NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1889079281|ref|XP_035598788|]
View 

maleylacetoacetate isomerase isoform X1 [Oncorhynchus keta]

Protein Classification

maleylacetoacetate isomerase( domain architecture ID 11492162)

maleylacetoacetate isomerase is a bifunctional enzyme that shows maleylacetoacetate isomerase activity using glutathione as a cofactor and minimal glutathione-conjugating activity

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
maiA TIGR01262
maleylacetoacetate isomerase; Maleylacetoacetate isomerase is an enzyme of tyrosine and ...
12-215 8.24e-109

maleylacetoacetate isomerase; Maleylacetoacetate isomerase is an enzyme of tyrosine and phenylalanine catabolism. It requires glutathione and belongs by homology to the zeta family of glutathione S-transferases. The enzyme (EC 5.2.1.2) is described as active also on maleylpyruvate, and the example from a Ralstonia sp. catabolic plasmid is described as a maleylpyruvate isomerase involved in gentisate catabolism. [Energy metabolism, Amino acids and amines]


:

Pssm-ID: 273527 [Multi-domain]  Cd Length: 210  Bit Score: 311.18  E-value: 8.24e-109
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  12 ILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLIKDGgQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEETRPGP 91
Cdd:TIGR01262   1 KLYSYWRSSCSYRVRIALALKGIDYEYVPVNLLRDG-EQRSPEFLALNPQGLVPTLDIDGEVLTQSLAIIEYLEETYPDP 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  92 RLLPEDPKKRAQVRMISDLIASGIQPVQNLYVLQKIG-------AEKLQWAQHFIQRGFEALEPILKETASKYCVGDEIS 164
Cdd:TIGR01262  80 PLLPADPIKRARVRALALLIACDIHPLNNLRVLQYLReklgveeEARNRWYQHWISKGFAALEALLQPHAGRFCVGDTPT 159
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1889079281 165 MADICLVPQVYNAERFKVDVDQFPTIKRLNQTLMKVEAFKVSHPSCQPDTP 215
Cdd:TIGR01262 160 LADLCLVPQVYNAERFGVDLTPYPTLRRIAAALAALPAFQRAHPENQPDTP 210
 
Name Accession Description Interval E-value
maiA TIGR01262
maleylacetoacetate isomerase; Maleylacetoacetate isomerase is an enzyme of tyrosine and ...
12-215 8.24e-109

maleylacetoacetate isomerase; Maleylacetoacetate isomerase is an enzyme of tyrosine and phenylalanine catabolism. It requires glutathione and belongs by homology to the zeta family of glutathione S-transferases. The enzyme (EC 5.2.1.2) is described as active also on maleylpyruvate, and the example from a Ralstonia sp. catabolic plasmid is described as a maleylpyruvate isomerase involved in gentisate catabolism. [Energy metabolism, Amino acids and amines]


Pssm-ID: 273527 [Multi-domain]  Cd Length: 210  Bit Score: 311.18  E-value: 8.24e-109
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  12 ILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLIKDGgQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEETRPGP 91
Cdd:TIGR01262   1 KLYSYWRSSCSYRVRIALALKGIDYEYVPVNLLRDG-EQRSPEFLALNPQGLVPTLDIDGEVLTQSLAIIEYLEETYPDP 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  92 RLLPEDPKKRAQVRMISDLIASGIQPVQNLYVLQKIG-------AEKLQWAQHFIQRGFEALEPILKETASKYCVGDEIS 164
Cdd:TIGR01262  80 PLLPADPIKRARVRALALLIACDIHPLNNLRVLQYLReklgveeEARNRWYQHWISKGFAALEALLQPHAGRFCVGDTPT 159
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1889079281 165 MADICLVPQVYNAERFKVDVDQFPTIKRLNQTLMKVEAFKVSHPSCQPDTP 215
Cdd:TIGR01262 160 LADLCLVPQVYNAERFGVDLTPYPTLRRIAAALAALPAFQRAHPENQPDTP 210
GST_C_Zeta cd03191
C-terminal, alpha helical domain of Class Zeta Glutathione S-transferases; Glutathione ...
98-211 2.29e-67

C-terminal, alpha helical domain of Class Zeta Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Class Zeta GSTs, also known as maleylacetoacetate (MAA) isomerases, catalyze the isomerization of MAA to fumarylacetoacetate, the penultimate step in tyrosine/phenylalanine catabolism, using GSH as a cofactor. They show little GSH-conjugating activity towards traditional GST substrates, but display modest GSH peroxidase activity. They are also implicated in the detoxification of the carcinogen dichloroacetic acid by catalyzing its dechlorination to glyoxylic acid.


Pssm-ID: 198300 [Multi-domain]  Cd Length: 121  Bit Score: 202.81  E-value: 2.29e-67
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  98 PKKRAQVRMISDLIASGIQPVQNLYVLQKIG-------AEKLQWAQHFIQRGFEALEPILKETASKYCVGDEISMADICL 170
Cdd:cd03191     1 PKKRARVRAIALIIACDIHPLQNLRVLKYLTeklgvseEEKLAWAQHWIERGFQALEKLLASTAGKYCVGDEPTLADICL 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 1889079281 171 VPQVYNAERFKVDVDQFPTIKRLNQTLMKVEAFKVSHPSCQ 211
Cdd:cd03191    81 VPQVYNARRFGVDLSPYPTIVRINEACLELPAFQAAHPENQ 121
GstA COG0625
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones];
12-213 9.80e-62

Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones];


