter and plays a role in G2 cell cycle arrest. It also controls the degration of c-Myb, which is associated with myeloid leukemia and poor prognosis in colorectal cancer. p38delta is the main isoform involved in regulating the differentiation and apoptosis of keratinocytes. p38 kinases are MAPKs, serving as important mediators of cellular responses to extracellular signals. They are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. The p38delta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143384 [Multi-domain] Cd Length: 342 Bit Score: 93.81 E-value: 8.81e-22
|
||||||||||
STKc_Sty1_Hog1 | cd07856 | Catalytic domain of the Serine/Threonine Kinases, Fungal Mitogen-Activated Protein Kinases ... |
144-312 | 1.16e-21 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Fungal Mitogen-Activated Protein Kinases Sty1 and Hog1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the MAPKs Sty1 from Schizosaccharomyces pombe, Hog1 from Saccharomyces cerevisiae, and similar proteins. Sty1 and Hog1 are stress-activated MAPKs that partipate in transcriptional regulation in response to stress. Sty1 is activated in response to oxidative stress, osmotic stress, and UV radiation. It is regulated by the MAP2K Wis1, which is activated by the MAP3Ks Wis4 and Win1, which receive signals of the stress condition from membrane-spanning histidine kinases Mak1-3. Activated Sty1 stabilizes the Atf1 transcription factor and induces transcription of Atf1-dependent genes of the core environmetal stress response. Hog1 is the key element in the high osmolarity glycerol (HOG) pathway and is activated upon hyperosmotic stress. Activated Hog1 accumulates in the nucleus and regulates stress-induced transcription. The HOG pathway is mediated by two transmembrane osmosensors, Sln1 and Sho1. MAPKs are important mediators of cellular responses to extracellular signals. The Sty1/Hog1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270843 [Multi-domain] Cd Length: 328 Bit Score: 93.41 E-value: 1.16e-21
|
||||||||||
PTZ00036 | PTZ00036 | glycogen synthase kinase; Provisional |
40-308 | 2.50e-21 | ||||||
glycogen synthase kinase; Provisional Pssm-ID: 173333 [Multi-domain] Cd Length: 440 Bit Score: 93.95 E-value: 2.50e-21
|
||||||||||
STKc_CDK10 | cd07845 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 10; STKs ... |
144-308 | 5.32e-21 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 10; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK10, also called PISSLRE, is essential for cell growth and proliferation, and acts through the G2/M phase of the cell cycle. CDK10 has also been identified as an important factor in endocrine therapy resistance in breast cancer. CDK10 silencing increases the transcription of c-RAF and the activation of the p42/p44 MAPK pathway, which leads to antiestrogen resistance. Patients who express low levels of CDK10 relapse early on tamoxifen. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK10 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173742 [Multi-domain] Cd Length: 309 Bit Score: 91.27 E-value: 5.32e-21
|
||||||||||
STKc_CDK4_6_like | cd07838 | Catalytic domain of Cyclin-Dependent protein Kinase 4 and 6-like Serine/Threonine Kinases; ... |
94-297 | 5.97e-21 | ||||||
Catalytic domain of Cyclin-Dependent protein Kinase 4 and 6-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK4 and CDK6 partner with D-type cyclins to regulate the early G1 phase of the cell cycle. They are the first kinases activated by mitogenic signals to release cells from the G0 arrested state. CDK4 and CDK6 are both expressed ubiquitously, associate with all three D cyclins (D1, D2 and D3), and phosphorylate the retinoblastoma (pRb) protein. They are also regulated by the INK4 family of inhibitors which associate with either the CDK alone or the CDK/cyclin complex. CDK4 and CDK6 show differences in subcellular localization, sensitivity to some inhibitors, timing in activation, tumor selectivity, and possibly substrate profiles. Although CDK4 and CDK6 seem to show some redundancy, they also have discrete, nonoverlapping functions. CDK6 plays an important role in cell differentiation. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK4/6-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270831 [Multi-domain] Cd Length: 287 Bit Score: 90.80 E-value: 5.97e-21
|
||||||||||
STKc_CAMK | cd05117 | The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of ... |
39-295 | 2.07e-20 | ||||||
The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. CaMKII is a signaling molecule that translates upstream calcium and reactive oxygen species (ROS) signals into downstream responses that play important roles in synaptic function and cardiovascular physiology. CAMKIV is implicated in regulating several transcription factors like CREB, MEF2, and retinoid orphan receptors, as well as in T-cell development and signaling. The CAMK family also consists of other related kinases including the Phosphorylase kinase Gamma subunit (PhKG), the C-terminal kinase domains of Ribosomal S6 kinase (RSK) and Mitogen and stress-activated kinase (MSK), Doublecortin-like kinase (DCKL), and the MAPK-activated protein kinases MK2, MK3, and MK5, among others. The CAMK family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270687 [Multi-domain] Cd Length: 258 Bit Score: 88.69 E-value: 2.07e-20
|
||||||||||
PKc_DYRK_like | cd14133 | Catalytic domain of Dual-specificity tYrosine-phosphorylated and -Regulated Kinase-like ... |
143-297 | 2.19e-20 | ||||||
Catalytic domain of Dual-specificity tYrosine-phosphorylated and -Regulated Kinase-like protein kinases; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of the dual-specificity DYRKs and YAK1, as well as the S/T kinases (STKs), HIPKs. DYRKs and YAK1 autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. Proteins in this subfamily play important roles in cell proliferation, differentiation, survival, growth, and development. The DYRK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271035 [Multi-domain] Cd Length: 262 Bit Score: 88.48 E-value: 2.19e-20
|
||||||||||
STKc_PFTAIRE2 | cd07870 | Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-2 kinase; STKs catalyze the transfer ... |
40-297 | 4.88e-19 | ||||||
Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-2 kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PFTAIRE-2 is also referred to as ALS2CR7 (amyotrophic lateral sclerosis 2 (juvenile) chromosome region candidate 7). It may be associated with amyotrophic lateral sclerosis 2 (ALS2), an autosomal recessive form of juvenile ALS. The function of PFTAIRE-2 is not yet known. It shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PFTAIRE-2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270852 [Multi-domain] Cd Length: 286 Bit Score: 85.40 E-value: 4.88e-19
|
||||||||||
PTZ00024 | PTZ00024 | cyclin-dependent protein kinase; Provisional |
157-308 | 3.03e-18 | ||||||
cyclin-dependent protein kinase; Provisional Pssm-ID: 240233 [Multi-domain] Cd Length: 335 Bit Score: 84.04 E-value: 3.03e-18
|
||||||||||
STKc_PCTAIRE3 | cd07871 | Catalytic domain of the Serine/Threonine Kinase, PCTAIRE-3 kinase; STKs catalyze the transfer ... |
34-297 | 3.14e-18 | ||||||
Catalytic domain of the Serine/Threonine Kinase, PCTAIRE-3 kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PCTAIRE-3 shows a restricted pattern of expression and is present in brain, kidney, and intestine. It is elevated in Alzheimer's disease (AD) and has been shown to associate with paired helical filaments (PHFs) and stimulate Tau phosphorylation. As AD progresses, phosphorylated Tau aggregates and forms PHFs, which leads to the formation of neurofibrillary tangles. In human glioma cells, PCTAIRE-3 induces cell cycle arrest and cell death. PCTAIRE-3 shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PCTAIRE-3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270853 [Multi-domain] Cd Length: 288 Bit Score: 83.14 E-value: 3.14e-18
|
||||||||||
STKc_PCTAIRE1 | cd07873 | Catalytic domain of the Serine/Threonine Kinase, PCTAIRE-1 kinase; STKs catalyze the transfer ... |
94-298 | 3.00e-17 | ||||||
Catalytic domain of the Serine/Threonine Kinase, PCTAIRE-1 kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PCTAIRE-1 is expressed ubiquitously and is localized in the cytoplasm. Its kinase activity is cell cycle dependent and peaks at the S and G2 phases. PCTAIRE-1 is highly expressed in the brain and may play a role in regulating neurite outgrowth. It can also associate with Trap (Tudor repeat associator with PCTAIRE-2), a physiological partner of PCTAIRE-2; with p11, a small dimeric protein with similarity to S100; and with 14-3-3 proteins, mediators of phosphorylation-dependent interactions in many different proteins. PCTAIRE-1 shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PCTAIRE-1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270854 [Multi-domain] Cd Length: 297 Bit Score: 80.43 E-value: 3.00e-17
|
||||||||||
PKc_CLK | cd14134 | Catalytic domain of the Dual-specificity protein kinases, CDC-like kinases; Dual-specificity ... |
114-297 | 3.03e-17 | ||||||
Catalytic domain of the Dual-specificity protein kinases, CDC-like kinases; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. CLKs are involved in the phosphorylation and regulation of serine/arginine-rich (SR) proteins, which play a crucial role in pre-mRNA splicing by directing splice site selection. SR proteins are phosphorylated first by SR protein kinases (SRPKs) at the N-terminus, which leads to its assembly into nuclear speckles where splicing factors are stored. CLKs phosphorylate the C-terminal part of SR proteins, causing the nuclear speckles to dissolve and splicing factors to be recruited at sites of active transcription. Based on a conserved "EHLAMMERILG" signature motif which may be crucial for substrate specificity, CLKs are also referred to as LAMMER kinases. CLKs autophosphorylate at tyrosine residues and phosphorylate their substrates exclusively on S/T residues. In Drosophila, the CLK homolog DOA (Darkener of apricot) is essential for embryogenesis and its mutation leads to defects in sexual differentiation, eye formation, and neuronal development. In fission yeast, the CLK homolog Lkh1 is a negative regulator of filamentous growth and asexual flocculation, and is also involved in oxidative stress response. Vertebrates contain mutliple CLK proteins and mammals have four (CLK1-4). The CLK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271036 [Multi-domain] Cd Length: 332 Bit Score: 81.07 E-value: 3.03e-17
|
||||||||||
PKc_DYRK | cd14210 | Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and ... |
40-297 | 6.15e-17 | ||||||
Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and -Regulated Kinase; Protein Kinases (PKs), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK) subfamily, catalytic (c) domain. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. The DYRK subfamily is part of a larger superfamily that includes the catalytic domains of other protein S/T PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. They play important roles in cell proliferation, differentiation, survival, and development. Vertebrates contain multiple DYRKs (DYRK1-4) and mammals contain two types of DYRK1 proteins, DYRK1A and DYRK1B. DYRK1A is involved in neuronal differentiation and is implicated in the pathogenesis of DS (Down syndrome). DYRK1B plays a critical role in muscle differentiation by regulating transcription, cell motility, survival, and cell cycle progression. It is overexpressed in many solid tumors where it acts as a tumor survival factor. DYRK2 promotes apoptosis in response to DNA damage by phosphorylating the tumor suppressor p53, while DYRK3 promotes cell survival by phosphorylating SIRT1 and promoting p53 deacetylation. DYRK4 is a testis-specific kinase that may function during spermiogenesis. Pssm-ID: 271112 [Multi-domain] Cd Length: 311 Bit Score: 79.90 E-value: 6.15e-17
|
||||||||||
STKc_CDKL1_4 | cd07847 | Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 1 and 4; ... |
112-297 | 9.05e-17 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 1 and 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKL1, also called p42 KKIALRE, is a glial protein that is upregulated in gliosis. It is present in neuroblastoma and A431 human carcinoma cells, and may be implicated in neoplastic transformation. The function of CDKL4 is unknown. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL1/4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270837 [Multi-domain] Cd Length: 286 Bit Score: 78.95 E-value: 9.05e-17
|
||||||||||
STKc_CDKL2_3 | cd07846 | Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 2 and 3; ... |
94-297 | 9.92e-17 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 2 and 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKL2, also called p56 KKIAMRE, is expressed in testis, kidney, lung, and brain. It functions mainly in mature neurons and plays an important role in learning and memory. Inactivation of CDKL3, also called NKIAMRE (NKIATRE in rat), by translocation is associated with mild mental retardation. It has been reported that CDKL3 is lost in leukemic cells having a chromosome arm 5q deletion, and may contribute to the transformed phenotype. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL2/3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270836 [Multi-domain] Cd Length: 286 Bit Score: 79.00 E-value: 9.92e-17
|
||||||||||
STKc_PCTAIRE2 | cd07872 | Catalytic domain of the Serine/Threonine Kinase, PCTAIRE-2 kinase; STKs catalyze the transfer ... |
34-297 | 1.11e-16 | ||||||
Catalytic domain of the Serine/Threonine Kinase, PCTAIRE-2 kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PCTAIRE-2 is specifically expressed in neurons in the central nervous system, mainly in terminally differentiated neurons. It associates with Trap (Tudor repeat associator with PCTAIRE-2) and could play a role in regulating mitochondrial function in neurons. PCTAIRE-2 shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PCTAIRE-2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143377 [Multi-domain] Cd Length: 309 Bit Score: 79.27 E-value: 1.11e-16
|
||||||||||
STKc_PFTAIRE1 | cd07869 | Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-1 kinase; STKs catalyze the transfer ... |
34-297 | 2.01e-16 | ||||||
Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-1 kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PFTAIRE-1 is widely expressed except in the spleen and thymus. It is highly expressed in the brain, heart, pancreas, testis, and ovary, and is localized in the cytoplasm. It is regulated by cyclin D3 and is inhibited by the p21 cell cycle inhibitor. It has also been shown to interact with the membrane-associated cyclin Y, which recruits the protein to the plasma membrane. PFTAIRE-1 shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PFTAIRE-1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143374 [Multi-domain] Cd Length: 303 Bit Score: 78.20 E-value: 2.01e-16
|
||||||||||
STKc_CDK9 | cd07865 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 9; STKs ... |
144-297 | 3.22e-16 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 9; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK9, together with a cyclin partner (cyclin T1, T2a, T2b, or K), is the main component of distinct positive transcription elongation factors (P-TEFb), which function as Ser2 C-terminal domain kinases of RNA polymerase II. P-TEFb participates in multiple steps of gene expression including transcription elongation, mRNA synthesis, processing, export, and translation. It also plays a role in mediating cytokine induced transcription networks such as IL6-induced STAT3 signaling. In addition, the CDK9/cyclin T2a complex promotes muscle differentiation and enhances the function of some myogenic regulatory factors. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK9 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270848 [Multi-domain] Cd Length: 310 Bit Score: 77.79 E-value: 3.22e-16
