NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1370480712|ref|XP_024307714|]
View 

docking protein 5 isoform X1 [Homo sapiens]

Protein Classification

docking protein 4/5/6( domain architecture ID 10199829)

docking protein 4/5/6, also known as downstream of tyrosine kinase (DOK) 4/5/6, play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PTB_DOK4_DOK5_DOK6 cd13164
Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The ...
121-223 3.41e-73

Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup.


:

Pssm-ID: 241318  Cd Length: 103  Bit Score: 219.99  E-value: 3.41e-73
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712 121 REQSERFNVYLMPSPNLDVHGECALQITYEYICLWDVQNPRVKLISWPLSALRRYGRDTTWFTFEAGRMCETGEGLFIFQ 200
Cdd:cd13164     1 REQNERFNVFLLPSPNLDVYGECLLQITHENIYLWDIHNPRVKLVSWPLCSLRRYGRDSTWFTFEAGRMCDTGEGLFTFQ 80
                          90       100
                  ....*....|....*....|...
gi 1370480712 201 TRDGEAIYQKVHSAALAIAEQHE 223
Cdd:cd13164    81 TREGEQIYQRVHSATLAIAEQHK 103
PH_DOK4_DOK5_DOK6 cd14678
Pleckstrin homology (PH) domain of Downstream of tyrosine kinase 4, 5, and 6 proteins; The Dok ...
11-101 1.19e-59

Pleckstrin homology (PH) domain of Downstream of tyrosine kinase 4, 5, and 6 proteins; The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). In general, PH domains have diverse functions, but are generally involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270197  Cd Length: 105  Bit Score: 185.33  E-value: 1.19e-59
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712  11 IYQRCWLVFKKASSKGPKRLEKFSDERAAYFRCYHKVTELNNVKNVARLPKSTKKHAIGIYFNDDTSKTFACESDLEADE 90
Cdd:cd14678    15 IYRRCWLVFRKASSKGPKRLEKYPDERAAYLRACHKVTELSNVKNITRLPKETKRHAVAIIFTDDSSKTFACDSELEAEE 94
                          90
                  ....*....|.
gi 1370480712  91 WCKVLQMECVG 101
Cdd:cd14678    95 WCKVLSMECLG 105
 
Name Accession Description Interval E-value
PTB_DOK4_DOK5_DOK6 cd13164
Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The ...
121-223 3.41e-73

Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup.


Pssm-ID: 241318  Cd Length: 103  Bit Score: 219.99  E-value: 3.41e-73
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712 121 REQSERFNVYLMPSPNLDVHGECALQITYEYICLWDVQNPRVKLISWPLSALRRYGRDTTWFTFEAGRMCETGEGLFIFQ 200
Cdd:cd13164     1 REQNERFNVFLLPSPNLDVYGECLLQITHENIYLWDIHNPRVKLVSWPLCSLRRYGRDSTWFTFEAGRMCDTGEGLFTFQ 80
                          90       100
                  ....*....|....*....|...
gi 1370480712 201 TRDGEAIYQKVHSAALAIAEQHE 223
Cdd:cd13164    81 TREGEQIYQRVHSATLAIAEQHK 103
PH_DOK4_DOK5_DOK6 cd14678
Pleckstrin homology (PH) domain of Downstream of tyrosine kinase 4, 5, and 6 proteins; The Dok ...
11-101 1.19e-59

Pleckstrin homology (PH) domain of Downstream of tyrosine kinase 4, 5, and 6 proteins; The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). In general, PH domains have diverse functions, but are generally involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270197  Cd Length: 105  Bit Score: 185.33  E-value: 1.19e-59
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712  11 IYQRCWLVFKKASSKGPKRLEKFSDERAAYFRCYHKVTELNNVKNVARLPKSTKKHAIGIYFNDDTSKTFACESDLEADE 90
Cdd:cd14678    15 IYRRCWLVFRKASSKGPKRLEKYPDERAAYLRACHKVTELSNVKNITRLPKETKRHAVAIIFTDDSSKTFACDSELEAEE 94
                          90
                  ....*....|.
gi 1370480712  91 WCKVLQMECVG 101
Cdd:cd14678    95 WCKVLSMECLG 105
IRS pfam02174
PTB domain (IRS-1 type);
125-220 9.35e-40

PTB domain (IRS-1 type);