Pssm-ID: 440390 [Multi-domain]  Cd Length: 205  Bit Score: 191.65  E-value: 9.80e-62
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  12 ILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLIKdgGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEETRPGP 91
Cdd:COG0625     3 KLYGSPPSPNSRRVRIALEEKGLPYELVPVDLAK--GEQKSPEFLALNPLGKVPVLVDDGLVLTESLAILEYLAERYPEP 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  92 RLLPEDPKKRAQVRMISDLIASGIQP-VQNLY--VLQKIGAEKLQWAQHFIQRGFEALEPILKETAskYCVGDEISMADI 168
Cdd:COG0625    81 PLLPADPAARARVRQWLAWADGDLHPaLRNLLerLAPEKDPAAIARARAELARLLAVLEARLAGGP--YLAGDRFSIADI 158
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|....*
gi 1889079281 169 CLVPQVYNAERFKVDVDQFPTIKRLNQTLMKVEAFKVSHPSCQPD 213
Cdd:COG0625   159 ALAPVLRRLDRLGLDLADYPNLAAWLARLAARPAFQRALAAAEPD 203
PRK15113 PRK15113
glutathione transferase;
25-112 1.56e-17

glutathione transferase;


Pssm-ID: 185068 [Multi-domain]  Cd Length: 214  Bit Score: 77.69  E-value: 1.56e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  25 VRIAFALKGIEFDQVPVNLikDGGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEETRPGP---RLLPEDPKKR 101
Cdd:PRK15113   22 AFVALQEKGLPFELKTVDL--DAGEHLQPTYQGYSLTRRVPTLQHDDFELSESSAIAEYLEERFAPPaweRIYPADLQAR 99
                          90
                  ....*....|....*.
gi 1889079281 102 AQVRMI-----SDLIA 112
Cdd:PRK15113  100 ARARQIqawlrSDLMP 115
GST_N pfam02798
Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to ...
12-86 7.49e-13

Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to a variety of targets. Also included in the alignment, but not GSTs: S-crystallins from squid (similarity to GST previously noted); eukaryotic elongation factors 1-gamma (not known to have GST activity and similarity not previously recognized); HSP26 family of stress-related proteins including auxin-regulated proteins in plants and stringent starvation proteins in E. coli (not known to have GST activity and similarity not previously recognized). The glutathione molecule binds in a cleft between the N- and C-terminal domains - the catalytically important residues are proposed to reside in the N-terminal domain.


Pssm-ID: 460698 [Multi-domain]  Cd Length: 76  Bit Score: 61.55  E-value: 7.49e-13
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1889079281  12 ILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLikDGGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEE 86
Cdd:pfam02798   4 TLYGIRGSPRAHRIRWLLAEKGVEYEIVPLDF--GAGPEKSPELLKLNPLGKVPALEDGGKKLTESRAILEYIAR 76
 
Name Accession Description Interval E-value
maiA TIGR01262
maleylacetoacetate isomerase; Maleylacetoacetate isomerase is an enzyme of tyrosine and ...
12-215 8.24e-109

maleylacetoacetate isomerase; Maleylacetoacetate isomerase is an enzyme of tyrosine and phenylalanine catabolism. It requires glutathione and belongs by homology to the zeta family of glutathione S-transferases. The enzyme (EC 5.2.1.2) is described as active also on maleylpyruvate, and the example from a Ralstonia sp. catabolic plasmid is described as a maleylpyruvate isomerase involved in gentisate catabolism. [Energy metabolism, Amino acids and amines]


Pssm-ID: 273527 [Multi-domain]  Cd Length: 210  Bit Score: 311.18  E-value: 8.24e-109
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  12 ILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLIKDGgQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEETRPGP 91
Cdd:TIGR01262   1 KLYSYWRSSCSYRVRIALALKGIDYEYVPVNLLRDG-EQRSPEFLALNPQGLVPTLDIDGEVLTQSLAIIEYLEETYPDP 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  92 RLLPEDPKKRAQVRMISDLIASGIQPVQNLYVLQKIG-------AEKLQWAQHFIQRGFEALEPILKETASKYCVGDEIS 164
Cdd:TIGR01262  80 PLLPADPIKRARVRALALLIACDIHPLNNLRVLQYLReklgveeEARNRWYQHWISKGFAALEALLQPHAGRFCVGDTPT 159
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1889079281 165 MADICLVPQVYNAERFKVDVDQFPTIKRLNQTLMKVEAFKVSHPSCQPDTP 215
Cdd:TIGR01262 160 LADLCLVPQVYNAERFGVDLTPYPTLRRIAAALAALPAFQRAHPENQPDTP 210
GST_C_Zeta cd03191
C-terminal, alpha helical domain of Class Zeta Glutathione S-transferases; Glutathione ...
98-211 2.29e-67

C-terminal, alpha helical domain of Class Zeta Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Class Zeta GSTs, also known as maleylacetoacetate (MAA) isomerases, catalyze the isomerization of MAA to fumarylacetoacetate, the penultimate step in tyrosine/phenylalanine catabolism, using GSH as a cofactor. They show little GSH-conjugating activity towards traditional GST substrates, but display modest GSH peroxidase activity. They are also implicated in the detoxification of the carcinogen dichloroacetic acid by catalyzing its dechlorination to glyoxylic acid.