|
||||||||||
PKc_DYRK1 | cd14226 | Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and ... |
144-297 | 1.27e-15 | ||||||
Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and -Regulated Kinase 1; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. Mammals contain two types of DYRK1 proteins, DYRK1A and DYRK1B. DYRK1A was previously called minibrain kinase homolog (MNBH) or dual-specificity YAK1-related kinase. It phosphorylates various substrates and is involved in many cellular events. It phosphorylates and inhibits the transcription factors, nuclear factor of activated T cells (NFAT) and forkhead in rhabdomyosarcoma (FKHR). It regulates neuronal differentiation by targetting CREB (cAMP response element-binding protein). It also targets many endocytic proteins including dynamin and amphiphysin and may play a role in the endocytic pathway. The gene encoding DYRK1A is located in the DSCR (Down syndrome critical region) of human chromosome 21 and DYRK1A has been implicated in the pathogenesis of DS. DYRK1B, also called minibrain-related kinase (MIRK), is highly expressed in muscle and plays a critical role in muscle differentiation by regulating transcription, cell motility, survival, and cell cycle progression. It is overexpressed in many solid tumors where it acts as a tumor survival factor. DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. The DYRK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271128 [Multi-domain] Cd Length: 339 Bit Score: 76.20 E-value: 1.27e-15
|
||||||||||
STKc_NLK | cd07853 | Catalytic domain of the Serine/Threonine Kinase, Nemo-Like Kinase; STKs catalyze the transfer ... |
144-296 | 2.59e-15 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Nemo-Like Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NLK is an atypical mitogen-activated protein kinase (MAPK) that is not regulated by a MAPK kinase. It functions downstream of the MAPK kinase kinase Tak1, which also plays a role in activating the JNK and p38 MAPKs. The Tak1/NLK pathways are regulated by Wnts, a family of secreted proteins that is critical in the control of asymmetric division and cell polarity. NLK can phosphorylate transcription factors from the TCF/LEF family, inhibiting their ability to activate the transcription of target genes. In prostate cancer cells, NLK is involved in regulating androgen receptor-mediated transcription and its expression is altered during cancer progression. MAPKs are important mediators of cellular responses to extracellular signals. The NLK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173748 [Multi-domain] Cd Length: 372 Bit Score: 75.55 E-value: 2.59e-15
|
||||||||||
STKc_CDK4 | cd07863 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 4; STKs ... |
143-297 | 7.55e-15 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK4 partners with all three D-type cyclins (D1, D2, and D3) and is also regulated by INK4 inhibitors. It is active towards the retinoblastoma (pRb) protein and plays a role in regulating the early G1 phase of the cell cycle. It is expressed ubiquitously and is localized in the nucleus. CDK4 also shows kinase activity towards Smad3, a signal transducer of TGF-beta signaling which modulates transcription and plays a role in cell proliferation and apoptosis. CDK4 is inhibited by the p21 inhibitor and is specifically mutated in human melanoma. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143368 [Multi-domain] Cd Length: 288 Bit Score: 73.46 E-value: 7.55e-15
|
||||||||||
PKc_STE | cd05122 | Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the ... |
39-297 | 8.76e-15 | ||||||
Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. This family is composed of STKs, and some dual-specificity PKs that phosphorylate both threonine and tyrosine residues of target proteins. Most members are kinases involved in mitogen-activated protein kinase (MAPK) signaling cascades, acting as MAPK kinases (MAPKKs), MAPKK kinases (MAPKKKs), or MAPKKK kinases (MAP4Ks). The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPKK, which itself is phosphorylated and activated by a MAPKKK. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAPKKK to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Other STE family members include p21-activated kinases (PAKs) and class III myosins, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain, which can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, as well as autophosphorylate the C-terminal motor domain. They play an important role in maintaining the structural integrity of photoreceptor cell microvilli. The STE family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270692 [Multi-domain] Cd Length: 254 Bit Score: 72.62 E-value: 8.76e-15
|
||||||||||
STKc_CDK6 | cd07862 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 6; STKs ... |
40-297 | 2.22e-14 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK6 is regulated by D-type cyclins and INK4 inhibitors. It is active towards the retinoblastoma (pRb) protein, implicating it to function in regulating the early G1 phase of the cell cycle. It is expressed ubiquitously and is localized in the cytoplasm. It is also present in the ruffling edge of spreading fibroblasts and may play a role in cell spreading. It binds to the p21 inhibitor without any effect on its own activity and it is overexpressed in squamous cell carcinomas and neuroblastomas. CDK6 has also been shown to inhibit cell differentiation in many cell types. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270846 [Multi-domain] Cd Length: 290 Bit Score: 72.37 E-value: 2.22e-14
|
||||||||||
STKc_TDY_MAPK | cd07859 | Catalytic domain of the Serine/Threonine Kinases, Plant TDY Mitogen-Activated Protein Kinases; ... |
143-310 | 2.31e-14 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Plant TDY Mitogen-Activated Protein Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Plant MAPKs are typed based on the conserved phosphorylation motif present in the activation loop, TEY and TDY. This subfamily represents the TDY subtype and is composed of Group D plant MAPKs including Arabidopsis thaliana MPK18 (AtMPK18), Oryza sativa Blast- and Wound-induced MAPK1 (OsBWMK1), OsWJUMK1 (Wound- and JA-Uninducible MAPK1), Zea mays MPK6, and the Medicago sativa TDY1 gene product. OsBWMK1 enhances resistance to pathogenic infections. It mediates stress-activated defense responses by activating a transcription factor that affects the expression of stress-related genes. AtMPK18 is involved in microtubule-related functions. In plants, MAPKs are associated with physiological, developmental, hormonal, and stress responses. Some plants show numerous gene duplications of MAPKs; Arabidopsis thaliana harbors at least 20 MAPKs, named AtMPK1-20 while Oryza sativa contains at least 17 MAPKs. Arabidopsis thaliana contains more TEY-type MAPKs than TDY-type, whereas the reverse is true for Oryza sativa. The TDY MAPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143364 [Multi-domain] Cd Length: 338 Bit Score: 72.51 E-value: 2.31e-14
|
||||||||||
STKc_JNK | cd07850 | Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase; STKs catalyze the ... |
144-296 | 2.68e-14 | ||||||
Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. JNKs are mitogen-activated protein kinases (MAPKs) that are involved in many stress-activated responses including those during inflammation, neurodegeneration, apoptosis, and persistent pain sensitization, among others. They are also essential regulators of physiological and pathological processes and are involved in the pathogenesis of several diseases such as diabetes, atherosclerosis, stroke, Parkinson's and Alzheimer's. Vetebrates harbor three different JNK genes (Jnk1, Jnk2, and Jnk3) that are alternatively spliced to produce at least 10 isoforms. JNKs are specifically activated by the MAPK kinases MKK4 and MKK7, which are in turn activated by upstream MAPK kinase kinases as a result of different stimuli including stresses such as ultraviolet (UV) irradiation, hyperosmolarity, heat shock, or cytokines. JNKs activate a large number of different substrates based on specific stimulus, cell type, and cellular condition, and may be implicated in seemingly contradictory functions. The JNK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270840 [Multi-domain] Cd Length: 337 Bit Score: 72.45 E-value: 2.68e-14
|
||||||||||
STKc_MAPK4_6 | cd07854 | Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinases 4 (also ... |
140-309 | 2.72e-14 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinases 4 (also called ERK4) and 6 (also called ERK3); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK4 (also called ERK4 or p63MAPK) and MAPK6 (also called ERK3 or p97MAPK) are atypical MAPKs that are not regulated by MAPK kinases. MAPK6 is expressed ubiquitously with highest amounts in brain and skeletal muscle. It may be involved in the control of cell differentiation by negatively regulating cell cycle progression in certain conditions. It may also play a role in glucose-induced insulin secretion. MAPK6 and MAPK4 cooperate to regulate the activity of MAPK-activated protein kinase 5 (MK5), leading to its relocation to the cytoplasm and exclusion from the nucleus. The MAPK6/MK5 and MAPK4/MK5 pathways may play critical roles in embryonic and post-natal development. MAPKs are important mediators of cellular responses to extracellular signals. The MAPK4/6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143359 [Multi-domain] Cd Length: 342 Bit Score: 72.50 E-value: 2.72e-14
|
||||||||||
STKc_JNK2 | cd07876 | Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 2; STKs catalyze the ... |
144-298 | 3.49e-14 | ||||||
Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. JNK2 is expressed in every cell and tissue type. It is specifically translocated to the mitochondria during dopaminergic cell death. Specific substrates include the microtubule-associated proteins DCX and Tau, as well as TIF-IA which is involved in ribosomal RNA synthesis regulation. Mice deficient in Jnk2 show protection against arthritis, type 1 diabetes, atherosclerosis, abdominal aortic aneurysm, cardiac cell death, TNF-induced liver damage, and tumor growth, indicating that JNK2 may play roles in the pathogenesis of these diseases. Initially it was thought that JNK1 and JNK2 were functionally redundant as mice deficient in either genes could survive but disruption of both genes resulted in lethality. However, recent studies have shown that JNK1 and JNK2 perform distinct functions through specific binding partners and substrates. JNKs are mitogen-activated protein kinases (MAPKs) that are involved in many stress-activated responses including those during inflammation, neurodegeneration, apoptosis, and persistent pain sensitization, among others. The JNK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143381 [Multi-domain] Cd Length: 359 Bit Score: 72.37 E-value: 3.49e-14
|
||||||||||
PKc_YAK1 | cd14212 | Catalytic domain of the Dual-specificity protein kinase, YAK1; Dual-specificity PKs catalyze ... |
143-297 | 5.04e-14 | ||||||
Catalytic domain of the Dual-specificity protein kinase, YAK1; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of proteins with similarity to Saccharomyces cerevisiae YAK1 (or Yak1p), a dual-specificity kinase that autophosphorylates at tyrosine residues and phosphorylates substrates on S/T residues. YAK1 phosphorylates and activates the transcription factors Hsf1 and Msn2, which play important roles in cellular homeostasis during stress conditions including heat shock, oxidative stress, and nutrient deficiency. It also phosphorylates the protein POP2, a component of a complex that regulates transcription, under glucose-deprived conditions. It functions as a part of a glucose-sensing system that is involved in controlling growth in yeast. The YAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271114 [Multi-domain] Cd Length: 330 Bit Score: 71.51 E-value: 5.04e-14
|
||||||||||
STKc_CDK8 | cd07868 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 8; STKs ... |
143-297 | 8.19e-14 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 8; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK8 can act as a negative or positive regulator of transcription, depending on the scenario. Together with its regulator, cyclin C, it reversibly associates with the multi-subunit core Mediator complex, a cofactor that is involved in regulating RNA polymerase II (RNAP II)-dependent transcription. CDK8 phosphorylates cyclin H, a subunit of the general transcription factor TFIIH, which results in the inhibition of TFIIH-dependent phosphorylation of the C-terminal domain of RNAP II, facilitating the inhibition of transcription. It has also been shown to promote transcription by a mechanism that is likely to involve RNAP II phosphorylation. CDK8 also functions as a stimulus-specific positive coregulator of p53 transcriptional responses. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK8 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270851 [Multi-domain] Cd Length: 333 Bit Score: 70.86 E-value: 8.19e-14
|
||||||||||
STKc_CDKL5 | cd07848 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase Like 5; STKs ... |
112-297 | 1.81e-13 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase Like 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mutations in the gene encoding CDKL5, previously called STK9, are associated with early onset epilepsy and severe mental retardation [X-linked infantile spasm syndrome (ISSX) or West syndrome]. In addition, CDKL5 mutations also sometimes cause a phenotype similar to Rett syndrome (RTT), a progressive neurodevelopmental disorder. These pathogenic mutations are located in the N-terminal portion of the protein within the kinase domain. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270838 [Multi-domain] Cd Length: 287 Bit Score: 69.64 E-value: 1.81e-13
|
||||||||||
PKc_CLK3 | cd14214 | Catalytic domain of the Dual-specificity protein kinase, CDC-like kinase 3; Dual-specificity ... |
144-297 | 1.40e-12 | ||||||
Catalytic domain of the Dual-specificity protein kinase, CDC-like kinase 3; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. CLK3 is predominantly expressed in mature spermatozoa, and might play a role in the fertilization process. CLKs are involved in the phosphorylation and regulation of serine/arginine-rich (SR) proteins, which play a crucial role in pre-mRNA splicing by directing splice site selection. SR proteins are phosphorylated first by SR protein kinases (SRPKs) at the N-terminus, which leads to its assembly into nuclear speckles where splicing factors are stored. CLKs phosphorylate the C-terminal part of SR proteins, causing the nuclear speckles to dissolve and splicing factors to be recruited at sites of active transcription. Based on a conserved "EHLAMMERILG" signature motif which may be crucial for substrate specificity, CLKs are also referred to as LAMMER kinases. CLKs autophosphorylate at tyrosine residues and phosphorylate their substrates exclusively on serine/threonine residues. The CLK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271116 [Multi-domain] Cd Length: 331 Bit Score: 67.34 E-value: 1.40e-12
|
||||||||||
STKc_CDC2L6 | cd07867 | Catalytic domain of Serine/Threonine Kinase, Cell Division Cycle 2-like 6; STKs catalyze the ... |
143-297 | 1.91e-12 | ||||||
Catalytic domain of Serine/Threonine Kinase, Cell Division Cycle 2-like 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDC2L6 is also called CDK8-like and was previously referred to as CDK11. However, this is a confusing nomenclature as CDC2L6 is distinct from CDC2L1, which is represented by the two protein products from its gene, called CDK11(p110) and CDK11(p58), as well as the caspase-processed CDK11(p46). CDK11(p110), CDK11(p58), and CDK11(p46)do not belong to this subfamily. CDC2L6 is an associated protein of Mediator, a multiprotein complex that provides a platform to connect transcriptional and chromatin regulators and cofactors, in order to activate and mediate RNA polymerase II transcription. CDC2L6 is localized mainly in the nucleus amd exerts an opposing effect to CDK8 in VP16-dependent transcriptional activation by being a negative regulator. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDC2L6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270850 [Multi-domain] Cd Length: 318 Bit Score: 67.02 E-value: 1.91e-12
|
||||||||||
STKc_JNK1 | cd07875 | Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 1; STKs catalyze the ... |
144-296 | 2.13e-12 | ||||||
Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. JNK1 is expressed in every cell and tissue type. It specifically binds with JAMP (JNK1-associated membrane protein), which regulates the duration of JNK1 activity in response to stimuli. Specific JNK1 substrates include Itch and SG10, which are implicated in Th2 responses and airway inflammation, and microtubule dynamics and axodendritic length, respectively. Mice deficient in JNK1 are protected against arthritis, obesity, type 2 diabetes, cardiac cell death, and non-alcoholic liver disease, suggesting that JNK1 may play roles in the pathogenesis of these diseases. Initially, it was thought that JNK1 and JNK2 were functionally redundant as mice deficient in either genes could survive but disruption of both genes resulted in lethality. However, recent studies have shown that JNK1 and JNK2 perform distinct functions through specific binding partners and substrates. JNKs are mitogen-activated protein kinases that are involved in many stress-activated responses including those during inflammation, neurodegeneration, apoptosis, and persistent pain sensitization, among others. The JNK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143380 [Multi-domain] Cd Length: 364 Bit Score: 66.99 E-value: 2.13e-12
|
||||||||||
STKc_JNK3 | cd07874 | Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 3; STKs catalyze the ... |
144-296 | 2.69e-12 | ||||||
Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. JNK3 is expressed primarily in the brain, and to a lesser extent in the heart and testis. Mice deficient in JNK3 are protected against kainic acid-induced seizures, stroke, sciatic axotomy neural death, and neuronal death due to NGF deprivation, oxidative stress, or exposure to beta-amyloid peptide. This suggests that JNK3 may play roles in the pathogenesis of these diseases. JNKs are mitogen-activated protein kinases (MAPKs) that are involved in many stress-activated responses including those during inflammation, neurodegeneration, apoptosis, and persistent pain sensitization, among others. The JNK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143379 [Multi-domain] Cd Length: 355 Bit Score: 66.65 E-value: 2.69e-12
|
||||||||||
STKc_MLCK | cd14103 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase; STKs catalyze the ... |
143-296 | 4.38e-12 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. In vertebrates, different MLCKs function in smooth (MLCK1), skeletal (MLCK2), and cardiac (MLCK3) muscles. A fourth protein, MLCK4, has also been identified through comprehensive genome analysis although it has not been biochemically characterized. The MLCK1 gene expresses three transcripts in a cell-specific manner: a short MLCK1 which contains three immunoglobulin (Ig)-like and one fibronectin type III (FN3) domains, PEVK and actin-binding regions, and a kinase domain near the C-terminus; a long MLCK1 containing six additional Ig-like domains at the N-terminus compared to the short MLCK1; and the C-terminal Ig module. MLCK2, MLCK3, and MLCK4 share a simpler domain architecture of a single kinase domain near the C-terminus and the absence of Ig-like or FN3 domains. The MLCK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271005 [Multi-domain] Cd Length: 250 Bit Score: 64.94 E-value: 4.38e-12
|
||||||||||
STKc_LKB1_CaMKK | cd14008 | Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent ... |
46-297 | 8.74e-12 | ||||||
Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent Protein Kinase Kinase, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Both LKB1 and CaMKKs can phosphorylate and activate AMP-activated protein kinase (AMPK). LKB1, also called STK11, serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMPK. Vertebrates contain two CaMKKs, CaMKK1 (or alpha) and CaMKK2 (or beta). CaMKK1 is involved in the regulation of glucose uptake in skeletal muscles. CaMKK2 is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. The LKB1/CaMKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270910 [Multi-domain] Cd Length: 267 Bit Score: 64.50 E-value: 8.74e-12
|
||||||||||
PKc_DYRK4 | cd14225 | Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and ... |
144-297 | 1.89e-11 | ||||||
Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and -Regulated Kinase 4; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. DYRK4 is a testis-specific kinase with restricted expression to postmeiotic spermatids. It may function during spermiogenesis, however, it is not required for male fertility. DYRK4 has also been detected in a human teratocarcinoma cell line induced to produce postmitotic neurons. It may have a role in neuronal differentiation. DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. They play important roles in cell proliferation, differentiation, survival, and development. The DYRK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271127 [Multi-domain] Cd Length: 341 Bit Score: 63.95 E-value: 1.89e-11
|
||||||||||
PKc_CLK1_4 | cd14213 | Catalytic domain of the Dual-specificity protein kinases, CDC-like kinases 1 and 4; ... |
144-297 | 3.41e-11 | ||||||
Catalytic domain of the Dual-specificity protein kinases, CDC-like kinases 1 and 4; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. CLK1 plays a role in neuronal differentiation. CLKs are involved in the phosphorylation and regulation of serine/arginine-rich (SR) proteins, which play a crucial role in pre-mRNA splicing by directing splice site selection. SR proteins are phosphorylated first by SR protein kinases (SRPKs) at the N-terminus, which leads to its assembly into nuclear speckles where splicing factors are stored. CLKs phosphorylate the C-terminal part of SR proteins, causing the nuclear speckles to dissolve and splicing factors to be recruited at sites of active transcription. Based on a conserved "EHLAMMERILG" signature motif which may be crucial for substrate specificity, CLKs are also referred to as LAMMER kinases. CLKs autophosphorylate at tyrosine residues and phosphorylate their substrates exclusively on serine/threonine residues. The CLK1/4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271115 [Multi-domain] Cd Length: 330 Bit Score: 63.33 E-value: 3.41e-11
|
||||||||||
STKc_Aurora | cd14007 | Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of ... |
173-295 | 4.32e-11 | ||||||
Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Aurora kinases are key regulators of mitosis and are essential for the accurate and equal division of genomic material from parent to daughter cells. Yeast contains only one Aurora kinase while most higher eukaryotes have two. Vertebrates contain at least 2 Aurora kinases (A and B); mammals contains a third Aurora kinase gene (C). Aurora-A regulates cell cycle events from the late S-phase through the M-phase including centrosome maturation, mitotic entry, centrosome separation, spindle assembly, chromosome alignment, cytokinesis, and mitotic exit. Aurora-A activation depends on its autophosphorylation and binding to the microtubule-associated protein TPX2. Aurora-B is most active at the transition during metaphase to the end of mitosis. It is critical for accurate chromosomal segregation, cytokinesis, protein localization to the centrosome and kinetochore, correct microtubule-kinetochore attachments, and regulation of the mitotic checkpoint. Aurora-C is mainly expressed in meiotically dividing cells; it was originally discovered in mice as a testis-specific STK called Aie1. Both Aurora-B and -C are chromosomal passenger proteins that can form complexes with INCENP and survivin, and they may have redundant cellular functions. The Aurora subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270909 [Multi-domain] Cd Length: 253 Bit Score: 62.11 E-value: 4.32e-11
|
||||||||||
PKc_Mps1 | cd14131 | Catalytic domain of the Dual-specificity Mitotic checkpoint protein kinase, Monopolar spindle ... |
39-296 | 4.77e-11 | ||||||
Catalytic domain of the Dual-specificity Mitotic checkpoint protein kinase, Monopolar spindle 1 (also called TTK); Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. TTK/Mps1 is a spindle checkpoint kinase that was first discovered due to its necessity in centrosome duplication in budding yeast. It was later found to function in the spindle assembly checkpoint, which monitors the proper attachment of chromosomes to the mitotic spindle. In yeast, substrates of Mps1 include the spindle pole body components Spc98p, Spc110p, and Spc42p. The TTK/Mps1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271033 [Multi-domain] Cd Length: 271 Bit Score: 62.23 E-value: 4.77e-11
|
||||||||||
STKc_AMPK-like | cd14003 | Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze ... |
39-296 | 5.56e-11 | ||||||
Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The AMPK-like subfamily is composed of AMPK, MARK, BRSK, NUAK, MELK, SNRK, TSSK, and SIK, among others. LKB1 serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. MARKs phosphorylate tau and related microtubule-associated proteins (MAPs), and regulates microtubule-based intracellular transport. They are involved in embryogenesis, epithelial cell polarization, cell signaling, and neuronal differentiation. BRSKs play important roles in establishing neuronal polarity. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. The AMPK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270905 [Multi-domain] Cd Length: 252 Bit Score: 61.76 E-value: 5.56e-11
|
||||||||||
STKc_PDK1 | cd05581 | Catalytic domain of the Serine/Threonine Kinase, Phosphoinositide-dependent kinase 1; STKs ... |
38-297 | 6.91e-11 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Phosphoinositide-dependent kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PDK1 carries an N-terminal catalytic domain and a C-terminal pleckstrin homology (PH) domain that binds phosphoinositides. It phosphorylates the activation loop of AGC kinases that are regulated by PI3K such as PKB, SGK, and PKC, among others, and is crucial for their activation. Thus, it contributes in regulating many processes including metabolism, growth, proliferation, and survival. PDK1 also has the ability to autophosphorylate and is constitutively active in mammalian cells. It is essential for normal embryo development and is important in regulating cell volume. The PDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270733 [Multi-domain] Cd Length: 278 Bit Score: 61.85 E-value: 6.91e-11
|
||||||||||
STKc_Rad53_Cds1 | cd14098 | Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the ... |
39-296 | 1.23e-10 | ||||||
Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Rad53 and Cds1 are the checkpoint kinase 2 (Chk2) homologs found in budding and fission yeast, respectively. They play a central role in the cell's response to DNA lesions to prevent genome rearrangements and maintain genome integrity. They are phosphorylated in response to DNA damage and incomplete replication, and are essential for checkpoint control. They help promote DNA repair by stalling the cell cycle prior to mitosis in the presence of DNA damage. The Rad53/Cds1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271000 [Multi-domain] Cd Length: 265 Bit Score: 60.95 E-value: 1.23e-10
|
||||||||||
STKc_RSK_C | cd14091 | C-terminal catalytic domain of the Serine/Threonine Kinases, Ribosomal S6 kinases; STKs ... |
170-297 | 3.61e-10 | ||||||
C-terminal catalytic domain of the Serine/Threonine Kinases, Ribosomal S6 kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. Mammals possess four RSK isoforms (RSK1-4) from distinct genes. RSK proteins are also referred to as MAP kinase-activated protein kinases (MAPKAPKs), 90 kDa ribosomal protein S6 kinases (p90-RSKs), or p90S6Ks. The RSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270993 [Multi-domain] Cd Length: 291 Bit Score: 59.95 E-value: 3.61e-10
|
||||||||||
PKc_CLK2 | cd14215 | Catalytic domain of the Dual-specificity protein kinase, CDC-like kinase 2; Dual-specificity ... |
119-297 | 4.56e-10 | ||||||
Catalytic domain of the Dual-specificity protein kinase, CDC-like kinase 2; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. CLK2 plays a role in hepatic insulin signaling and glucose metabolism. It is induced by the insulin/Akt pathway as part of the hepatic refeeding reponse, and it directly phosphorylates the SR domain of PGC-1alpha, which results in decreased gluconeogenic gene expression and glucose output. CLKs are involved in the phosphorylation and regulation of serine/arginine-rich (SR) proteins, which play a crucial role in pre-mRNA splicing by directing splice site selection. SR proteins are phosphorylated first by SR protein kinases (SRPKs) at the N-terminus, which leads to its assembly into nuclear speckles where splicing factors are stored. CLKs phosphorylate the C-terminal part of SR proteins, causing the nuclear speckles to dissolve and splicing factors to be recruited at sites of active transcription. Based on a conserved "EHLAMMERILG" signature motif which may be crucial for substrate specificity, CLKs are also referred to as LAMMER kinases. CLKs autophosphorylate at tyrosine residues and phosphorylate their substrates exclusively on serine/threonine residues. The CLK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271117 [Multi-domain] Cd Length: 330 Bit Score: 59.65 E-value: 4.56e-10
|
||||||||||
STKc_AGC | cd05123 | Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
112-297 | 6.85e-10 | ||||||
Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AGC kinases regulate many cellular processes including division, growth, survival, metabolism, motility, and differentiation. Many are implicated in the development of various human diseases. Members of this family include cAMP-dependent Protein Kinase (PKA), cGMP-dependent Protein Kinase (PKG), Protein Kinase C (PKC), Protein Kinase B (PKB), G protein-coupled Receptor Kinase (GRK), Serum- and Glucocorticoid-induced Kinase (SGK), and 70 kDa ribosomal Protein S6 Kinase (p70S6K or S6K), among others. AGC kinases share an activation mechanism based on the phosphorylation of up to three sites: the activation loop (A-loop), the hydrophobic motif (HM) and the turn motif. Phosphorylation at the A-loop is required of most AGC kinases, which results in a disorder-to-order transition of the A-loop. The ordered conformation results in the access of substrates and ATP to the active site. A subset of AGC kinases with C-terminal extensions containing the HM also requires phosphorylation at this site. Phosphorylation at the HM allows the C-terminal extension to form an ordered structure that packs into the hydrophobic pocket of the catalytic domain, which then reconfigures the kinase into an active bi-lobed state. In addition, growth factor-activated AGC kinases such as PKB, p70S6K, RSK, MSK, PKC, and SGK, require phosphorylation at the turn motif (also called tail or zipper site), located N-terminal to the HM at the C-terminal extension. The AGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and Phosphoinositide 3-Kinase. Pssm-ID: 270693 [Multi-domain] Cd Length: 250 Bit Score: 58.68 E-value: 6.85e-10
|
||||||||||
STKc_HAL4_like | cd13994 | Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs ... |
94-297 | 1.85e-09 | ||||||
Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of HAL4, Saccharomyces cerevisiae Ptk2/Stk2, and similar fungal proteins. Proteins in this subfamily are involved in regulating ion transporters. In budding and fission yeast, HAL4 promotes potassium ion uptake, which increases cellular resistance to other cations such as sodium, lithium, and calcium ions. HAL4 stabilizes the major high-affinity K+ transporter Trk1 at the plasma membrane under low K+ conditions, which prevents endocytosis and vacuolar degradation. Budding yeast Ptk2 phosphorylates and regulates the plasma membrane H+ ATPase, Pma1. The HAL4-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270896 [Multi-domain] Cd Length: 265 Bit Score: 57.32 E-value: 1.85e-09
|
||||||||||
STKc_MLCK-like | cd14006 | Catalytic kinase domain of Myosin Light Chain Kinase-like Serine/Threonine Kinases; STKs ... |
94-296 | 2.07e-09 | ||||||
Catalytic kinase domain of Myosin Light Chain Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This family is composed of MLCKs and related MLCK-like kinase domains from giant STKs such as titin, obscurin, SPEG, Unc-89, Trio, kalirin, and Twitchin. Also included in this family are Death-Associated Protein Kinases (DAPKs) and Death-associated protein kinase-Related Apoptosis-inducing protein Kinase (DRAKs). MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. Titin, obscurin, Twitchin, and SPEG are muscle proteins involved in the contractile apparatus. The giant STKs are multidomain proteins containing immunoglobulin (Ig), fibronectin type III (FN3), SH3, RhoGEF, PH and kinase domains. Titin, obscurin, Twitchin, and SPEG contain many Ig domain repeats at the N-terminus, while Trio and Kalirin contain spectrin-like repeats. The MLCK-like family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270908 [Multi-domain] Cd Length: 247 Bit Score: 57.28 E-value: 2.07e-09
|
||||||||||
PKc | cd00180 | Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group ... |
46-295 | 3.45e-09 | ||||||
Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. PKs make up a large family of serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins. Majority of protein phosphorylation occurs on serine residues while only 1% occurs on tyrosine residues. Protein phosphorylation is a mechanism by which a wide variety of cellular proteins, such as enzymes and membrane channels, are reversibly regulated in response to certain stimuli. PKs often function as components of signal transduction pathways in which one kinase activates a second kinase, which in turn, may act on other kinases; this sequential action transmits a signal from the cell surface to target proteins, which results in cellular responses. The PK family is one of the largest known protein families with more than 100 homologous yeast enzymes and more than 500 human proteins. A fraction of PK family members are pseudokinases that lack crucial residues for catalytic activity. The mutiplicity of kinases allows for specific regulation according to substrate, tissue distribution, and cellular localization. PKs regulate many cellular processes including proliferation, division, differentiation, motility, survival, metabolism, cell-cycle progression, cytoskeletal rearrangement, immunity, and neuronal functions. Many kinases are implicated in the development of various human diseases including different types of cancer. The PK family is part of a larger superfamily that includes the catalytic domains of RIO kinases, aminoglycoside phosphotransferase, choline kinase, phosphoinositide 3-kinase (PI3K), and actin-fragmin kinase. Pssm-ID: 270622 [Multi-domain] Cd Length: 215 Bit Score: 56.12 E-value: 3.45e-09
|
||||||||||
STKc_MLCK4 | cd14193 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 4; STKs catalyze ... |
143-296 | 4.38e-09 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. In vertebrates, different MLCKs function in smooth (MLCK1), skeletal (MLCK2), and cardiac (MLCK3) muscles. A fourth protein, MLCK4, has also been identified through comprehensive genome analysis although it has not been biochemically characterized. MLCK4 (or MYLK4 or SgK085) contains a single kinase domain near the C-terminus. The MLCK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271095 [Multi-domain] Cd Length: 261 Bit Score: 56.46 E-value: 4.38e-09
|
||||||||||
STKc_MAPKKK | cd06606 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase Kinase ... |
169-297 | 5.86e-09 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase Kinase Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPKKKs (MKKKs or MAP3Ks) are also called MAP/ERK kinase kinases (MEKKs) in some cases. They phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. This subfamily is composed of the Apoptosis Signal-regulating Kinases ASK1 (or MAPKKK5) and ASK2 (or MAPKKK6), MEKK1, MEKK2, MEKK3, MEKK4, as well as plant and fungal MAPKKKs. Also included in this subfamily are the cell division control proteins Schizosaccharomyces pombe Cdc7 and Saccharomyces cerevisiae Cdc15. The MAPKKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270783 [Multi-domain] Cd Length: 258 Bit Score: 55.99 E-value: 5.86e-09
|
||||||||||
PKc_DYRK2_3 | cd14224 | Catalytic domain of the protein kinases, Dual-specificity tYrosine-phosphorylated and ... |
144-296 | 6.48e-09 | ||||||
Catalytic domain of the protein kinases, Dual-specificity tYrosine-phosphorylated and -Regulated Kinases 2 and 3; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of DYRK2 and DYRK3, and similar proteins. Drosophila DYRK2 interacts and phosphorylates the chromatin remodelling factor, SNR1 (Snf5-related 1), and also interacts with the essential chromatin component, trithorax. It may play a role in chromatin remodelling. Vertebrate DYRK2 phosphorylates and regulates the tumor suppressor p53 to induce apoptosis in response to DNA damage. It can also phosphorylate the transcription factor, nuclear factor of activated T cells (NFAT). DYRK2 is overexpressed in lung adenocarcinoma and esophageal carcinomas, and is a predictor for favorable prognosis in lung adenocarcinoma. DYRK3, also called regulatory erythroid kinase (REDK), is highly expressed in erythroid cells and the testis, and is also present in adult kidney and liver. It promotes cell survival by phosphorylating and activating SIRT1, an NAD(+)-dependent protein deacetylase, which promotes p53 deacetylation, resulting in the inhibition of apoptosis. DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. The DYRK2/3 subfamily is part of a larger superfamily that includes the catalytic domains of other S/T kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271126 [Multi-domain] Cd Length: 380 Bit Score: 56.68 E-value: 6.48e-09
|
||||||||||
PTZ00284 | PTZ00284 | protein kinase; Provisional |
165-299 | 6.50e-09 | ||||||
protein kinase; Provisional Pssm-ID: 140307 [Multi-domain] Cd Length: 467 Bit Score: 56.90 E-value: 6.50e-09
|
||||||||||
STKc_GRK | cd05577 | Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase; STKs ... |
144-297 | 7.87e-09 | ||||||
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors, which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. GRKs play important roles in the cardiovascular, immune, respiratory, skeletal, and nervous systems. They contain a central catalytic domain, flanked by N- and C-terminal extensions. The N-terminus contains an RGS (regulator of G protein signaling) homology (RH) domain and several motifs. The C-terminus diverges among different groups of GRKs. There are seven types of GRKs, named GRK1 to GRK7, which are subdivided into three main groups: visual (GRK1/7); beta-adrenergic receptor kinases (GRK2/3); and GRK4-like (GRK4/5/6). Expression of GRK2/3/5/6 is widespread while GRK1/4/7 show a limited tissue distribution. The substrate spectrum of the widely expressed GRKs partially overlaps. The GRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270729 [Multi-domain] Cd Length: 278 Bit Score: 55.61 E-value: 7.87e-09
|
||||||||||
STKc_ATG1_ULK_like | cd14009 | Catalytic domain of the Serine/Threonine kinases, Autophagy-related protein 1 and Unc-51-like ... |
94-296 | 7.99e-09 | ||||||
Catalytic domain of the Serine/Threonine kinases, Autophagy-related protein 1 and Unc-51-like kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes yeast ATG1 and metazoan homologs including vertebrate ULK1-3. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. It is involved in nutrient sensing and signaling, the assembly of autophagy factors and the execution of autophagy. In metazoans, ATG1 homologs display additional functions. Unc-51 and ULKs have been implicated in neuronal and axonal development. The ATG1/ULK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270911 [Multi-domain] Cd Length: 251 Bit Score: 55.31 E-value: 7.99e-09
|
||||||||||
STKc_MAST_like | cd05579 | Catalytic domain of Microtubule-associated serine/threonine (MAST) kinase-like proteins; STKs ... |
112-297 | 1.05e-08 | ||||||
Catalytic domain of Microtubule-associated serine/threonine (MAST) kinase-like proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes MAST kinases, MAST-like (MASTL) kinases (also called greatwall kinase or Gwl), and fungal kinases with similarity to Saccharomyces cerevisiae Rim15 and Schizosaccharomyces pombe cek1. MAST kinases contain an N-terminal domain of unknown function, a central catalytic domain, and a C-terminal PDZ domain that mediates protein-protein interactions. MASTL kinases carry only a catalytic domain which contains a long insert relative to other kinases. The fungal kinases in this subfamily harbor other domains in addition to a central catalytic domain, which like in MASTL, also contains an insert relative to MAST kinases. Rim15 contains a C-terminal signal receiver (REC) domain while cek1 contains an N-terminal PAS domain. MAST kinases are cytoskeletal associated kinases of unknown function that are also expressed at neuromuscular junctions and postsynaptic densities. MASTL/Gwl is involved in the regulation of mitotic entry, mRNA stabilization, and DNA checkpoint recovery. The fungal proteins Rim15 and cek1 are involved in the regulation of meiosis and mitosis, respectively. The MAST-like kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270731 [Multi-domain] Cd Length: 272 Bit Score: 55.30 E-value: 1.05e-08
|
||||||||||
STKc_Twitchin_like | cd14114 | The catalytic domain of the Giant Serine/Threonine Kinases, Twitchin and Projectin; STKs ... |
144-297 | 1.12e-08 | ||||||
The catalytic domain of the Giant Serine/Threonine Kinases, Twitchin and Projectin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Caenorhabditis elegans and Aplysia californica Twitchin, Drosophila melanogaster Projectin, and similar proteins. These are very large muscle proteins containing multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains and a single kinase domain near the C-terminus. Twitchin and Projectin are both associated with thick filaments. Twitchin is localized in the outer parts of A-bands and is involved in regulating muscle contraction. It interacts with the myofibrillar proteins myosin and actin in a phosphorylation-dependent manner, and may be involved in regulating the myosin cross-bridge cycle. The kinase activity of Twitchen is activated by Ca2+ and the Ca2+ binding protein S100A1. Projectin is associated with the end of thick filaments and is a component of flight muscle connecting filaments. The kinase domain of Projectin may play roles in autophosphorylation and transphosphorylation, which impact the formation of myosin filaments. The Twitchin-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271016 [Multi-domain] Cd Length: 259 Bit Score: 54.90 E-value: 1.12e-08
|
||||||||||
STKc_MSK_C | cd14092 | C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ... |
144-320 | 2.18e-08 | ||||||
C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, in response to various stimuli such as growth factors, hormones, neurotransmitters, cellular stress, and pro-inflammatory cytokines. This triggers phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) in the C-terminal extension of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. MSKs are predominantly nuclear proteins. They are widely expressed in many tissues including heart, brain, lung, liver, kidney, and pancreas. There are two isoforms of MSK, called MSK1 and MSK2. The MSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270994 [Multi-domain] Cd Length: 311 Bit Score: 54.61 E-value: 2.18e-08
|
||||||||||
STKc_RSK1_C | cd14175 | C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 1 (also called ... |
170-321 | 2.42e-08 | ||||||
C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 1 (also called Ribosomal protein S6 kinase alpha-1 or 90kDa ribosomal protein S6 kinase 1); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK1 is also called S6K-alpha-1, RPS6KA1, p90RSK1 or MAPK-activated protein kinase 1a (MAPKAPK-1a). It is a component of the insulin transduction pathway, regulating the function of IRS1. It also interacts with PKA and promotes its inactivation. RSK1 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271077 [Multi-domain] Cd Length: 291 Bit Score: 54.26 E-value: 2.42e-08
|
||||||||||
STKc_Titin | cd14104 | Catalytic domain of the Giant Serine/Threonine Kinase Titin; STKs catalyze the transfer of the ... |
144-296 | 3.97e-08 | ||||||
Catalytic domain of the Giant Serine/Threonine Kinase Titin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Titin, also called connectin, is a muscle-specific elastic protein and is the largest known protein to date. It contains multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains, and a single kinase domain near the C-terminus. It spans half of the sarcomere, the repeating contractile unit of striated muscle, and performs mechanical and catalytic functions. Titin contributes to the passive force generated when muscle is stretched during relaxation. Its kinase domain phosphorylates and regulates the muscle protein telethonin, which is required for sarcomere formation in differentiating myocytes. In addition, titin binds many sarcomere proteins and acts as a molecular scaffold for filament formation during myofibrillogenesis. The Titin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271006 [Multi-domain] Cd Length: 277 Bit Score: 53.71 E-value: 3.97e-08
|
||||||||||
STKc_MLCK1 | cd14191 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 1; STKs catalyze ... |
143-297 | 4.04e-08 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK1 (or MYLK1) phosphorylates myosin regulatory light chain and controls the contraction of smooth muscles. The MLCK1 gene expresses three transcripts in a cell-specific manner: a short MLCK1 which contains three immunoglobulin (Ig)-like and one fibronectin type III (FN3) domains, PEVK and actin-binding regions, and a kinase domain near the C-terminus followed by a regulatory segment containing an autoinhibitory Ca2+/calmodulin binding site; a long MLCK1 containing six additional Ig-like domains at the N-terminus compared to the short MLCK1; and the C-terminal Ig module which results in the expression of telokin in phasic smooth muscles, leading to Ca2+ desensitization by cyclic nucleotides of smooth muscle force. MLCK1 is also responsible for myosin regulatory light chain phosphorylation in nonmuscle cells and may play a role in regulating myosin II ATPase activity. The MLCK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271093 [Multi-domain] Cd Length: 259 Bit Score: 53.47 E-value: 4.04e-08
|
||||||||||
STKc_MLCK2 | cd14190 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 2; STKs catalyze ... |
144-297 | 4.64e-08 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK2 (or MYLK2) phosphorylates myosin regulatory light chain and controls the contraction of skeletal muscles. MLCK2 contains a single kinase domain near the C-terminus followed by a regulatory segment containing an autoinhibitory Ca2+/calmodulin binding site. The MLCK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271092 [Multi-domain] Cd Length: 261 Bit Score: 53.38 E-value: 4.64e-08
|
||||||||||
STKc_PAK_II | cd06648 | Catalytic domain of the Serine/Threonine Kinase, Group II p21-activated kinase; STKs catalyze ... |
165-297 | 7.02e-08 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Group II p21-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Group II PAKs, also called non-conventional PAKs, include PAK4, PAK5, and PAK6. Group II PAKs contain PBD (p21-binding domain) and catalytic domains, but lack other motifs found in group I PAKs, such as an AID (autoinhibitory domain) and SH3 binding sites. Since group II PAKs do not contain an obvious AID, they may be regulated differently from group I PAKs. While group I PAKs interact with the SH3 containing proteins Nck, Grb2 and PIX, no such binding has been demonstrated for group II PAKs. Some known substrates of group II PAKs are also substrates of group I PAKs such as Raf, BAD, LIMK and GEFH1. Unique group II substrates include MARK/Par-1 and PDZ-RhoGEF. Group II PAKs play important roles in filopodia formation, neuron extension, cytoskeletal organization, and cell survival. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270815 [Multi-domain] Cd Length: 261 Bit Score: 52.83 E-value: 7.02e-08
|
||||||||||
STKc_RSK3_C | cd14178 | C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 3 (also called ... |
170-321 | 9.40e-08 | ||||||
C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 3 (also called Ribosomal protein S6 kinase alpha-2 or 90kDa ribosomal protein S6 kinase 2); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK3 is also called S6K-alpha-2, RPS6KA2, p90RSK2 or MAPK-activated protein kinase 1c (MAPKAPK-1c). RSK3 binds muscle A-kinase anchoring protein (mAKAP)-b directly and regulates concentric cardiac myocyte growth. The RSK3 gene, RPS6KA2, is a putative tumor suppressor gene in sporadic epithelial ovarian cancer and variations to the gene may be associated with rectal cancer risk. RSK3 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271080 [Multi-domain] Cd Length: 293 Bit Score: 52.71 E-value: 9.40e-08
|
||||||||||
STKc_PAK6 | cd06659 | Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 6; STKs catalyze the ... |
86-297 | 1.18e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK6 may play a role in stress responses through its activation by the mitogen-activated protein kinase (MAPK) p38 and MAPK kinase 6 (MKK6) pathway. PAK6 is highly expressed in the brain. It is not required for viability, but together with PAK5, it is required for normal levels of locomotion and activity, and for learning and memory. Increased expression of PAK6 is found in primary and metastatic prostate cancer. PAK6 may play a role in the regulation of motility. PAK6 belongs to the group II PAKs, which contain a PBD (p21-binding domain) and a C-terminal catalytic domain, but do not harbor an AID (autoinhibitory domain) or SH3 binding sites. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270821 [Multi-domain] Cd Length: 297 Bit Score: 52.30 E-value: 1.18e-07
|
||||||||||
STKc_RCK1-like | cd14096 | Catalytic domain of RCK1-like Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
143-296 | 1.33e-07 | ||||||
Catalytic domain of RCK1-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of fungal STKs including Saccharomyces cerevisiae RCK1 and RCK2, Schizosaccharomyces pombe Sty1-regulated kinase 1 (Srk1), and similar proteins. RCK1, RCK2 (or Rck2p), and Srk1 are MAPK-activated protein kinases. RCK1 and RCK2 are involved in oxidative and metal stress resistance in budding yeast. RCK2 also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. Srk1 is activated by Sty1/Spc1 and is involved in negatively regulating cell cycle progression by inhibiting Cdc25. The RCK1-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270998 [Multi-domain] Cd Length: 295 Bit Score: 52.05 E-value: 1.33e-07
|
||||||||||
STKc_PRP4 | cd14135 | Catalytic domain of the Serine/Threonine Kinase, Pre-mRNA-Processing factor 4; STKs catalyze ... |
167-297 | 1.47e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Pre-mRNA-Processing factor 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PRP4 phosphorylates a number of factors involved in the formation of active spliceosomes, which catalyze pre-mRNA splicing. It phosphorylates PRP6 and PRP31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), during spliceosomal complex formation. In fission yeast, PRP4 phosphorylates the splicing factor PRP1 (U5-102 kD in mammals). Thus, PRP4 plays a key role in regulating spliceosome assembly and pre-mRNA splicing. It also plays an important role in mitosis by acting as a spindle assembly checkpoint kinase that is required for chromosome alignment and the recruitment of the checkpoint proteins MPS1, MAD1, and MAD2 at kinetochores. The PRP4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271037 [Multi-domain] Cd Length: 318 Bit Score: 52.22 E-value: 1.47e-07
|
||||||||||
STKc_HIPK2 | cd14227 | Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 2; ... |
143-296 | 2.46e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPK2, the most studied HIPK, is a coregulator of many transcription factors and cofactors including homeodomain proteins (Nkx and HOX families), Smad1-4, Pax6, c-Myb, AML1, the histone acetyltransferase p300, and the tumor repressor p53, among others. It regulates gene transcription during development and in DNA damage response (DDR), and mediates cell processes such as apoptosis, survival, differentiation, and proliferation. HIPK2 mediates apoptosis by phosphorylating and activating p53 during DDR, resulting in the activation of apoptotic genes. In the absence of p53, HIPK2 targets the anti-apoptotic corepressor C-terminal binding protein (CtBP), leading to CtBP's degradation and the promotion of apoptosis. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). The HIPK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271129 [Multi-domain] Cd Length: 355 Bit Score: 51.63 E-value: 2.46e-07
|
||||||||||
STKc_DAPK2 | cd14196 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 2; STKs ... |
143-296 | 4.80e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK2, also called DAPK-related protein 1 (DRP-1), is a Ca2+/calmodulin (CaM)-regulated protein containing an N-terminal kinase domain, a CaM autoinhibitory site and a dimerization module. It lacks the cytoskeletal binding regions of DAPK1 and the exogenous protein has been shown to be soluble and cytoplasmic. FLAG-tagged DAPK2, however, accumulated within membrane-enclosed autophagic vesicles. It is unclear where endogenous DAPK2 is localized. DAPK2 participates in TNF-alpha and FAS-receptor induced cell death and enhances neutrophilic maturation in myeloid leukemic cells. It contributes to the induction of anoikis and its down-regulation is implicated in the beta-catenin induced resistance of malignant epithelial cells to anoikis. The DAPK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271098 [Multi-domain] Cd Length: 269 Bit Score: 50.34 E-value: 4.80e-07
|
||||||||||
STKc_HIPK3 | cd14229 | Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 3; ... |
143-223 | 5.95e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPK3 is a Fas-interacting protein that induces FADD (Fas-associated death domain) phosphorylation and mediates FasL-induced JNK activation. Overexpression of HIPK3 does not affect cell death, however its expression in prostate cancer cells contributes to increased resistance to Fas receptor-mediated apoptosis. HIPK3 also plays a role in regulating steroidogenic gene expression. In response to cAMP, HIPK3 activates the phosphorylation of JNK and c-Jun, leading to increased activity of the transcription factor SF-1 (Steroidogenic factor 1), a key regulator for steroid biosynthesis in the gonad and adrenal gland. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). The HIPK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 271131 [Multi-domain] Cd Length: 330 Bit Score: 50.41 E-value: 5.95e-07
|
||||||||||
STKc_Rim15_like | cd05611 | Catalytic domain of fungal Rim15-like Protein Serine/Threonine Kinases; STKs catalyze the ... |
112-297 | 6.15e-07 | ||||||
Catalytic domain of fungal Rim15-like Protein Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include Saccharomyces cerevisiae Rim15, Schizosaccharomyces pombe cek1, and similar fungal proteins. They contain a central catalytic domain, which contains an insert relative to MAST kinases. In addition, Rim15 contains a C-terminal signal receiver (REC) domain while cek1 contains an N-terminal PAS domain. Rim15 (or Rim15p) functions as a regulator of meiosis. It acts as a downstream effector of PKA and regulates entry into stationary phase (G0). Thus, it plays a crucial role in regulating yeast proliferation, differentiation, and aging. Cek1 may facilitate progression of mitotic anaphase. The Rim15-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270762 [Multi-domain] Cd Length: 263 Bit Score: 49.79 E-value: 6.15e-07
|
||||||||||
STKc_DRAK | cd14106 | Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related ... |
144-297 | 6.50e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related Apoptosis-inducing protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DRAKs, also called STK17, were named based on their similarity (around 50% identity) to the kinase domain of DAPKs. They contain an N-terminal kinase domain and a C-terminal regulatory domain. Vertebrates contain two subfamily members, DRAK1 and DRAK2. Both DRAKs are localized to the nucleus, autophosphorylate themselves, and phosphorylate myosin light chain as a substrate. They may play a role in apoptotic signaling. The DRAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271008 [Multi-domain] Cd Length: 268 Bit Score: 49.66 E-value: 6.50e-07
|
||||||||||
STKc_Sid2p_like | cd05600 | Catalytic domain of Fungal Sid2p-like Protein Serine/Threonine Kinases; STKs catalyze the ... |
165-307 | 7.93e-07 | ||||||
Catalytic domain of Fungal Sid2p-like Protein Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This group contains fungal kinases including Schizosaccharomyces pombe Sid2p and Saccharomyces cerevisiae Dbf2p. Group members show similarity to NDR kinases in that they contain an N-terminal regulatory (NTR) domain and an insert within the catalytic domain that contains an auto-inhibitory sequence. Sid2p plays a crucial role in the septum initiation network (SIN) and in the initiation of cytokinesis. Dbf2p is important in regulating the mitotic exit network (MEN) and in cytokinesis. The Sid2p-like group is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270751 [Multi-domain] Cd Length: 386 Bit Score: 50.03 E-value: 7.93e-07
|
||||||||||
STKc_PhKG | cd14093 | Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma subunit; STKs ... |
86-297 | 8.49e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma subunit; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phosphorylase kinase (PhK) catalyzes the phosphorylation of inactive phosphorylase b to form the active phosphorylase a. It coordinates hormonal, metabolic, and neuronal signals to initiate the breakdown of glycogen stores, which enables the maintenance of blood-glucose homeostasis during fasting, and is also used as a source of energy for muscle contraction. PhK is one of the largest and most complex protein kinases, composed of a heterotetramer containing four molecules each of four subunit types: one catalytic (gamma) and three regulatory (alpha, beta, and delta). Each subunit has tissue-specific isoforms or splice variants. Vertebrates contain two isoforms of the gamma subunit (gamma 1 and gamma 2). The gamma subunit, when isolated, is constitutively active and does not require phosphorylation of the A-loop for activity. The regulatory subunits restrain this kinase activity until signals are received to relieve this inhibition. For example, the kinase is activated in response to hormonal stimulation, after autophosphorylation or phosphorylation by cAMP-dependent kinase of the alpha and beta subunits. The high-affinity binding of ADP to the beta subunit also stimulates kinase activity, whereas calcium relieves inhibition by binding to the delta (calmodulin) subunit. The PhKG subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270995 [Multi-domain] Cd Length: 272 Bit Score: 49.66 E-value: 8.49e-07
|
||||||||||
STKc_HIPK | cd14211 | Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase; STKs ... |
143-296 | 8.98e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). They show speckled localization in the nucleus, apart from the nucleoles. They play roles in the regulation of many nuclear pathways including gene transcription, cell survival, proliferation, differentiation, development, and DNA damage response. Vertebrates contain three HIPKs (HIPK1-3) and mammals harbor an additional family member HIPK4, which does not contain a homeobox-interacting domain and is localized in the cytoplasm. HIPK2, the most studied HIPK, is a coregulator of many transcription factors and cofactors and it regulates gene transcription during development and in DNA damage response. The HIPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271113 [Multi-domain] Cd Length: 329 Bit Score: 49.75 E-value: 8.98e-07
|
||||||||||
STKc_Kin1_2 | cd14077 | Catalytic domain of Kin1, Kin2, and simlar Serine/Threonine Kinases; STKs catalyze the ... |
144-296 | 1.20e-06 | ||||||
Catalytic domain of Kin1, Kin2, and simlar Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of yeast Kin1, Kin2, and similar proteins. Fission yeast Kin1 is a membrane-associated kinase that is involved in regulating cell surface cohesiveness during interphase. It also plays a role during mitosis, linking actomyosin ring assembly with septum synthesis and membrane closure to ensure separation of daughter cells. Budding yeast Kin1 and Kin2 act downstream of the Rab-GTPase Sec4 and are associated with the exocytic apparatus; they play roles in the secretory pathway. The Kin1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270979 [Multi-domain] Cd Length: 267 Bit Score: 48.98 E-value: 1.20e-06
|
||||||||||
STKc_DAPK | cd14105 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase; STKs ... |
143-296 | 1.44e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK1 is the prototypical member of the subfamily and is also simply referred to as DAPK. DAPK2 is also called DAPK-related protein 1 (DRP-1), while DAPK3 has also been named DAP-like kinase (DLK) and zipper-interacting protein kinase (ZIPk). These proteins are ubiquitously expressed in adult tissues, are capable of cross talk with each other, and may act synergistically in regulating cell death. The DAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271007 [Multi-domain] Cd Length: 269 Bit Score: 48.64 E-value: 1.44e-06
|
||||||||||
STKc_MLCK3 | cd14192 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 3; STKs catalyze ... |
143-297 | 1.55e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK3 (or MYLK3) phosphorylates myosin regulatory light chain 2 and controls the contraction of cardiac muscles. It is expressed specifically in both the atrium and ventricle of the heart and its expression is regulated by the cardiac protein Nkx2-5. MLCK3 plays an important role in cardiogenesis by regulating the assembly of cardiac sarcomeres, the repeating contractile unit of striated muscle. MLCK3 contains a single kinase domain near the C-terminus and a unique N-terminal half, and unlike MLCK1/2, it does not appear to be regulated by Ca2+/calmodulin. The MLCK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271094 [Multi-domain] Cd Length: 261 Bit Score: 48.80 E-value: 1.55e-06
|
||||||||||
STKc_MSK2_N | cd05614 | N-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ... |
39-297 | 1.56e-06 | ||||||
N-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSK2 and MSK1 play nonredundant roles in activating histone H3 kinases, which play pivotal roles in compaction of the chromatin fiber. MSK2 is the required H3 kinase in response to stress stimuli and activation of the p38 MAPK pathway. MSK2 also plays a role in the pathogenesis of psoriasis. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family, similar to 90 kDa ribosomal protein S6 kinases (RSKs). MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, which trigger phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. The MSK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270765 [Multi-domain] Cd Length: 332 Bit Score: 49.15 E-value: 1.56e-06
|
||||||||||
STKc_PhKG1 | cd14182 | Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma 1 subunit; STKs ... |
142-297 | 1.83e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma 1 subunit; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phosphorylase kinase (PhK) catalyzes the phosphorylation of inactive phosphorylase b to form the active phosphorylase a. It coordinates hormonal, metabolic, and neuronal signals to initiate the breakdown of glycogen stores, which enables the maintenance of blood-glucose homeostasis during fasting, and is also used as a source of energy for muscle contraction. PhK is one of the largest and most complex protein kinases, composed of a heterotetramer containing four molecules each of four subunit types: one catalytic (gamma) and three regulatory (alpha, beta, and delta). The gamma 1 subunit (PhKG1) is also referred to as the muscle gamma isoform. The gamma subunit, when isolated, is constitutively active and does not require phosphorylation of the A-loop for activity. The regulatory subunits restrain this kinase activity until signals are received to relieve this inhibition. For example, the kinase is activated in response to hormonal stimulation, after autophosphorylation or phosphorylation by cAMP-dependent kinase of the alpha and beta subunits. The high-affinity binding of ADP to the beta subunit also stimulates kinase activity, whereas calcium relieves inhibition by binding to the delta (calmodulin) subunit. The PhKG1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271084 [Multi-domain] Cd Length: 276 Bit Score: 48.37 E-value: 1.83e-06
|
||||||||||
STKc_GRK4_like | cd05605 | Catalytic domain of G protein-coupled Receptor Kinase 4-like Serine/Threonine Kinases; STKs ... |
144-297 | 2.10e-06 | ||||||
Catalytic domain of G protein-coupled Receptor Kinase 4-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of the GRK4-like group include GRK4, GRK5, GRK6, and similar GRKs. They contain an N-terminal RGS homology (RH) domain and a catalytic domain, but lack a G protein betagamma-subunit binding domain. They are localized to the plasma membrane through post-translational lipid modification or direct binding to PIP2. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK4-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270756 [Multi-domain] Cd Length: 285 Bit Score: 48.51 E-value: 2.10e-06
|
||||||||||
STKc_PLK | cd14099 | Catalytic domain of the Serine/Threonine Kinases, Polo-like kinases; STKs catalyze the ... |
173-297 | 2.19e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Polo-like kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. PLKs derive their names from homology to polo, a kinase first identified in Drosophila. There are five mammalian PLKs (PLK1-5) from distinct genes. There is good evidence that PLK1 may function as an oncogene while PLK2-5 have tumor suppressive properties. PLK1 functions as a positive regulator of mitosis, meiosis, and cytokinesis. PLK2 functions in G1 progression, S-phase arrest, and centriole duplication. PLK3 regulates angiogenesis and responses to DNA damage. PLK4 is required for late mitotic progression, cell survival, and embryonic development. PLK5 was first identified as a pseudogene containing a stop codon within the kinase domain, however, both murine and human genes encode expressed proteins. PLK5 functions in cell cycle arrest. Pssm-ID: 271001 [Multi-domain] Cd Length: 258 Bit Score: 48.32 E-value: 2.19e-06
|
||||||||||
STKc_HIPK1 | cd14228 | Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 1; ... |
143-223 | 4.34e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPK1 has been implicated in regulating eye size, lens formation, and retinal morphogenesis during late embryogenesis. It also contributes to the regulation of haematopoiesis and leukaemogenesis by phosphorylating and repressing the transcription factor c-Myb, which is crucial in T- and B-cell development. In glucose-deprived conditions, HIPK1 phosphorylates Daxx, leading to its relocalization from the nucleus to the cytoplasm, where it binds and stabilizes ASK1 (apoptosis signal-regulating kinase 1), a mitogen-activated protein kinase (MAPK) kinase kinase that activates the JNK and p38 MAPK pathways. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). The HIPK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271130 [Multi-domain] Cd Length: 355 Bit Score: 47.78 E-value: 4.34e-06
|
||||||||||
STKc_DCKL3 | cd14185 | Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 3 (also called ... |
144-296 | 5.84e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 3 (also called Doublecortin-like and CAM kinase-like 3); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL3 (or DCAMKL3) belongs to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. DCKL3 contains a single DCX domain (instead of a tandem) and a C-terminal kinase domain with similarity to CAMKs. It has been shown to interact with tubulin and JIP1/2. The DCKL3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271087 [Multi-domain] Cd Length: 258 Bit Score: 46.86 E-value: 5.84e-06
|
||||||||||
STKc_CASK | cd14094 | Catalytic domain of the Serine/Threonine Kinase, Calcium/calmodulin-dependent serine protein ... |
164-296 | 6.92e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Calcium/calmodulin-dependent serine protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CASK belongs to the MAGUK (membrane-associated guanylate kinase) protein family, which functions as multiple domain adaptor proteins and is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The enzymatically inactive GuK domain in MAGUK proteins mediates protein-protein interactions and associates intramolecularly with the SH3 domain. In addition, CASK contains a catalytic kinase and two L27 domains. It is highly expressed in the nervous system and plays roles in synaptic protein targeting, neural development, and regulation of gene expression. Binding partners include parkin (a Parkinson's disease molecule), neurexin (adhesion molecule), syndecans, calcium channel proteins, CINAP (nucleosome assembly protein), transcription factor Tbr-1, and the cytoplasmic adaptor proteins Mint1, Veli/mLIN-7/MALS, SAP97, caskin, and CIP98. Deletion or mutations in the CASK gene have been implicated in X-linked mental retardation. The CASK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270996 [Multi-domain] Cd Length: 300 Bit Score: 46.77 E-value: 6.92e-06
|
||||||||||
STKc_STK36 | cd14002 | Catalytic domain of Serine/Threonine Kinase 36; STKs catalyze the transfer of the ... |
173-296 | 1.15e-05 | ||||||
Catalytic domain of Serine/Threonine Kinase 36; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK36, also called Fused (or Fu) kinase, is involved in the Hedgehog signaling pathway. It is activated by the Smoothened (SMO) signal transducer, resulting in the stabilization of GLI transcription factors and the phosphorylation of SUFU to facilitate the nuclear accumulation of GLI. In Drosophila, Fused kinase is maternally required for proper segmentation during embryonic development and for the development of legs and wings during the larval stage. In mice, STK36 is not necessary for embryonic development, although mice deficient in STK36 display growth retardation postnatally. The STK36 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270904 [Multi-domain] Cd Length: 253 Bit Score: 46.09 E-value: 1.15e-05
|
||||||||||
STKc_GRK6 | cd05630 | Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 6; STKs ... |
144-297 | 1.52e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK6 is widely expressed in many tissues and is expressed as multiple splice variants with different domain architectures. It is post-translationally palmitoylated and localized in the membrane. GRK6 plays important roles in the regulation of dopamine, M3 muscarinic, opioid, and chemokine receptor signaling. It also plays maladaptive roles in addiction and Parkinson's disease. GRK6-deficient mice exhibit altered dopamine receptor regulation, decreased lymphocyte chemotaxis, and increased acute inflammation and neutrophil chemotaxis. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270779 [Multi-domain] Cd Length: 285 Bit Score: 45.78 E-value: 1.52e-05
|
||||||||||
STKc_BRSK1_2 | cd14081 | Catalytic domain of Brain-specific serine/threonine-protein kinases 1 and 2; STKs catalyze the ... |
187-297 | 1.63e-05 | ||||||
Catalytic domain of Brain-specific serine/threonine-protein kinases 1 and 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BRSK1, also called SAD-B or SAD1 (Synapses of Amphids Defective homolog 1), and BRSK2, also called SAD-A, are highly expressed in mammalian forebrain. They play important roles in establishing neuronal polarity. BRSK1/2 double knock-out mice die soon after birth, showing thin cerebral cortices due to disordered subplate layers and neurons that lack distinct axons and dendrites. BRSK1 regulates presynaptic neurotransmitter release. Its activity fluctuates during cell cysle progression and it acts as a regulator of centrosome duplication. BRSK2 is also abundant in pancreatic islets, where it is involved in the regulation of glucose-stimulated insulin secretion. The BRSK1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270983 [Multi-domain] Cd Length: 255 Bit Score: 45.32 E-value: 1.63e-05
|
||||||||||
PTZ00266 | PTZ00266 | NIMA-related protein kinase; Provisional |
165-216 | 1.85e-05 | ||||||
NIMA-related protein kinase; Provisional Pssm-ID: 173502 [Multi-domain] Cd Length: 1021 Bit Score: 46.27 E-value: 1.85e-05
|
||||||||||
STKc_MEKK1_plant | cd06632 | Catalytic domain of the Serine/Threonine Kinase, Plant Mitogen-Activated Protein (MAP) ... |
144-296 | 1.94e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Plant Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of plant MAPK kinase kinases (MAPKKKs) including Arabidopsis thaliana MEKK1 and MAPKKK3. Arabidopsis thaliana MEKK1 activates MPK4, a MAPK that regulates systemic acquired resistance. MEKK1 also participates in the regulation of temperature-sensitive and tissue-specific cell death. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The plant MEKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270802 [Multi-domain] Cd Length: 259 Bit Score: 45.47 E-value: 1.94e-05
|
||||||||||
STKc_Chk2 | cd14084 | Catalytic domain of the Serine/Threonine kinase, Cell cycle Checkpoint Kinase 2; STKs catalyze ... |
38-296 | 1.98e-05 | ||||||
Catalytic domain of the Serine/Threonine kinase, Cell cycle Checkpoint Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Checkpoint Kinase 2 (Chk2) plays an important role in cellular responses to DNA double-strand breaks and related lesions. It is phosphorylated and activated by ATM kinase, resulting in its dissociation from sites of damage to phosphorylate downstream targets such as BRCA1, p53, cell cycle transcription factor E2F1, the promyelocytic leukemia protein (PML) involved in apoptosis, and CDC25 phosphatases, among others. Mutations in Chk2 is linked to a variety of cancers including familial breast cancer, myelodysplastic syndromes, prostate cancer, lung cancer, and osteosarcomas. Chk2 contains an N-terminal SQ/TQ cluster domain (SCD), a central forkhead-associated (FHA) domain, and a C-terminal catalytic kinase domain. The Chk2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270986 [Multi-domain] Cd Length: 275 Bit Score: 45.46 E-value: 1.98e-05
|
||||||||||
STKc_DAPK1 | cd14194 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 1; STKs ... |
143-296 | 2.29e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK1 is the prototypical member of the subfamily and is also simply referred to as DAPK. It is Ca2+/calmodulin (CaM)-regulated and actin-associated protein that contains an N-terminal kinase domain followed by an autoinhibitory CaM binding region and a large C-terminal extension with multiple functional domains including ankyrin (ANK) repeats, a cytoskeletal binding domain, a Death domain, and a serine-rich tail. Loss of DAPK1 expression, usually because of DNA methylation, is implicated in many tumor types. DAPK1 is highly abundant in the brain and has also been associated with neurodegeneration. The DAPK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271096 [Multi-domain] Cd Length: 269 Bit Score: 45.01 E-value: 2.29e-05
|
||||||||||
STKc_Cdc7_like | cd06627 | Catalytic domain of Cell division control protein 7-like Serine/Threonine Kinases; STKs ... |
40-297 | 3.54e-05 | ||||||
Catalytic domain of Cell division control protein 7-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily include Schizosaccharomyces pombe Cdc7, Saccharomyces cerevisiae Cdc15, Arabidopsis thaliana mitogen-activated protein kinase kinase kinase (MAPKKK) epsilon, and related proteins. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Fission yeast Cdc7 is essential for cell division by playing a key role in the initiation of septum formation and cytokinesis. Budding yeast Cdc15 functions to coordinate mitotic exit with cytokinesis. Arabidopsis MAPKKK epsilon is required for pollen development in the plasma membrane. The Cdc7-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270797 [Multi-domain] Cd Length: 254 Bit Score: 44.52 E-value: 3.54e-05
|
||||||||||
STKc_TSSK-like | cd14080 | Catalytic domain of testis-specific serine/threonine kinases and similar proteins; STKs ... |
144-297 | 3.76e-05 | ||||||
Catalytic domain of testis-specific serine/threonine kinases and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK1 and TSSK2 are expressed specifically in meiotic and postmeiotic spermatogenic cells, respectively. TSSK3 has been reported to be expressed in the interstitial Leydig cells of adult testis. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. TSSK6, also called SSTK, is expressed at the head of elongated sperm. TSSK1/TSSK2 double knock-out and TSSK6 null mice are sterile without manifesting other defects, making these kinases viable targets for male contraception. The TSSK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270982 [Multi-domain] Cd Length: 262 Bit Score: 44.48 E-value: 3.76e-05
|
||||||||||
STKc_PAK2 | cd06655 | Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 2; STKs catalyze the ... |
144-297 | 4.31e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK2 plays a role in pro-apoptotic signaling. It is cleaved and activated by caspases leading to morphological changes during apoptosis. PAK2 is also activated in response to a variety of stresses including DNA damage, hyperosmolarity, serum starvation, and contact inhibition, and may play a role in coordinating the stress response. PAK2 also contributes to cancer cell invasion through a mechanism distinct from that of PAK1. It belongs to the group I PAKs, which contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132986 [Multi-domain] Cd Length: 296 Bit Score: 44.33 E-value: 4.31e-05
|
||||||||||
STKc_ULK4 | cd14010 | Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 4; STKs catalyze the ... |
169-296 | 4.52e-05 | ||||||
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ULK4 is a functionally uncharacterized kinase that shows similarity to ATG1/ULKs. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. The ULK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270912 [Multi-domain] Cd Length: 269 Bit Score: 44.21 E-value: 4.52e-05
|
||||||||||
STKc_CaMK_like | cd14088 | Catalytic domain of an Uncharacterized group of Serine/Threonine kinases with similarity to ... |
170-296 | 4.63e-05 | ||||||
Catalytic domain of an Uncharacterized group of Serine/Threonine kinases with similarity to Calcium/calmodulin-dependent protein kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of uncharacterized STKs with similarity to CaMKs, which are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). CaMKs contain an N-terminal catalytic domain followed by a regulatory domain that harbors a CaM binding site. This uncharacterized subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270990 [Multi-domain] Cd Length: 265 Bit Score: 44.25 E-value: 4.63e-05
|
||||||||||
STKc_STK10 | cd06644 | Catalytic domain of the Serine/Threonine Kinase, STK10 (also called Lymphocyte-Oriented Kinase ... |
144-301 | 4.69e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinase, STK10 (also called Lymphocyte-Oriented Kinase or LOK); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK10/LOK is also called polo-like kinase kinase 1 in Xenopus (xPlkk1). It is highly expressed in lymphocytes and is responsible in regulating leukocyte function associated antigen (LFA-1)-mediated lymphocyte adhesion. It plays a role in regulating the CD28 responsive element in T cells, and may also function as a regulator of polo-like kinase 1 (Plk1), a protein which is overexpressed in multiple tumor types. The STK10 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132975 [Multi-domain] Cd Length: 292 Bit Score: 44.25 E-value: 4.69e-05
|
||||||||||
STKc_MSK1_C | cd14179 | C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ... |
142-205 | 6.35e-05 | ||||||
C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSK1 plays a role in the regulation of translational control and transcriptional activation. It phosphorylates the transcription factors, CREB and NFkB. It also phosphorylates the nucleosomal proteins H3 and HMG-14. Increased phosphorylation of MSK1 is associated with the development of cerebral ischemic/hypoxic preconditioning. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, which trigger phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. The MSK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271081 [Multi-domain] Cd Length: 310 Bit Score: 43.88 E-value: 6.35e-05
|
||||||||||
PK_Unc-89_rpt1 | cd14109 | Pseudokinase domain, first repeat, of the Giant Serine/Threonine Kinase Uncoordinated protein ... |
94-297 | 7.80e-05 | ||||||
Pseudokinase domain, first repeat, of the Giant Serine/Threonine Kinase Uncoordinated protein 89; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. The nematode Unc-89 gene, through alternative promoter use and splicing, encodes at least six major isoforms (Unc-89A to Unc-89F) of giant muscle proteins that are homologs for the vetebrate obscurin. In flies, five isoforms of Unc-89 have been detected: four in the muscles of adult flies (two in the indirect flight muscle and two in other muscles) and another isoform in the larva. Unc-89 in nematodes is required for normal muscle cell architecture. In flies, it is necessary for the development of a symmetrical sarcomere in the flight muscles. Unc-89 proteins contain several adhesion and signaling domains including multiple copies of the immunoglobulin (Ig) domain, as well as fibronectin type III (FN3), SH3, RhoGEF, and PH domains. The nematode Unc-89 isoforms D, C, D, and F contain two kinase domain with B and F having two complete kinase domains while the first repeat of C and D are partial domains. Homology modeling suggests that the first kinase repeat of Unc-89 may be catalytically inactive, a pseudokinase, while the second kinase repeat may be active. The pseudokinase domain may function as a regulatory domain or a protein interaction domain. The Unc-89 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271011 [Multi-domain] Cd Length: 255 Bit Score: 43.27 E-value: 7.80e-05
|
||||||||||
STKc_CaMKI_alpha | cd14167 | Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ... |
136-296 | 8.49e-05 | ||||||
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I alpha; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271069 [Multi-domain] Cd Length: 263 Bit Score: 43.48 E-value: 8.49e-05
|
||||||||||
STKc_SRPK | cd14136 | Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase; STKs catalyze ... |
168-297 | 9.50e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SRPKs phosphorylate and regulate splicing factors from the SR protein family by specifically phosphorylating multiple serine residues residing in SR/RS dipeptide motifs (also known as RS domains). Phosphorylation of the RS domains enhances interaction with transportin SR and facilitates entry of the SR proteins into the nucleus. SRPKs contain a nonconserved insert domain, within the well-conserved catalytic kinase domain, that regulates their subcellular localization. They play important roles in mediating pre-mRNA processing and mRNA maturation, as well as other cellular functions such as chromatin reorganization, cell cycle and p53 regulation, and metabolic signaling. Vertebrates contain three distinct SRPKs, called SRPK1-3. The SRPK homolog in budding yeast, Sky1p, recognizes and phosphorylates its substrate Npl3p, which lacks a classic RS domain but contains a single RS dipeptide at the C-terminus of its RGG domain. Npl3p is a shuttling heterogeneous nuclear ribonucleoprotein (hnRNP) that exports a distinct class of mRNA from the nucleus to the cytoplasm. The SRPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271038 [Multi-domain] Cd Length: 320 Bit Score: 43.33 E-value: 9.50e-05
|
||||||||||
STKc_nPKC_theta_like | cd05592 | Catalytic domain of the Serine/Threonine Kinases, Novel Protein Kinase C theta, delta, and ... |
113-300 | 1.15e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Novel Protein Kinase C theta, delta, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. There are four nPKC isoforms, delta, epsilon, eta, and theta. The nPKC-theta-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270744 [Multi-domain] Cd Length: 320 Bit Score: 43.14 E-value: 1.15e-04
|
||||||||||
STKc_MSK2_C | cd14180 | C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ... |
144-319 | 1.58e-04 | ||||||
C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSK2 and MSK1 play nonredundant roles in activating histone H3 kinases, which play pivotal roles in compaction of the chromatin fiber. MSK2 is the required H3 kinase in response to stress stimuli and activation of the p38 MAPK pathway. MSK2 also plays a role in the pathogenesis of psoriasis. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family, similar to 90 kDa ribosomal protein S6 kinases (RSKs). MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, which trigger phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. The MSK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271082 [Multi-domain] Cd Length: 309 Bit Score: 42.94 E-value: 1.58e-04
|
||||||||||
STKc_TAO3 | cd06633 | Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 3; STKs catalyze ... |
143-207 | 1.62e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAO3 is also known as JIK (c-Jun N-terminal kinase inhibitory kinase) or KFC (kinase from chicken). It specifically activates JNK, presumably by phosphorylating and activating MKK4/MKK7. In Saccharomyces cerevisiae, TAO3 is a component of the RAM (regulation of Ace2p activity and cellular morphogenesis) signaling pathway. TAO3 is upregulated in retinal ganglion cells after axotomy, and may play a role in apoptosis. TAO proteins possess mitogen-activated protein kinase (MAPK) kinase kinase activity. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. The TAO3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270803 [Multi-domain] Cd Length: 313 Bit Score: 42.72 E-value: 1.62e-04
|
||||||||||
STKc_DAPK3 | cd14195 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 3; STKs ... |
143-296 | 1.64e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK3, also called DAP-like kinase (DLK) and zipper-interacting protein kinase (ZIPk), contains an N-terminal kinase domain and a C-terminal region with nuclear localization signals (NLS) and a leucine zipper motif that mediates homodimerization and interaction with other leucine zipper proteins. It interacts with Par-4, a protein that contains a death domain and interacts with actin filaments. DAPK3 is present in both the cytoplasm and nucleus. Its co-expression with Par-4 results in the co-localization of the two proteins to actin filaments. In addition to cell death, DAPK3 is also implicated in mediating cell motility and the contraction of smooth muscles. The DAPK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271097 [Multi-domain] Cd Length: 271 Bit Score: 42.68 E-value: 1.64e-04
|
||||||||||
STKc_Nek6 | cd08228 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ... |
39-211 | 2.13e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek6 is required for the transition from metaphase to anaphase. It also plays important roles in mitotic spindle formation and cytokinesis. Activated by Nek9 during mitosis, Nek6 phosphorylates Eg5, a kinesin that is important for spindle bipolarity. Nek6 localizes to spindle microtubules during metaphase and anaphase, and to the midbody during cytokinesis. It is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270865 [Multi-domain] Cd Length: 268 Bit Score: 42.32 E-value: 2.13e-04
|
||||||||||
STKc_PKB | cd05571 | Catalytic domain of the Serine/Threonine Kinase, Protein Kinase B; STKs catalyze the transfer ... |
173-301 | 2.18e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Protein Kinase B; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. There are three PKB isoforms from different genes, PKB-alpha (or Akt1), PKB-beta (or Akt2), and PKB-gamma (or Akt3). PKB contains an N-terminal pleckstrin homology (PH) domain and a C-terminal catalytic domain. It is activated downstream of phosphoinositide 3-kinase (PI3K) and plays important roles in diverse cellular functions including cell survival, growth, proliferation, angiogenesis, motility, and migration. PKB also has a central role in a variety of human cancers, having been implicated in tumor initiation, progression, and metastasis. The PKB subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and PI3K. Pssm-ID: 270723 [Multi-domain] Cd Length: 322 Bit Score: 42.34 E-value: 2.18e-04
|
||||||||||
STKc_CaMKIV | cd14085 | Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ... |
144-296 | 2.32e-04 | ||||||
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type IV; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKIV is found predominantly in neurons and immune cells. It is activated by the binding of calcium/CaM and phosphorylation by CaMKK (alpha or beta). The CaMKK-CaMKIV cascade participates in regulating several transcription factors like CREB, MEF2, and retinoid orphan receptors. It also is implicated in T-cell development and signaling, cytokine secretion, and signaling through Toll-like receptors, and is thus, pivotal in immune response and inflammation. The CaMKIV subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270987 [Multi-domain] Cd Length: 294 Bit Score: 42.12 E-value: 2.32e-04
|
||||||||||
STKc_TAO1 | cd06635 | Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 1; STKs catalyze ... |
143-207 | 5.58e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAO1 is sometimes referred to as prostate-derived sterile 20-like kinase 2 (PSK2). TAO1 activates the p38 MAPK through direct interaction with and activation of MEK3. TAO1 is highly expressed in the brain and may play a role in neuronal apoptosis. TAO1 interacts with the checkpoint proteins BubR1 and Mad2, and plays an important role in regulating mitotic progression, which is required for both chromosome congression and checkpoint-induced anaphase delay. TAO1 may play a role in protecting genomic stability. TAO proteins possess MAPK kinase kinase activity. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. The TAO1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270805 [Multi-domain] Cd Length: 317 Bit Score: 41.19 E-value: 5.58e-04
|
||||||||||
STKc_GRK4 | cd05631 | Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 4; STKs ... |
144-205 | 5.97e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK4 has a limited tissue distribution. It is mainly found in the testis, but is also present in the cerebellum and kidney. It is expressed as multiple splice variants with different domain architectures and is post-translationally palmitoylated and localized in the membrane. GRK4 polymorphisms are associated with hypertension and salt sensitivity, as they cause hyperphosphorylation, desensitization, and internalization of the dopamine 1 (D1) receptor while increasing the expression of the angiotensin II type 1 receptor. GRK4 plays a crucial role in the D1 receptor regulation of sodium excretion and blood pressure. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173720 [Multi-domain] Cd Length: 285 Bit Score: 40.75 E-value: 5.97e-04
|
||||||||||
STKc_nPKC_delta | cd05620 | Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C delta; STKs catalyze ... |
173-297 | 6.38e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C delta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. It slows down cell proliferation, inducing cell cycle arrest and enhancing cell differentiation. PKC-delta is also involved in the regulation of transcription as well as immune and inflammatory responses. It plays a central role in the genotoxic stress response that leads to DNA damaged-induced apoptosis. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC-delta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173710 [Multi-domain] Cd Length: 316 Bit Score: 41.08 E-value: 6.38e-04
|
||||||||||
SPS1 | COG0515 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
38-219 | 7.39e-04 | ||||||
Serine/threonine protein kinase [Signal transduction mechanisms]; Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 41.15 E-value: 7.39e-04
|
||||||||||
STKc_PSKH1 | cd14087 | Catalytic domain of the Protein Serine/Threonine kinase H1; STKs catalyze the transfer of the ... |
143-296 | 8.59e-04 | ||||||
Catalytic domain of the Protein Serine/Threonine kinase H1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PSKH1 is an autophosphorylating STK that is expressed ubiquitously and exhibits multiple intracellular localizations including the centrosome, Golgi apparatus, and splice factor compartments. It contains a catalytic kinase domain and an N-terminal SH4-like motif that is acylated to facilitate membrane attachment. PSKH1 plays a rile in the maintenance of the Golgi apparatus, an important organelle within the secretory pathway. It may also function as a novel splice factor and a regulator of prostate cancer cell growth. The PSKH1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270989 [Multi-domain] Cd Length: 259 Bit Score: 40.21 E-value: 8.59e-04
|
||||||||||
STKc_Nek6_7 | cd08224 | Catalytic domain of the Serine/Threonine Kinases, Never In Mitosis gene A (NIMA)-related ... |
39-206 | 8.71e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Never In Mitosis gene A (NIMA)-related kinase 6 and 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek6 and Nek7 are the shortest Neks, consisting only of the catalytic domain and a very short N-terminal extension. They show distinct expression patterns and both appear to be downstream substrates of Nek9. They are required for mitotic spindle formation and cytokinesis. They may also be regulators of the p70 ribosomal S6 kinase. Nek6/7 is part of a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270863 [Multi-domain] Cd Length: 262 Bit Score: 40.33 E-value: 8.71e-04
|
||||||||||
STKc_PAK3 | cd06656 | Catalytic domain of the Protein Serine/Threonine Kinase, p21-activated kinase 3; Serine ... |
144-297 | 9.20e-04 | ||||||
Catalytic domain of the Protein Serine/Threonine Kinase, p21-activated kinase 3; Serine/threonine kinases (STKs), p21-activated kinase (PAK) 3, catalytic (c) domain. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. PAKs from higher eukaryotes are classified into two groups (I and II), according to their biochemical and structural features. PAK3 belongs to group I. Group I PAKs contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). PAK3 is highly expressed in the brain. It is implicated in neuronal plasticity, synapse formation, dendritic spine morphogenesis, cell cycle progression, neuronal migration, and apoptosis. Inactivating mutations in the PAK3 gene cause X-linked non-syndromic mental retardation, the severity of which depends on the site of the mutation. Pssm-ID: 132987 [Multi-domain] Cd Length: 297 Bit Score: 40.48 E-value: 9.20e-04
|
||||||||||
STKc_nPKC_theta | cd05619 | Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C theta; STKs catalyze ... |
173-297 | 9.30e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C theta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. Although T-cells also express other PKC isoforms, PKC-theta is unique in that upon antigen stimulation, it is translocated to the plasma membrane at the immunological synapse, where it mediates signals essential for T-cell activation. It is essential for TCR-induced proliferation, cytokine production, T-cell survival, and the differentiation and effector function of T-helper (Th) cells, particularly Th2 and Th17. PKC-theta is being developed as a therapeutic target for Th2-mediated allergic inflammation and Th17-mediated autoimmune diseases. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270770 [Multi-domain] Cd Length: 331 Bit Score: 40.29 E-value: 9.30e-04
|
||||||||||
STKc_Pat1_like | cd13993 | Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of ... |
40-205 | 9.71e-04 | ||||||
Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Pat1 (also called Ran1), Saccharomyces cerevisiae VHS1 and KSP1, and similar fungal STKs. Pat1 blocks Mei2, an RNA-binding protein which is indispensable in the initiation of meiosis. Pat1 is inactivated and Mei2 activated, which initiates meiosis, under nutrient-deprived conditions through a signaling cascade involving Ste11. Meiosis induced by Pat1 inactivation may show different characteristics than normal meiosis including aberrant positioning of centromeres. VHS1 was identified in a screen for suppressors of cell cycle arrest at the G1/S transition, while KSP1 may be involved in regulating PRP20, which is required for mRNA export and maintenance of nuclear structure. The Pat1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270895 [Multi-domain] Cd Length: 267 Bit Score: 40.03 E-value: 9.71e-04
|
||||||||||
STKc_ULK3 | cd14121 | Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 3; STKs catalyze the ... |
144-296 | 1.02e-03 | ||||||
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK3 mRNA is up-regulated in fibroblasts after Ras-induced senescence, and its overexpression induces both autophagy and senescence in a fibroblast cell line. ULK3, through its kinase activity, positively regulates Gli proteins, mediators of the Sonic hedgehog (Shh) signaling pathway that is implicated in tissue homeostasis maintenance and neurogenesis. It is inhibited by binding to Suppressor of Fused (Sufu). The ULK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271023 [Multi-domain] Cd Length: 252 Bit Score: 39.96 E-value: 1.02e-03
|
||||||||||
STKc_GRK7 | cd05607 | Catalytic domain of the Protein Serine/Threonine Kinase, G protein-coupled Receptor Kinase 7; ... |
145-205 | 1.24e-03 | ||||||
Catalytic domain of the Protein Serine/Threonine Kinase, G protein-coupled Receptor Kinase 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK7 (also called iodopsin kinase) belongs to the visual group of GRKs. It is primarily found in the retina and plays a role in the regulation of opsin light receptors. GRK7 is located in retinal cone outer segments and plays an important role in regulating photoresponse of the cones. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors, which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK7 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270758 [Multi-domain] Cd Length: 286 Bit Score: 39.89 E-value: 1.24e-03
|
||||||||||
STKc_TAO | cd06607 | Catalytic domain of the Serine/Threonine Kinases, Thousand-and-One Amino acids proteins; STKs ... |
144-206 | 1.33e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Thousand-and-One Amino acids proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAO proteins possess mitogen-activated protein kinase (MAPK) kinase kinase activity. They activate the MAPKs, p38 and c-Jun N-terminal kinase (JNK), by phosphorylating and activating the respective MAP/ERK kinases (MEKs, also known as MKKs or MAPKKs), MEK3/MEK6 and MKK4/MKK7. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. Vertebrates contain three TAO subfamily members, named TAO1, TAO2, and TAO3. The TAO subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270784 [Multi-domain] Cd Length: 258 Bit Score: 39.74 E-value: 1.33e-03
|
||||||||||
STKc_PknB_like | cd14014 | Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs ... |
40-292 | 1.36e-03 | ||||||
Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270916 [Multi-domain] Cd Length: 260 Bit Score: 39.49 E-value: 1.36e-03
|
||||||||||
STKc_PASK | cd14004 | Catalytic domain of the Serine/Threonine kinase, Per-ARNT-Sim (PAS) domain Kinase; STKs ... |
145-297 | 1.43e-03 | ||||||
Catalytic domain of the Serine/Threonine kinase, Per-ARNT-Sim (PAS) domain Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PASK (or PASKIN) is a nutrient and energy sensor and thus, plays an important role in maintaining cellular energy homeostasis. It coordinates the utilization of glucose in response to metabolic demand. It contains an N-terminal PAS domain which directly interacts and inhibits a C-terminal catalytic kinase domain. The PAS domain serves as a sensory module for different environmental signals such as light, redox state, and various metabolites. Binding of ligands to the PAS domain causes structural changes which leads to kinase activation and the phosphorylation of substrates to trigger the appropriate cellular response. The PASK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270906 [Multi-domain] Cd Length: 256 Bit Score: 39.68 E-value: 1.43e-03
|
||||||||||
STKc_GRK5 | cd05632 | Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 5; STKs ... |
144-253 | 2.25e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK5 is widely expressed in many tissues. It associates with the membrane though an N-terminal PIP2 binding domain and also binds phospholipids via its C-terminus. GRK5 deficiency is associated with early Alzheimer's disease in humans and mouse models. GRK5 also plays a crucial role in the pathogenesis of sporadic Parkinson's disease. It participates in the regulation and desensitization of PDGFRbeta, a receptor tyrosine kinase involved in a variety of downstream cellular effects including cell growth, chemotaxis, apoptosis, and angiogenesis. GRK5 also regulates Toll-like receptor 4, which is involved in innate and adaptive immunity. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270780 [Multi-domain] Cd Length: 313 Bit Score: 39.18 E-value: 2.25e-03
|
||||||||||
PLN03225 | PLN03225 | Serine/threonine-protein kinase SNT7; Provisional |
187-297 | 2.30e-03 | ||||||
Serine/threonine-protein kinase SNT7; Provisional Pssm-ID: 215638 [Multi-domain] Cd Length: 566 Bit Score: 39.39 E-value: 2.30e-03
|
||||||||||
STKc_GAK_like | cd13985 | Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of ... |
143-205 | 2.33e-03 | ||||||
Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes cyclin G-Associated Kinase (GAK), Drosophila melanogaster Numb-Associated Kinase (NAK)-like proteins, and similar protein kinases. GAK plays regulatory roles in clathrin-mediated membrane trafficking, the maintenance of centrosome integrity and chromosome congression, neural patterning, survival of neurons, and immune responses. NAK plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. The GAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270887 [Multi-domain] Cd Length: 272 Bit Score: 38.85 E-value: 2.33e-03
|
||||||||||
STKc_CaMKII | cd14086 | Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ... |
173-296 | 2.35e-03 | ||||||
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type II; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKs contain an N-terminal catalytic domain followed by a regulatory domain that harbors a CaM binding site. In addition, CaMKII contains a C-terminal association domain that facilitates oligomerization. There are four CaMKII proteins (alpha, beta, gamma, delta) encoded by different genes; each gene undergoes alternative splicing to produce more than 30 isoforms. CaMKII-alpha and -beta are enriched in neurons while CaMKII-gamma and -delta are predominant in myocardium. CaMKII is a signaling molecule that translates upstream calcium and reactive oxygen species (ROS) signals into downstream responses that play important roles in synaptic function and cardiovascular physiology. It is a major component of the postsynaptic density and is critical in regulating synaptic plasticity including long-term potentiation. It is critical in regulating ion channels and proteins involved in myocardial excitation-contraction and excitation-transcription coupling. Excessive CaMKII activity promotes processes that contribute to heart failure and arrhythmias. The CaMKII subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270988 [Multi-domain] Cd Length: 292 Bit Score: 38.94 E-value: 2.35e-03
|
||||||||||
STKc_LKB1 | cd14119 | Catalytic domain of the Serine/Threonine kinase, Liver Kinase B1; STKs catalyze the transfer ... |
46-297 | 2.80e-03 | ||||||
Catalytic domain of the Serine/Threonine kinase, Liver Kinase B1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LKB1, also called STK11, was first identified as a tumor suppressor responsible for Peutz-Jeghers syndrome, a disorder that leads to an increased risk of spontaneous epithelial cancer. It serves as a master upstream kinase that activates AMP-activated protein kinase (AMPK) and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. To be activated, LKB1 requires the adaptor proteins STe20-Related ADaptor (STRAD) and mouse protein 25 (MO25). The LKB1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271021 [Multi-domain] Cd Length: 255 Bit Score: 38.78 E-value: 2.80e-03
|
||||||||||
STKc_TAO2 | cd06634 | Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 2; STKs catalyze ... |
144-207 | 3.80e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Human TAO2 is also known as prostate-derived Ste20-like kinase (PSK) and was identified in a screen for overexpressed RNAs in prostate cancer. TAO2 possesses mitogen-activated protein kinase (MAPK) kinase kinase activity and activates both p38 and c-Jun N-terminal kinase (JNK), by phosphorylating and activating their respective MAP/ERK kinases, MEK3/MEK6 and MKK4/MKK7. It contains a long C-terminal extension with autoinhibitory segments, and is activated by the release of this inhibition and the phosphorylation of its activation loop serine. TAO2 functions as a regulator of actin cytoskeletal and microtubule organization. In addition, it regulates the transforming growth factor-activated kinase 1 (TAK1), which is a MAPKKK that plays an essential role in the signaling pathways of tumor necrosis factor, interleukin 1, and Toll-like receptor. The TAO2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270804 [Multi-domain] Cd Length: 308 Bit Score: 38.47 E-value: 3.80e-03
|
||||||||||
STKc_ULK2 | cd14201 | Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 2; STKs catalyze the ... |
142-218 | 4.20e-03 | ||||||
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK2 is ubiquitously expressed and is essential in autophagy induction. It displays partially redundant functions with ULK1 and is able to compensate for the loss of ULK1 in non-selective autophagy. It also displays neuron-specific functions and is important in axon development. The ULK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271103 [Multi-domain] Cd Length: 271 Bit Score: 38.07 E-value: 4.20e-03
|
||||||||||
STKc_CNK2-like | cd08530 | Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar ... |
169-205 | 4.73e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii CNK2 has both cilliary and cell cycle functions. It influences flagellar length through promoting flagellar disassembly, and it regulates cell size, through influencing the size threshold at which cells commit to mitosis. This subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily includes CNK1, and -2. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270869 [Multi-domain] Cd Length: 256 Bit Score: 38.14 E-value: 4.73e-03
|
||||||||||
STKc_Nek2 | cd08217 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ... |
148-217 | 4.93e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek2 subfamily includes Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants prevented from entering mitosis. NIMA is essential for mitotic entry and progression through mitosis, and its degradation is essential for mitotic exit. NIMA is involved in nuclear membrane fission. Vertebrate Nek2 is a cell cycle-regulated STK, localized in centrosomes and kinetochores, that regulates centrosome splitting at the G2/M phase. It also interacts with other mitotic kinases such as Polo-like kinase 1 and may play a role in spindle checkpoint. An increase in the expression of the human NEK2 gene is strongly associated with the progression of non-Hodgkin lymphoma. Nek2 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. It The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270857 [Multi-domain] Cd Length: 265 Bit Score: 37.91 E-value: 4.93e-03
|
||||||||||
STKc_NAK1_like | cd06917 | Catalytic domain of Fungal Nak1-like Serine/Threonine Kinases; STKs catalyze the transfer of ... |
143-205 | 5.19e-03 | ||||||
Catalytic domain of Fungal Nak1-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Nak1, Saccharomyces cerevisiae Kic1p (kinase that interacts with Cdc31p) and related proteins. Nak1 (also called N-rich kinase 1), is required by fission yeast for polarizing the tips of actin cytoskeleton and is involved in cell growth, cell separation, cell morphology and cell-cycle progression. Kic1p is required by budding yeast for cell integrity and morphogenesis. Kic1p interacts with Cdc31p, the yeast homologue of centrin, and phosphorylates substrates in a Cdc31p-dependent manner. The Nak1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270822 [Multi-domain] Cd Length: 277 Bit Score: 37.84 E-value: 5.19e-03
|
||||||||||
STKc_GRK1 | cd05608 | Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 1; STKs ... |
144-205 | 7.27e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK1 (also called rhodopsin kinase) belongs to the visual group of GRKs and is expressed in retinal cells. It phosphorylates rhodopsin in rod cells, which leads to termination of the phototransduction cascade. Mutations in GRK1 are associated to a recessively inherited form of stationary nightblindness called Oguchi disease. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors, which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270759 [Multi-domain] Cd Length: 288 Bit Score: 37.55 E-value: 7.27e-03
|
||||||||||
Blast search parameters | ||||
|