Pssm-ID: 460473  Cd Length: 99  Bit Score: 134.30  E-value: 9.35e-40
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712 125 ERFNV---YLMPSPNLDVHGECALQITYEYICLwDVQNPRVKLISWPLSALRRYGRDTTWFTFEAGRMCETGEGLFIFQT 201
Cdd:pfam02174   2 EVFPVtvrRTGASERCGLSGSYRLCLTAEALTL-DKLNTRVPLVSWPLTSLRRYGRDKNFFSFEAGRRCVTGEGEFWFQT 80
                          90
                  ....*....|....*....
gi 1370480712 202 RDGEAIYQKVHSAALAIAE 220
Cdd:pfam02174  81 DDAEEIFETVLAAMKAQKE 99
PTBI smart00310
Phosphotyrosine-binding domain (IRS1-like);
119-220 1.64e-29

Phosphotyrosine-binding domain (IRS1-like);


Pssm-ID: 197644  Cd Length: 99  Bit Score: 107.88  E-value: 1.64e-29
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712  119 VEREQSERFNVYLMPSPNldvHGECALQITYEYICLWDVQNPRVKLISWPLSALRRYGRDTTWFTFEAGRMCETGEGLFI 198
Cdd:smart00310   1 KQFWVTIRKTEGLERCPL---SGSYRLRLTSEELVLWRGLNPRVELVVWPLLSLRRYGRDKVFFFFEAGRRCVSGPGEFT 77
                           90       100
                   ....*....|....*....|..
gi 1370480712  199 FQTRDGEAIYQKVHSAALAIAE 220
Cdd:smart00310  78 FQTVVAQEIFQLVLEAMQAQKN 99
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
12-99 2.97e-04

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 39.45  E-value: 2.97e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712   12 YQRCWLVFKkasskgPKRLEKFSDERAAYFRCYHKVTELNN--VKNVARLPKSTKKHAIGIYFNDDTSKTFACESDLEAD 89
Cdd:smart00233  18 WKKRYFVLF------NSTLLYYKSKKDKKSYKPKGSIDLSGctVREAPDPDSSKKPHCFEIKTSDRKTLLLQAESEEERE 91
                           90
                   ....*....|
gi 1370480712   90 EWCKVLQMEC 99
Cdd:smart00233  92 KWVEALRKAI 101
 
Name Accession Description Interval E-value
PTB_DOK4_DOK5_DOK6 cd13164
Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The ...
121-223 3.41e-73

Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup.


Pssm-ID: 241318  Cd Length: 103  Bit Score: 219.99  E-value: 3.41e-73
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712 121 REQSERFNVYLMPSPNLDVHGECALQITYEYICLWDVQNPRVKLISWPLSALRRYGRDTTWFTFEAGRMCETGEGLFIFQ 200
Cdd:cd13164     1 REQNERFNVFLLPSPNLDVYGECLLQITHENIYLWDIHNPRVKLVSWPLCSLRRYGRDSTWFTFEAGRMCDTGEGLFTFQ 80
                          90       100
                  ....*....|....*....|...
gi 1370480712 201 TRDGEAIYQKVHSAALAIAEQHE 223
Cdd:cd13164    81 TREGEQIYQRVHSATLAIAEQHK 103
PH_DOK4_DOK5_DOK6 cd14678
Pleckstrin homology (PH) domain of Downstream of tyrosine kinase 4, 5, and 6 proteins; The Dok ...
11-101 1.19e-59

Pleckstrin homology (PH) domain of Downstream of tyrosine kinase 4, 5, and 6 proteins; The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). In general, PH domains have diverse functions, but are generally involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270197  Cd Length: 105  Bit Score: 185.33  E-value: 1.19e-59
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712  11 IYQRCWLVFKKASSKGPKRLEKFSDERAAYFRCYHKVTELNNVKNVARLPKSTKKHAIGIYFNDDTSKTFACESDLEADE 90
Cdd:cd14678    15 IYRRCWLVFRKASSKGPKRLEKYPDERAAYLRACHKVTELSNVKNITRLPKETKRHAVAIIFTDDSSKTFACDSELEAEE 94
                          90
                  ....*....|.
gi 1370480712  91 WCKVLQMECVG 101
Cdd:cd14678    95 WCKVLSMECLG 105
IRS pfam02174
PTB domain (IRS-1 type);
125-220 9.35e-40

PTB domain (IRS-1 type);


Pssm-ID: 460473  Cd Length: 99  Bit Score: 134.30  E-value: 9.35e-40
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712 125 ERFNV---YLMPSPNLDVHGECALQITYEYICLwDVQNPRVKLISWPLSALRRYGRDTTWFTFEAGRMCETGEGLFIFQT 201
Cdd:pfam02174   2 EVFPVtvrRTGASERCGLSGSYRLCLTAEALTL-DKLNTRVPLVSWPLTSLRRYGRDKNFFSFEAGRRCVTGEGEFWFQT 80
                          90
                  ....*....|....*....
gi 1370480712 202 RDGEAIYQKVHSAALAIAE 220
Cdd:pfam02174  81 DDAEEIFETVLAAMKAQKE 99
PTBI smart00310
Phosphotyrosine-binding domain (IRS1-like);
119-220 1.64e-29