Pssm-ID: 198300 [Multi-domain]  Cd Length: 121  Bit Score: 202.81  E-value: 2.29e-67
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  98 PKKRAQVRMISDLIASGIQPVQNLYVLQKIG-------AEKLQWAQHFIQRGFEALEPILKETASKYCVGDEISMADICL 170
Cdd:cd03191     1 PKKRARVRAIALIIACDIHPLQNLRVLKYLTeklgvseEEKLAWAQHWIERGFQALEKLLASTAGKYCVGDEPTLADICL 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 1889079281 171 VPQVYNAERFKVDVDQFPTIKRLNQTLMKVEAFKVSHPSCQ 211
Cdd:cd03191    81 VPQVYNARRFGVDLSPYPTIVRINEACLELPAFQAAHPENQ 121
GstA COG0625
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones];
12-213 9.80e-62

Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones];


Pssm-ID: 440390 [Multi-domain]  Cd Length: 205  Bit Score: 191.65  E-value: 9.80e-62
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  12 ILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLIKdgGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEETRPGP 91
Cdd:COG0625     3 KLYGSPPSPNSRRVRIALEEKGLPYELVPVDLAK--GEQKSPEFLALNPLGKVPVLVDDGLVLTESLAILEYLAERYPEP 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  92 RLLPEDPKKRAQVRMISDLIASGIQP-VQNLY--VLQKIGAEKLQWAQHFIQRGFEALEPILKETAskYCVGDEISMADI 168
Cdd:COG0625    81 PLLPADPAARARVRQWLAWADGDLHPaLRNLLerLAPEKDPAAIARARAELARLLAVLEARLAGGP--YLAGDRFSIADI 158
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|....*
gi 1889079281 169 CLVPQVYNAERFKVDVDQFPTIKRLNQTLMKVEAFKVSHPSCQPD 213
Cdd:COG0625   159 ALAPVLRRLDRLGLDLADYPNLAAWLARLAARPAFQRALAAAEPD 203
GST_N_Zeta cd03042
GST_N family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular ...
11-85 1.71e-40

GST_N family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Zeta GSTs, also known as maleylacetoacetate (MAA) isomerases, catalyze the isomerization of MAA to fumarylacetoacetate, the penultimate step in tyrosine/phenylalanine catabolism, using GSH as a cofactor. They show little GSH-conjugating activity towards traditional GST substrates but display modest GSH peroxidase activity. They are also implicated in the detoxification of the carcinogen dichloroacetic acid by catalyzing its dechlorination to glyoxylic acid.


Pssm-ID: 239340 [Multi-domain]  Cd Length: 73  Bit Score: 132.69  E-value: 1.71e-40
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1889079281  11 PILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLIKdgGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIE 85
Cdd:cd03042     1 MILYSYFRSSASYRVRIALNLKGLDYEYVPVNLLK--GEQLSPAYRALNPQGLVPTLVIDGLVLTQSLAIIEYLD 73
GST_N_family cd00570
Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic ...
11-85 8.55e-20

Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK subfamily, a member of the DsbA family). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxin 2 and stringent starvation protein A.


Pssm-ID: 238319 [Multi-domain]  Cd Length: 71  Bit Score: 79.54  E-value: 8.55e-20
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1889079281  11 PILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLikdgGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIE 85
Cdd:cd00570     1 LKLYYFPGSPRSLRVRLALEEKGLPYELVPVDL----GEGEQEEFLALNPLGKVPVLEDGGLVLTESLAILEYLA 71
PRK15113 PRK15113
glutathione transferase;
25-112 1.56e-17

glutathione transferase;


Pssm-ID: 185068 [Multi-domain]  Cd Length: 214  Bit Score: 77.69  E-value: 1.56e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  25 VRIAFALKGIEFDQVPVNLikDGGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEETRPGP---RLLPEDPKKR 101
Cdd:PRK15113   22 AFVALQEKGLPFELKTVDL--DAGEHLQPTYQGYSLTRRVPTLQHDDFELSESSAIAEYLEERFAPPaweRIYPADLQAR 99
                          90
                  ....*....|....*.
gi 1889079281 102 AQVRMI-----SDLIA 112
Cdd:PRK15113  100 ARARQIqawlrSDLMP 115
GST_N_4 cd03056
GST_N family, unknown subfamily 4; composed of uncharacterized bacterial proteins with ...
12-83 7.01e-14

GST_N family, unknown subfamily 4; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains.


Pssm-ID: 239354 [Multi-domain]  Cd Length: 73  Bit Score: 64.13  E-value: 7.01e-14
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1889079281  12 ILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLIKdgGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQY 83
Cdd:cd03056     2 KLYGFPLSGNCYKVRLLLALLGIPYEWVEVDILK--GETRTPEFLALNPNGEVPVLELDGRVLAESNAILVY 71
PLN02395 PLN02395
glutathione S-transferase
20-172 3.91e-13

glutathione S-transferase


Pssm-ID: 166036 [Multi-domain]  Cd Length: 215  Bit Score: 65.66  E-value: 3.91e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  20 SCSWRVRIAFALKGIEFDQVPVNLIKdgGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEET--RPGPRLLPED 97
Cdd:PLN02395   11 ASPKRALVTLIEKGVEFETVPVDLMK--GEHKQPEYLALQPFGVVPVIVDGDYKIFESRAIMRYYAEKyrSQGPDLLGKT 88
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  98 PKKRAQVRMISDLIASGIQPVQNLYVLQKIGAEKlqwaqhfiqRGFEALEPILKE----------------TASKYCVGD 161
Cdd:PLN02395   89 IEERGQVEQWLDVEATSYHPPLLNLTLHILFASK---------MGFPADEKVIKEseeklakvldvyearlSKSKYLAGD 159
                         170
                  ....*....|.
gi 1889079281 162 EISMADICLVP 172
Cdd:PLN02395  160 FVSLADLAHLP 170
GST_N pfam02798
Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to ...
12-86 7.49e-13

Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to a variety of targets. Also included in the alignment, but not GSTs: S-crystallins from squid (similarity to GST previously noted); eukaryotic elongation factors 1-gamma (not known to have GST activity and similarity not previously recognized); HSP26 family of stress-related proteins including auxin-regulated proteins in plants and stringent starvation proteins in E. coli (not known to have GST activity and similarity not previously recognized). The glutathione molecule binds in a cleft between the N- and C-terminal domains - the catalytically important residues are proposed to reside in the N-terminal domain.


Pssm-ID: 460698 [Multi-domain]  Cd Length: 76  Bit Score: 61.55  E-value: 7.49e-13
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1889079281  12 ILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLikDGGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEE 86
Cdd:pfam02798   4 TLYGIRGSPRAHRIRWLLAEKGVEYEIVPLDF--GAGPEKSPELLKLNPLGKVPALEDGGKKLTESRAILEYIAR 76
GST_N_Phi cd03053
GST_N family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related ...
10-86 1.93e-12

GST_N family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related fungal and bacterial proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Phi GST subfamily has experience extensive gene duplication. The Arabidopsis and Oryza genomes contain 13 and 16 Phi GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Tau GSTs, showing class specificity in substrate preference. Phi enzymes are highly reactive toward chloroacetanilide and thiocarbamate herbicides. Some Phi GSTs have other functions including transport of flavonoid pigments to the vacuole, shoot regeneration and GSH peroxidase activity.


Pssm-ID: 239351 [Multi-domain]  Cd Length: 76  Bit Score: 60.36  E-value: 1.93e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1889079281  10 KPILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLIKdgGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEE 86
Cdd:cd03053     1 VLKLYGAAMSTCVRRVLLCLEEKGVDYELVPVDLTK--GEHKSPEHLARNPFGQIPALEDGDLKLFESRAITRYLAE 75
GST_N_3 pfam13417
Glutathione S-transferase, N-terminal domain;
13-92 7.94e-12

Glutathione S-transferase, N-terminal domain;


Pssm-ID: 433190 [Multi-domain]  Cd Length: 75  Bit Score: 58.78  E-value: 7.94e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  13 LHGYFRSSCSWRVRIAFALKGIEFDQVPVNLikdggQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEETRPGPR 92
Cdd:pfam13417   1 LYGFPGSPYARRVRIALNEKGLPYEFVPIPP-----GDHPPELLAKNPLGKVPVLEDDGGILCESLAIIDYLEELYPGPP 75
GST_N_2 pfam13409
Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798.
19-87 2.79e-11

Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798.


Pssm-ID: 433184 [Multi-domain]  Cd Length: 68  Bit Score: 57.25  E-value: 2.79e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  19 SSCSWRVRIAFALKGIEFDQVPVNLIkdgGQQLTDQYKALNSMQQVPAVQ-IDGITLSQSLAVIQYIEET 87
Cdd:pfam13409   2 SPFSHRVRLALEEKGLPYEIELVDLD---PKDKPPELLALNPLGTVPVLVlPDGTVLTDSLVILEYLEEL 68
GST_N_GTT1_like cd03046
GST_N family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly ...
11-89 2.54e-10

GST_N family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT1, and the Schizosaccharomyces pombe GST-III. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GTT1, a homodimer, exhibits GST activity with standard substrates and associates with the endoplasmic reticulum. Its expression is induced after diauxic shift and remains high throughout the stationary phase. S. pombe GST-III is implicated in the detoxification of various metals.


Pssm-ID: 239344 [Multi-domain]  Cd Length: 76  Bit Score: 54.82  E-value: 2.54e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1889079281  11 PILHGyFRSSCSWRVRIAFALKGIEFDQVPVNLikDGGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYIEETRP 89
Cdd:cd03046     1 ITLYH-LPRSRSFRILWLLEELGLPYELVLYDR--GPGEQAPPEYLAINPLGKVPVLVDGDLVLTESAAIILYLAEKYG 76
GST_N_GTT2_like cd03051
GST_N family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly ...
24-85 2.73e-10

GST_N family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT2. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GTT2, a homodimer, exhibits GST activity with standard substrates. Strains with deleted GTT2 genes are viable but exhibit increased sensitivity to heat shock.


Pssm-ID: 239349 [Multi-domain]  Cd Length: 74  Bit Score: 54.61  E-value: 2.73e-10
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1889079281  24 RVRIAFALKGIEFDQVPVNLIKdgGQQLTDQYKALNSMQQVPAVQI-DGITLSQSLAVIQYIE 85
Cdd:cd03051    14 RVRIFLAEKGIDVPLVTVDLAA--GEQRSPEFLAKNPAGTVPVLELdDGTVITESVAICRYLE 74
GST_N_Beta cd03057
GST_N family, Class Beta subfamily; GSTs are cytosolic dimeric proteins involved in cellular ...
16-89 5.44e-10

GST_N family, Class Beta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Unlike mammalian GSTs which detoxify a broad range of compounds, the bacterial class Beta GSTs exhibit limited GSH conjugating activity with a narrow range of substrates. In addition to GSH conjugation, they also bind antibiotics and reduce the antimicrobial activity of beta-lactam drugs. The structure of the Proteus mirabilis enzyme reveals that the cysteine in the active site forms a covalent bond with GSH.


Pssm-ID: 239355 [Multi-domain]  Cd Length: 77  Bit Score: 54.08  E-value: 5.44e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1889079281  16 YFRSSCSWRVRIAFALKGIEFDQVPVNLikDGGQQLTDQYKALNSMQQVPAVQI-DGITLSQSLAVIQYIEETRP 89
Cdd:cd03057     5 YSPGACSLAPHIALEELGLPFELVRVDL--RTKTQKGADYLAINPKGQVPALVLdDGEVLTESAAILQYLADLHP 77
sspA PRK09481
stringent starvation protein A; Provisional
22-206 3.32e-09

stringent starvation protein A; Provisional


Pssm-ID: 236537 [Multi-domain]  Cd Length: 211  Bit Score: 54.72  E-value: 3.32e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  22 SWRVRIAFALKGIEFD--QV-PVNLIKDggqqLTDqykaLNSMQQVPAVQIDGITLSQSLAVIQYIEETRPGPRLLPEDP 98
Cdd:PRK09481   22 SHQVRIVLAEKGVSVEieQVeKDNLPQD----LID----LNPYQSVPTLVDRELTLYESRIIMEYLDERFPHPPLMPVYP 93
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  99 KKRAQVRMISDLIAsgiqpvQNLYVL----QKIGAEKLQWAQHFIQRGFEALEPILKETAskYCVGDEISMADICLVPQV 174
Cdd:PRK09481   94 VARGESRLMMHRIE------KDWYSLmnkiVNGSASEADAARKQLREELLAIAPVFGEKP--YFMSEEFSLVDCYLAPLL 165
                         170       180       190
                  ....*....|....*....|....*....|....*
gi 1889079281 175 YNAERFKVDVDQfPTIKRLNQTLMKV---EAFKVS 206
Cdd:PRK09481  166 WRLPVLGIELSG-PGAKELKGYMTRVferDSFLAS 199
GST_C_YfcG_like cd10291
C-terminal, alpha helical domain of Escherichia coli YfcG Glutathione S-transferases and ...
140-204 1.09e-07

C-terminal, alpha helical domain of Escherichia coli YfcG Glutathione S-transferases and related uncharacterized proteins; Glutathione S-transferase (GST) C-terminal domain family, YfcG-like subfamily; composed of the Escherichia coli YfcG and related proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST active site is located in a cleft between the N- and C-terminal domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. YfcG is one of nine GST homologs in Escherichia coli. It is expressed predominantly during the late stationary phase where the predominant form of GSH is glutathionylspermidine (GspSH), suggesting that YfcG might interact with GspSH. It has very low or no GSH transferase or peroxidase activity, but displays a unique disulfide bond reductase activity that is comparable to thioredoxins (TRXs) and glutaredoxins (GRXs). However, unlike TRXs and GRXs, YfcG does not contain a redox active cysteine residue and may use a bound thiol disulfide couple such as 2GSH/GSSG for activity. The crystal structure of YcfG reveals a bound GSSG molecule in its active site. The actual physiological substrates for YfcG are yet to be identified.


Pssm-ID: 198324 [Multi-domain]  Cd Length: 110  Bit Score: 48.42  E-value: 1.09e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1889079281 140 QRGFEALEPILKEtaSKYCVGDEISMADICLVPQVYNAERFKVDVDQFPTIKRLNQTLMKVEAFK 204
Cdd:cd10291    46 KRLYGVLDRRLAK--SKYLAGDEYSIADIAIWPWVARHEWQGIDLADFPNLKRWFERLAARPAVQ 108
GST_N_Tau cd03058
GST_N family, Class Tau subfamily; GSTs are cytosolic dimeric proteins involved in cellular ...
12-87 3.53e-07

GST_N family, Class Tau subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The plant-specific class Tau GST subfamily has undergone extensive gene duplication. The Arabidopsis and Oryza genomes contain 28 and 40 Tau GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Phi GSTs, showing class specificity in substrate preference. Tau enzymes are highly efficient in detoxifying diphenylether and aryloxyphenoxypropionate herbicides. In addition, Tau GSTs play important roles in intracellular signalling, biosynthesis of anthocyanin, responses to soil stresses and responses to auxin and cytokinin hormones.


Pssm-ID: 239356 [Multi-domain]  Cd Length: 74  Bit Score: 46.12  E-value: 3.53e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1889079281  12 ILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLIKDggqqlTDQYKALNSM-QQVPAVQIDGITLSQSLAVIQYIEET 87
Cdd:cd03058     2 KLLGAWASPFVLRVRIALALKGVPYEYVEEDLGNK-----SELLLASNPVhKKIPVLLHNGKPICESLIIVEYIDEA 73
PRK10357 PRK10357
putative glutathione S-transferase; Provisional
32-168 5.26e-07

putative glutathione S-transferase; Provisional


Pssm-ID: 182405 [Multi-domain]  Cd Length: 202  Bit Score: 48.56  E-value: 5.26e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  32 KGIEFDQVPVNLIKDGGQqlTDQYkalNSMQQVPA-VQIDGITLSQSLAVIQYIEETRPGPRLLPEDPKKRAQVRMISDL 110
Cdd:PRK10357   22 KGITFEFVNELPYNADNG--VAQY---NPLGKVPAlVTEEGECWFDSPIIAEYIELLNVAPAMLPRDPLAALRVRQLEAL 96
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1889079281 111 iASGIQPVQNLYV--LQKIGAEK----LQWAQHFIQRGFEALEPILKETASKycvGDEISMADI 168
Cdd:PRK10357   97 -ADGIMDAALVSVreQARPAAQQsedeLLRQREKINRSLDALEGYLVDGTLK---TDTVNLATI 156
GST_C_family cd00299
C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione ...
104-193 1.30e-06

C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione S-transferase (GST) family, C-terminal alpha helical domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxins, stringent starvation protein A, and aminoacyl-tRNA synthetases.


Pssm-ID: 198286 [Multi-domain]  Cd Length: 100  Bit Score: 45.57  E-value: 1.30e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281 104 VRMISDLIASGIQP-----VQNLYVLQKIGAEKLQWAQHFIQRGFEALEPILKETasKYCVGDEISMADICLVPQVYNAE 178
Cdd:cd00299     1 VRALEDWADATLAPplvrlLYLEKVPLPKDEAAVEAAREELPALLAALEQLLAGR--PYLAGDQFSLADVALAPVLARLE 78
                          90
                  ....*....|....*...
gi 1889079281 179 RFKVDV---DQFPTIKRL 193
Cdd:cd00299    79 ALGPYYdllDEYPRLKAW 96
GST_N_Alpha cd03077
GST_N family, Class Alpha subfamily; GSTs are cytosolic dimeric proteins involved in cellular ...
10-84 3.88e-06

GST_N family, Class Alpha subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Alpha subfamily is composed of eukaryotic GSTs which can form homodimer and heterodimers. There are at least six types of class Alpha GST subunits in rats, four of which have human counterparts, resulting in many possible isoenzymes with different activities, tissue distribution and substrate specificities. Human GSTA1-1 and GSTA2-2 show high GSH peroxidase activity. GSTA3-3 catalyzes the isomerization of intermediates in steroid hormone biosynthesis. GSTA4-4 preferentially catalyzes the GSH conjugation of alkenals.


Pssm-ID: 239375  Cd Length: 79  Bit Score: 43.67  E-value: 3.88e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1889079281  10 KPILHgYFRSSCSWR-VRIAFALKGIEFDQVPVNLIKDGGQQLTDQYKALnsmQQVPAVQIDGITLSQSLAVIQYI 84
Cdd:cd03077     1 KPVLH-YFNGRGRMEsIRWLLAAAGVEFEEKFIESAEDLEKLKKDGSLMF---QQVPMVEIDGMKLVQTRAILNYI 72
GST_C_Delta_Epsilon cd03177
C-terminal, alpha helical domain of Class Delta and Epsilon Glutathione S-transferases; ...
99-203 5.91e-06

C-terminal, alpha helical domain of Class Delta and Epsilon Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Delta and Epsilon subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Delta and Epsilon subfamily is made up primarily of insect GSTs, which play major roles in insecticide resistance by facilitating reductive dehydrochlorination of insecticides or conjugating them with GSH to produce water-soluble metabolites that are easily excreted. They are also implicated in protection against cellular damage by oxidative stress.


Pssm-ID: 198287 [Multi-domain]  Cd Length: 117  Bit Score: 44.06  E-value: 5.91e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  99 KKRAQV--RMISDL------IASGIQPVqnLYVLQKIGAEKLQwaqhFIQRGFEALEPILKEtaSKYCVGDEISMADICL 170
Cdd:cd03177     1 KKRAIVnqRLFFDSgtlyqrLRDYYYPI--LFGGAEPPEEKLD----KLEEALEFLETFLEG--SDYVAGDQLTIADLSL 72
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1889079281 171 VPQVYNAERFKVDVDQFPTI----KRLNQTLMKVEAF 203
Cdd:cd03177    73 VATVSTLEVVGFDLSKYPNVaawyERLKALPPGEEEN 109
PTZ00057 PTZ00057
glutathione s-transferase; Provisional
25-195 9.14e-06

glutathione s-transferase; Provisional


Pssm-ID: 173353 [Multi-domain]  Cd Length: 205  Bit Score: 44.97  E-value: 9.14e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  25 VRIAFALKGIEFDQVPVNLIKDGGQQLTDQYKALNS-MQQVPAVQIDGITLSQSLAVIQYIEETRP--GPRLLPEdpkkr 101
Cdd:PTZ00057   19 IRLIFAYLGIEYTDKRFGENGDAFIEFKNFKKEKDTpFEQVPILEMDNIIFAQSQAIVRYLSKKYKicGESELNE----- 93
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281 102 aqvrMISDLIASGIQPVQ------NLYVLQK---IGAEKLQWAQHFiqrgfealEPILKETASKYCVGDEISMADICLVP 172
Cdd:PTZ00057   94 ----FYADMIFCGVQDIHykfnntNLFKQNEttfLNEELPKWSGYF--------ENILKKNHCNYFVGDNLTYADLAVFN 161
                         170       180
                  ....*....|....*....|....
gi 1889079281 173 QVYNAE-RFKVDVDQFPTIKRLNQ 195
Cdd:PTZ00057  162 LYDDIEtKYPNSLKNFPLLKAHNE 185
GST_C_Sigma_like cd03192
C-terminal, alpha helical domain of Class Sigma-like Glutathione S-transferases; Glutathione ...
101-195 9.88e-06

C-terminal, alpha helical domain of Class Sigma-like Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Sigma_like; composed of GSTs belonging to class Sigma and similar proteins, including GSTs from class Mu, Pi, and Alpha. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Vertebrate class Sigma GSTs are characterized as GSH-dependent hematopoietic prostaglandin (PG) D synthases and are responsible for the production of PGD2 by catalyzing the isomerization of PGH2. The functions of PGD2 include the maintenance of body temperature, inhibition of platelet aggregation, bronchoconstriction, vasodilation, and mediation of allergy and inflammation. Other class Sigma-like members include the class II insect GSTs, S-crystallins from cephalopods, nematode-specific GSTs, and 28-kDa GSTs from parasitic flatworms. Drosophila GST2 is associated with indirect flight muscle and exhibits preference for catalyzing GSH conjugation to lipid peroxidation products, indicating an anti-oxidant role. S-crystallin constitutes the major lens protein in cephalopod eyes and is responsible for lens transparency and proper refractive index. The 28-kDa GST from Schistosoma is a multifunctional enzyme, exhibiting GSH transferase, GSH peroxidase, and PGD2 synthase activities, and may play an important role in host-parasite interactions. Members also include novel GSTs from the fungus Cunninghamella elegans, designated as class Gamma, and from the protozoan Blepharisma japonicum, described as a light-inducible GST.


Pssm-ID: 198301 [Multi-domain]  Cd Length: 104  Bit Score: 43.00  E-value: 9.88e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281 101 RAQVRMISDLIASGIQPVQNlYVLQKIGAEKLQWAQHFIQ----RGFEALEPILKETASKYCVGDEISMADICLVpQVY- 175
Cdd:cd03192     3 EARVDAIVDTIADLRAEFAP-YFYEPDGEEKKEKKKEFLEealpKFLGKFEKILKKSGGGYFVGDKLTWADLALF-DVLd 80
                          90       100
                  ....*....|....*....|..
gi 1889079281 176 --NAERFKVDVDQFPTIKRLNQ 195
Cdd:cd03192    81 ylLYLLPKDLLEKYPKLKALRE 102
GST_C pfam00043
Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety ...
143-198 1.35e-05

Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes.


Pssm-ID: 459647 [Multi-domain]  Cd Length: 93  Bit Score: 42.27  E-value: 1.35e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1889079281 143 FEALEPILKEtaSKYCVGDEISMADICLVPQVYNAERFKVDV--DQFPTIKRLNQTLM 198
Cdd:pfam00043  35 LSALEEVLKG--QTYLVGDKLTLADIALAPALLWLYELDPAClrEKFPNLKAWFERVA 90
GST_N_Sigma_like cd03039
GST_N family, Class Sigma_like; composed of GSTs belonging to class Sigma and similar proteins, ...
25-84 1.94e-05

GST_N family, Class Sigma_like; composed of GSTs belonging to class Sigma and similar proteins, including GSTs from class Mu, Pi and Alpha. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Vertebrate class Sigma GSTs are characterized as GSH-dependent hematopoietic prostaglandin (PG) D synthases and are responsible for the production of PGD2 by catalyzing the isomerization of PGH2. The functions of PGD2 include the maintenance of body temperature, inhibition of platelet aggregation, bronchoconstriction, vasodilation and mediation of allergy and inflammation. Other class Sigma members include the class II insect GSTs, S-crystallins from cephalopods and 28-kDa GSTs from parasitic flatworms. Drosophila GST2 is associated with indirect flight muscle and exhibits preference for catalyzing GSH conjugation to lipid peroxidation products, indicating an anti-oxidant role. S-crystallin constitutes the major lens protein in cephalopod eyes and is responsible for lens transparency and proper refractive index. The 28-kDa GST from Schistosoma is a multifunctional enzyme, exhibiting GSH transferase, GSH peroxidase and PGD2 synthase activities, and may play an important role in host-parasite interactions. Also members are novel GSTs from the fungus Cunninghamella elegans, designated as class Gamma, and from the protozoan Blepharisma japonicum, described as a light-inducible GST.


Pssm-ID: 239337 [Multi-domain]  Cd Length: 72  Bit Score: 41.38  E-value: 1.94e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  25 VRIAFALKGIEFDQVPVnlikDGGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQYI 84
Cdd:cd03039    15 IRLLLADAGVEYEDVRI----TYEEWPELDLKPTLPFGQLPVLEIDGKKLTQSNAILRYL 70
GST_N_Delta_Epsilon cd03045
GST_N family, Class Delta and Epsilon subfamily; GSTs are cytosolic dimeric proteins involved ...
11-83 3.96e-05

GST_N family, Class Delta and Epsilon subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Delta and Epsilon subfamily is made up primarily of insect GSTs, which play major roles in insecticide resistance by facilitating reductive dehydrochlorination of insecticides or conjugating them with GSH to produce water-soluble metabolites that are easily excreted. They are also implicated in protection against cellular damage by oxidative stress.


Pssm-ID: 239343 [Multi-domain]  Cd Length: 74  Bit Score: 40.67  E-value: 3.96e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1889079281  11 PILHGYFRSSCSWRVRIAFALKGIEFDQVPVNLIKdgGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQY 83
Cdd:cd03045     1 IDLYYLPGSPPCRAVLLTAKALGLELNLKEVNLMK--GEHLKPEFLKLNPQHTVPTLVDNGFVLWESHAILIY 71
PRK10542 PRK10542
glutathionine S-transferase; Provisional
20-95 8.99e-05

glutathionine S-transferase; Provisional


Pssm-ID: 182533 [Multi-domain]  Cd Length: 201  Bit Score: 41.98  E-value: 8.99e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1889079281  20 SCSWRVRIAFALKGIEFDQVPVNLIKDGGQQlTDQYKALNSMQQVPAVQID-GITLSQSLAVIQYIEETRPGPRLLP 95
Cdd:PRK10542    9 ACSLASHITLRESGLDFTLVSVDLAKKRLEN-GDDYLAINPKGQVPALLLDdGTLLTEGVAIMQYLADSVPDRQLLA 84
PLN02473 PLN02473
glutathione S-transferase
13-172 1.29e-04

glutathione S-transferase


Pssm-ID: 166114 [Multi-domain]  Cd Length: 214  Bit Score: 41.51  E-value: 1.29e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  13 LHGYFRSSCSWRVRIAFALKGIEFDQVPVNLikDGGQQLTDQYKALNSMQQVPAVQIDGITLSQSLAVIQY--IEETRPG 90
Cdd:PLN02473    5 VYGQIKAANPQRVLLCFLEKGIEFEVIHVDL--DKLEQKKPEHLLRQPFGQVPAIEDGDLKLFESRAIARYyaTKYADQG 82
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  91 PRLLPEDPKKRAQVRMISDL----IASGIQP-VQNLYVLQKIG-------AEKLQWAQHFIQRGFEAlepilKETASKYC 158
Cdd:PLN02473   83 TDLLGKTLEHRAIVDQWVEVennyFYAVALPlVINLVFKPRLGepcdvalVEELKVKFDKVLDVYEN-----RLATNRYL 157
                         170
                  ....*....|....
gi 1889079281 159 VGDEISMADICLVP 172
Cdd:PLN02473  158 GGDEFTLADLTHMP 171
GST_N_etherase_LigE cd03038
GST_N family, Beta etherase LigE subfamily; composed of proteins similar to Sphingomonas ...
23-89 1.30e-04

GST_N family, Beta etherase LigE subfamily; composed of proteins similar to Sphingomonas paucimobilis beta etherase, LigE, a GST-like protein that catalyzes the cleavage of the beta-aryl ether linkages present in low-moleculer weight lignins using GSH as the hydrogen donor. This reaction is an essential step in the degradation of lignin, a complex phenolic polymer that is the most abundant aromatic material in the biosphere. The beta etherase activity of LigE is enantioselective and it complements the activity of the other GST family beta etherase, LigF.


Pssm-ID: 239336 [Multi-domain]  Cd Length: 84  Bit Score: 39.25  E-value: 1.30e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1889079281  23 WRVRIAFALKGIEFDQVPVNL--IKD--GGQQLTDQYKalnsmqqVPA-VQIDGITLSQSLAVIQYIEETRP 89
Cdd:cd03038    20 WKTRLALNHKGLEYKTVPVEFpdIPPilGELTSGGFYT-------VPViVDGSGEVIGDSFAIAEYLEEAYP 84
PLN02378 PLN02378
glutathione S-transferase DHAR1
22-204 3.60e-04

glutathione S-transferase DHAR1


Pssm-ID: 166019 [Multi-domain]  Cd Length: 213  Bit Score: 40.08  E-value: 3.60e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281  22 SWRVRIAFALKGIEFDQVPVNLiKDGGQQLTDqykaLNSMQQVPAVQIDGITLSQSLAVIQYIEETRPGPRLlpEDPKKR 101
Cdd:PLN02378   23 SQRALLTLEEKSLTYKIHLINL-SDKPQWFLD----ISPQGKVPVLKIDDKWVTDSDVIVGILEEKYPDPPL--KTPAEF 95
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1889079281 102 AQVrmisdliASGIQPVQNLYVLQKigaEKLQWAQHFIQRGFEALEPILKETASKYCVGDEISMADICLVPQVYNAE--- 178
Cdd:PLN02378   96 ASV-------GSNIFGTFGTFLKSK---DSNDGSEHALLVELEALENHLKSHDGPFIAGERVSAVDLSLAPKLYHLQval 165
                         170       180
                  ....*....|....*....|....*....
gi 1889079281 179 -RFK--VDVDQFPTIKRLNQTLMKVEAFK 204
Cdd:PLN02378  166 gHFKswSVPESFPHVHNYMKTLFSLDSFE 194
GST_C_3 pfam14497
Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043.
138-193 2.32e-03

Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043.


Pssm-ID: 464190 [Multi-domain]  Cd Length: 104  Bit Score: 36.38  E-value: 2.32e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1889079281 138 FIQRGFEALEPILKETASKYCVGDEISMADICLVpQVYNAERFKVD---VDQFPTIKRL 193
Cdd:pfam14497  30 RLPKFLGYFEKVLNKNGGGYLVGDKLTYADLALF-QVLDGLLYPKApdaLDKYPKLKAL 87
NrdH cd02976
NrdH-redoxin (NrdH) family; NrdH is a small monomeric protein with a conserved redox active ...
16-75 6.43e-03

NrdH-redoxin (NrdH) family; NrdH is a small monomeric protein with a conserved redox active CXXC motif within a TRX fold, characterized by a glutaredoxin (GRX)-like sequence and TRX-like activity profile. In vitro, it displays protein disulfide reductase activity that is dependent on TRX reductase, not glutathione (GSH). It is part of the NrdHIEF operon, where NrdEF codes for class Ib ribonucleotide reductase (RNR-Ib), an efficient enzyme at low oxygen levels. Under these conditions when GSH is mostly conjugated to spermidine, NrdH can still function and act as a hydrogen donor for RNR-Ib. It has been suggested that the NrdHEF system may be the oldest RNR reducing system, capable of functioning in a microaerophilic environment, where GSH was not yet available. NrdH from Corynebacterium ammoniagenes can form domain-swapped dimers, although it is unknown if this happens in vivo. Domain-swapped dimerization, which results in the blocking of the TRX reductase binding site, could be a mechanism for regulating the oxidation state of the protein.


Pssm-ID: 239274 [Multi-domain]  Cd Length: 73  Bit Score: 34.51  E-value: 6.43e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1889079281  16 YFRSSCSW--RVRIAFALKGIEFDQVPVnlikDGGQQLTDQYKALNSMQQVPAVQIDGITLS 75
Cdd:cd02976     5 YTKPDCPYckATKRFLDERGIPFEEVDV----DEDPEALEELKKLNGYRSVPVVVIGDEHLS 62
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH