heat shock 70 kDa protein 12A isoform X4 [Mus musculus]
acetate and sugar kinases/Hsc70/actin family protein( domain architecture ID 99298)
acetate and sugar kinases/Hsc70/actin (ASKHA) family protein catalyzes phosphoryl transfer from ATP to their respective substrates
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
ASKHA_ATPase-like super family | cl49607 | ATPase-like domain of the ASKHA (Acetate and Sugar Kinases/Hsc70/Actin) superfamily; The ASKHA ... |
50-268 | 3.81e-171 | ||||
ATPase-like domain of the ASKHA (Acetate and Sugar Kinases/Hsc70/Actin) superfamily; The ASKHA superfamily, also known as actin-like ATPase domain superfamily, includes acetate and sugar kinases, heat-shock cognate 70 (Hsp70) and actin family proteins. They either function as conformational hydrolases (e.g. Hsp70, actin) that perform simple ATP hydrolysis, or as metabolite kinases (e.g. glycerol kinase) that catalyze the transfer of a phosphoryl group from ATP to their cognate substrates. Both activities depend on the presence of specific metal cations. ASKHA superfamily members share a common core fold that includes an actin-like ATPase domain consisting of two subdomains (denoted I _ II) with highly similar ribonuclease (RNase) H-like folds. The fold of each subdomain is characterized by a central five strand beta-sheet and flanking alpha-helices. The two subdomains form an active site cleft in which ATP binds at the bottom. Another common feature of ASKHA superfamily members is the coupling of phosphoryl-group transfer to conformational rearrangement, leading to domain closure. Substrate binding triggers protein motion. The actual alignment was detected with superfamily member cd11735: Pssm-ID: 483947 [Multi-domain] Cd Length: 413 Bit Score: 485.28 E-value: 3.81e-171
|
||||||||
Name | Accession | Description | Interval | E-value | ||||||
ASKHA_NBD_HSP70_HSPA12A | cd11735 | nucleotide-binding domain (NBD) of heat shock 70 kDa protein 12A (HSPA12A) and similar ... |
50-268 | 3.81e-171 | ||||||
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 12A (HSPA12A) and similar proteins; HSPA12A is an adapter protein for SORL1, but not SORT1. It delays SORL1 internalization and affects SORL1 subcellular localization. HSPA12A belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). No co-chaperones have yet been identified for HSPA12A. Pssm-ID: 466841 [Multi-domain] Cd Length: 413 Bit Score: 485.28 E-value: 3.81e-171
|
||||||||||
DnaK | COG0443 | Molecular chaperone DnaK (HSP70) [Posttranslational modification, protein turnover, chaperones] ... |
51-416 | 3.03e-08 | ||||||
Molecular chaperone DnaK (HSP70) [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440212 [Multi-domain] Cd Length: 473 Bit Score: 55.60 E-value: 3.03e-08
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
ASKHA_NBD_HSP70_HSPA12A | cd11735 | nucleotide-binding domain (NBD) of heat shock 70 kDa protein 12A (HSPA12A) and similar ... |
50-268 | 3.81e-171 | ||||||
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 12A (HSPA12A) and similar proteins; HSPA12A is an adapter protein for SORL1, but not SORT1. It delays SORL1 internalization and affects SORL1 subcellular localization. HSPA12A belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). No co-chaperones have yet been identified for HSPA12A. Pssm-ID: 466841 [Multi-domain] Cd Length: 413 Bit Score: 485.28 E-value: 3.81e-171
|
||||||||||
ASKHA_NBD_HSP70_HSPA12B | cd11736 | nucleotide-binding domain (NBD) of heat shock 70 kDa protein 12B (HSPA12B) and similar ... |
54-267 | 5.78e-94 | ||||||
nucleotide-binding domain (NBD) of heat shock 70 kDa protein 12B (HSPA12B) and similar proteins; HSPA12B, predominantly expressed in endothelial cells, is required for angiogenesis, and may interact with known angiogenesis mediators. It may be important for host defense in microglia-mediated immune response. HSPA12B belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). No co-chaperones have yet been identified for HSPA12B. Pssm-ID: 466842 [Multi-domain] Cd Length: 361 Bit Score: 286.86 E-value: 5.78e-94
|
||||||||||
ASKHA_NBD_HSP70_HSPA12 | cd10229 | nucleotide-binding domain (NBD) of heat shock 70 kDa proteins HSPA12A, HSPA12B and similar ... |
45-267 | 1.35e-75 | ||||||
nucleotide-binding domain (NBD) of heat shock 70 kDa proteins HSPA12A, HSPA12B and similar proteins; The family includes heat shock 70 kDa proteins HSPA12A and HSPA12B. HSPA12A is an adapter protein for SORL1, but not SORT1. It delays SORL1 internalization and affects SORL1 subcellular localization. HSPA12B, predominantly expressed in endothelial cells, is required for angiogenesis, and may interact with known angiogenesis mediators. It may be important for host defense in microglia-mediated immune response. Both HSPA12A and HSPA12B belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). No co-chaperones have yet been identified for HSPA12A and HSPA12B. Pssm-ID: 466827 [Multi-domain] Cd Length: 372 Bit Score: 239.87 E-value: 1.35e-75
|
||||||||||
ASKHA_NBD_HSP70 | cd10170 | nucleotide-binding domain (NBD) of the HSP70 family; HSP70 (70-kDa heat shock protein) family ... |
44-265 | 2.50e-33 | ||||||
nucleotide-binding domain (NBD) of the HSP70 family; HSP70 (70-kDa heat shock protein) family chaperones assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). Some HSP70 family members are not chaperones but instead, function as NEFs to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle, some may function as both chaperones and NEFs. The HSP70 family belongs to the ASKHA (Acetate and Sugar Kinases/Hsc70/Actin) superfamily, all members of which share a common characteristic five-stranded beta sheet occurring in both the N- and C-terminal domains. Pssm-ID: 466811 [Multi-domain] Cd Length: 329 Bit Score: 127.61 E-value: 2.50e-33
|
||||||||||
ASKHA_NBD_HSP70_DnaK_HscA_HscC | cd24029 | nucleotide-binding domain (NBD) of Escherichia coli chaperone proteins DnaK, HscA, HscC and ... |
47-267 | 6.70e-13 | ||||||
nucleotide-binding domain (NBD) of Escherichia coli chaperone proteins DnaK, HscA, HscC and similar proteins; Escherichia coli DnaK, also called heat shock 70 kDa protein/HSP70, plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Moreover, DnaK participates actively in the response to hyperosmotic shock. Escherichia coli HscA, also called Hsc66, acts as a chaperone involved in the maturation of iron-sulfur cluster-containing proteins. It has a low intrinsic ATPase activity which is markedly stimulated by HscB. It is involved in the maturation of IscU. Escherichia coli HscC, also called Hsc62, or YbeW, may act as the chaperone. It has ATPase activity. It cannot be stimulated by DnaJ. The family also includes Saccharomyces cerevisiae stress-seventy subfamily C proteins, Ssc1p (also called import motor subunit, mitochondrial; endonuclease SceI 75 kDa subunit; mtHSP70; ENS1; endonuclease SceI 75 kDa subunit) and Ssc3p (also called extracellular mutant protein 10/Ecm10), and Saccharomyces cerevisiae Stress-seventy subfamily Q protein 1/Ssq1p (also called Ssc2p; Ssh1p; mtHSP70 homolog). They all belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs); for Escherichia coli DnaK, these are the DnaJ and GrpE, respectively. Pssm-ID: 466879 [Multi-domain] Cd Length: 351 Bit Score: 69.53 E-value: 6.70e-13
|
||||||||||
DnaK | COG0443 | Molecular chaperone DnaK (HSP70) [Posttranslational modification, protein turnover, chaperones] ... |
51-416 | 3.03e-08 | ||||||
Molecular chaperone DnaK (HSP70) [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440212 [Multi-domain] Cd Length: 473 Bit Score: 55.60 E-value: 3.03e-08
|
||||||||||
ASKHA_NBD_HSP70_ScSse | cd24094 | nucleotide-binding domain (NBD) of Saccharomyces cerevisiae heat shock protein homolog Sse and ... |
99-276 | 1.72e-04 | ||||||
nucleotide-binding domain (NBD) of Saccharomyces cerevisiae heat shock protein homolog Sse and similar proteins; The subgroup includes two Saccharomyces cerevisiae heat shock protein homologs, Sse1 and Sse2. They may have calcium-dependent calmodulin-binding activities. Both Sse1 and Sse2 belong to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family, and includes proteins believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins. Pssm-ID: 466944 [Multi-domain] Cd Length: 385 Bit Score: 43.52 E-value: 1.72e-04
|
||||||||||
Blast search parameters | ||||
|