Phosphotyrosine-binding domain (IRS1-like);


Pssm-ID: 197644  Cd Length: 99  Bit Score: 107.88  E-value: 1.64e-29
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712  119 VEREQSERFNVYLMPSPNldvHGECALQITYEYICLWDVQNPRVKLISWPLSALRRYGRDTTWFTFEAGRMCETGEGLFI 198
Cdd:smart00310   1 KQFWVTIRKTEGLERCPL---SGSYRLRLTSEELVLWRGLNPRVELVVWPLLSLRRYGRDKVFFFFEAGRRCVSGPGEFT 77
                           90       100
                   ....*....|....*....|..
gi 1370480712  199 FQTRDGEAIYQKVHSAALAIAE 220
Cdd:smart00310  78 FQTVVAQEIFQLVLEAMQAQKN 99
PTB_DOK1_DOK2_DOK3 cd01203
Downstream of tyrosine kinase 1, 2, and 3 proteins phosphotyrosine-binding domain (PTBi); The ...
137-221 4.23e-23

Downstream of tyrosine kinase 1, 2, and 3 proteins phosphotyrosine-binding domain (PTBi); The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain is binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup.


Pssm-ID: 269914  Cd Length: 99  Bit Score: 90.74  E-value: 4.23e-23
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712 137 LDVHGECALQITYEYICLWDVQNPRVkLISWPLSALRRYGRDTTWFTFEAGRMCETGEGLFIFQTRDGEAIYQKVHSaal 216
Cdd:cd01203    18 CRLKGSYLLRAGQDALELLDPQTKKP-LYSWPYRFLRRFGRDKVMFSFEAGRRCDSGEGLFTFETPQGNEIFQAVEA--- 93

                  ....*
gi 1370480712 217 AIAEQ 221
Cdd:cd01203    94 AIAAQ 98
PTB_FRS2 cd01202
Fibroblast growth factor receptor substrate 2 phosphotyrosine-binding domain; FRS2 (also ...
165-211 4.84e-16

Fibroblast growth factor receptor substrate 2 phosphotyrosine-binding domain; FRS2 (also called Suc1-associated neurotrophic factor (SNT)-induced tyrosine-phosphorylated target) proteins are membrane-anchored adaptor proteins. They are composed of an N-terminal myristoylation site followed by a phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a C-terminal effector domain containing multiple tyrosine and serine/threonine phosphorylation site. The FRS2/SNT proteins show increased tyrosine phosphorylation by activated receptors, such as fibroblast growth factor receptor (FGFR) and TrkA, recruit SH2 domain containing proteins such as Grb2, and mediate signals from activated receptors to a variety of downstream pathways. The PTB domains of the SNT proteins directly interact with the canonical NPXpY motif of TrkA in a phosphorylationdependent manner, they directly bind to the juxtamembrane region of FGFR in a phosphorylation-independent manner. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup.


Pssm-ID: 269913  Cd Length: 92  Bit Score: 71.84  E-value: 4.84e-16
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1370480712 165 ISWPLSALRRYGRDTTWFTFEAGRMCETGEGLFIFQTRDGEAIYQKV 211
Cdd:cd01202    41 VRWPLLCLRRYGYDSNLFSFESGRRCATGEGIYAFKCKRAEELFNLV 87
PTB cd00934
Phosphotyrosine-binding (PTB) PH-like fold; PTB domains have a common PH-like fold and are ...
116-217 4.43e-07

Phosphotyrosine-binding (PTB) PH-like fold; PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to bind peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains.


Pssm-ID: 269911  Cd Length: 120  Bit Score: 47.89  E-value: 4.43e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712 116 ATGVEREQSERFNVYLMPSPNLDVHGECALQITYEYICLWDVQNPRVkLISWPLSALRRYGRD---TTWFTFEAGRMCET 192
Cdd:cd00934    16 SRGVDVVEEALKALAAALKSSKRKPGPVLLEVSSKGVKLLDLDTKEL-LLRHPLHRISYCGRDpdnPNVFAFIAGEEGGS 94
                          90       100
                  ....*....|....*....|....*
gi 1370480712 193 GEGLFIFQTRDGEAIYQKVHSAALA 217
Cdd:cd00934    95 GFRCHVFQCEDEEEAEEILQAIGQA 119
PTB_DOK7 cd13165
Downstream of tyrosine kinase 7 phosphotyrosine-binding domain (PTBi); The Dok family adapters ...
126-207 1.23e-06

Downstream of tyrosine kinase 7 phosphotyrosine-binding domain (PTBi); The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain is binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup.


Pssm-ID: 269986  Cd Length: 101  Bit Score: 45.97  E-value: 1.23e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712 126 RFNVYLMPSPNLDVhGECALQITYEYICLWDVQNPRVkLISWPLSALRRYGRDTTWFTFEAGRMCETGEGLFIFQTRDGE 205
Cdd:cd13165     6 RFPVVVAPGTKLES-GPATLHFCNDILVLARDVPPAV-LGQWKLSDLRRYGAVPGGFIFEGGTRCGKWAGVFFLSTEEGE 83

                  ..
gi 1370480712 206 AI 207
Cdd:cd13165    84 QI 85
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
12-99 2.97e-04

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 39.45  E-value: 2.97e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712   12 YQRCWLVFKkasskgPKRLEKFSDERAAYFRCYHKVTELNN--VKNVARLPKSTKKHAIGIYFNDDTSKTFACESDLEAD 89
Cdd:smart00233  18 WKKRYFVLF------NSTLLYYKSKKDKKSYKPKGSIDLSGctVREAPDPDSSKKPHCFEIKTSDRKTLLLQAESEEERE 91
                           90
                   ....*....|
gi 1370480712   90 EWCKVLQMEC 99
Cdd:smart00233  92 KWVEALRKAI 101
PH_PLEKHJ1 cd13258
Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; ...
19-97 5.73e-04

Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; PLEKHJ1 (also called GNRPX2/Guanine nucleotide-releasing protein x ). It contains a single PH domain. Very little information is known about PLEKHJ1. PLEKHJ1 has been shown to interact with IKBKG (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma) and KRT33B (keratin 33B). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270078  Cd Length: 123  Bit Score: 38.84  E-value: 5.73e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712  19 FKKASSKGPKRLEKFSdERaaYFRC------YHKVTELNNVK-----------NVARLPKSTKKHAIGIYFNDDTSKT-- 79
Cdd:cd13258    22 IAERQMGGPKKSEVFK-ER--WFKLkgnllfYFRTNEFGDCSepigaivlencRVQMEEITEKPFAFSIVFNDEPEKKyi 98
                          90
                  ....*....|....*...
gi 1370480712  80 FACESDLEADEWCKVLQM 97
Cdd:cd13258    99 FSCRSEEQCEQWIEALRQ 116
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
2-95 6.92e-04

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 38.38  E-value: 6.92e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712   2 LDQTVRITEIYQRCWLVFKkasskgPKRLEKFSDERAAyfrCYHKVTELNNVKNVARLPKSTKKHAIGIYFNDDTSKtFA 81
Cdd:cd13298    12 LLKRSRKTKNWKKRWVVLR------PCQLSYYKDEKEY---KLRRVINLSELLAVAPLKDKKRKNVFGIYTPSKNLH-FR 81
                          90
                  ....*....|....
gi 1370480712  82 CESDLEADEWCKVL 95
Cdd:cd13298    82 ATSEKDANEWVEAL 95
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
12-95 9.72e-04

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 37.52  E-value: 9.72e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712  12 YQRCWLVFKKasskgpKRLEKFSDERAAYFRCYHKVtELNNVKNVARLPKSTKKHAIGIYFNDDTSKTFACESDLEADEW 91
Cdd:cd00821    16 WKKRWFVLFE------GVLLYYKSKKDSSYKPKGSI-PLSGILEVEEVSPKERPHCFELVTPDGRTYYLQADSEEERQEW 88

                  ....
gi 1370480712  92 CKVL 95
Cdd:cd00821    89 LKAL 92
PH_IRS cd01257
Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate ...
18-95 6.76e-03

Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.cytoskeletal associated molecules, and in lipid associated enzymes.


Pssm-ID: 269959  Cd Length: 106  Bit Score: 35.73  E-value: 6.76e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1370480712  18 VFKKASSKGPKRLEKFSDE----RAAYFRcyhKVTELNNVKNVARLPKSTKKHAIGIYFNDDTSkTFACESDLEADEWCK 93
Cdd:cd01257    21 VLRAESHGGPARLEYYENEkkfrRNAEPK---RVIPLSSCFNINKRADAKHKHLIALYTKDECF-GLVAESEEEQDEWYQ 96

                  ..
gi 1370480712  94 VL 95
Cdd:cd01257    97 AL 98
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH