docking protein 6 isoform X1 [Homo sapiens]
DOK family PTB domain-containing protein( domain architecture ID 10192173)
DOK (downstream of tyrosine kinase) family PTB (phosphotyrosine-binding) domain-containing protein similar to PTB domain region of Homo sapiens docking protein 4/5/6, also known as downstream of tyrosine kinase (DOK) 4/5/6, which plays roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells
List of domain hits
Name | Accession | Description | Interval | E-value | |||
PTB_DOK4_DOK5_DOK6 | cd13164 | Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The ... |
25-127 | 7.17e-76 | |||
Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. : Pssm-ID: 241318 Cd Length: 103 Bit Score: 223.84 E-value: 7.17e-76
|
|||||||
Name | Accession | Description | Interval | E-value | |||
PTB_DOK4_DOK5_DOK6 | cd13164 | Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The ... |
25-127 | 7.17e-76 | |||
Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. Pssm-ID: 241318 Cd Length: 103 Bit Score: 223.84 E-value: 7.17e-76
|
|||||||
IRS | pfam02174 | PTB domain (IRS-1 type); |
28-124 | 1.47e-43 | |||
PTB domain (IRS-1 type); Pssm-ID: 460473 Cd Length: 99 Bit Score: 141.62 E-value: 1.47e-43
|
|||||||
PTBI | smart00310 | Phosphotyrosine-binding domain (IRS1-like); |
23-124 | 3.78e-37 | |||
Phosphotyrosine-binding domain (IRS1-like); Pssm-ID: 197644 Cd Length: 99 Bit Score: 125.22 E-value: 3.78e-37
|
|||||||
Name | Accession | Description | Interval | E-value | |||
PTB_DOK4_DOK5_DOK6 | cd13164 | Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The ... |
25-127 | 7.17e-76 | |||
Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi); The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. Pssm-ID: 241318 Cd Length: 103 Bit Score: 223.84 E-value: 7.17e-76
|
|||||||
IRS | pfam02174 | PTB domain (IRS-1 type); |
28-124 | 1.47e-43 | |||
PTB domain (IRS-1 type); Pssm-ID: 460473 Cd Length: 99 Bit Score: 141.62 E-value: 1.47e-43
|
|||||||
PTBI | smart00310 | Phosphotyrosine-binding domain (IRS1-like); |
23-124 | 3.78e-37 | |||
Phosphotyrosine-binding domain (IRS1-like); Pssm-ID: 197644 Cd Length: 99 Bit Score: 125.22 E-value: 3.78e-37
|
|||||||
PTB_DOK1_DOK2_DOK3 | cd01203 | Downstream of tyrosine kinase 1, 2, and 3 proteins phosphotyrosine-binding domain (PTBi); The ... |
45-125 | 2.05e-20 | |||
Downstream of tyrosine kinase 1, 2, and 3 proteins phosphotyrosine-binding domain (PTBi); The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain is binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. Pssm-ID: 269914 Cd Length: 99 Bit Score: 82.26 E-value: 2.05e-20
|
|||||||
PTB_FRS2 | cd01202 | Fibroblast growth factor receptor substrate 2 phosphotyrosine-binding domain; FRS2 (also ... |
48-115 | 1.68e-18 | |||
Fibroblast growth factor receptor substrate 2 phosphotyrosine-binding domain; FRS2 (also called Suc1-associated neurotrophic factor (SNT)-induced tyrosine-phosphorylated target) proteins are membrane-anchored adaptor proteins. They are composed of an N-terminal myristoylation site followed by a phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a C-terminal effector domain containing multiple tyrosine and serine/threonine phosphorylation site. The FRS2/SNT proteins show increased tyrosine phosphorylation by activated receptors, such as fibroblast growth factor receptor (FGFR) and TrkA, recruit SH2 domain containing proteins such as Grb2, and mediate signals from activated receptors to a variety of downstream pathways. The PTB domains of the SNT proteins directly interact with the canonical NPXpY motif of TrkA in a phosphorylationdependent manner, they directly bind to the juxtamembrane region of FGFR in a phosphorylation-independent manner. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. Pssm-ID: 269913 Cd Length: 92 Bit Score: 76.85 E-value: 1.68e-18
|
|||||||
PTB_DOK7 | cd13165 | Downstream of tyrosine kinase 7 phosphotyrosine-binding domain (PTBi); The Dok family adapters ... |
71-111 | 2.42e-05 | |||
Downstream of tyrosine kinase 7 phosphotyrosine-binding domain (PTBi); The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain is binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. Pssm-ID: 269986 Cd Length: 101 Bit Score: 42.12 E-value: 2.42e-05
|
|||||||
FERM_C_Talin | cd10569 | FERM domain C-lobe/F3 of Talin; Talin (also called filopodin) plays an important role in ... |
51-113 | 2.37e-03 | |||
FERM domain C-lobe/F3 of Talin; Talin (also called filopodin) plays an important role in initiating actin filament growth in motile cell protrusions. It is responsible for linking the cytoplasmic domains of integrins to the actin-based cytoskeleton, and is involved in vinculin, integrin and actin interactions. At the leading edge of motile cells, talin colocalises with the hyaluronan receptor layilin in transient adhesions, some of which become more stable focal adhesions (FA). During this maturation process, layilin is replaced with integrins, where localized production of PI(4,5)P(2) by type 1 phosphatidyl inositol phosphate kinase type 1gamma (PIPK1gamma) is thought to play a role in FA assembly. Talins are composed of a N-terminal region FERM domain which us made up of 3 subdomains (N, alpha-, and C-lobe; or- A-lobe, B-lobe, and C-lobe; or F1, F2, and F3) connected by short linkers, a talin rod which binds vinculin, and a conserved C-terminal region with actin- and integrin-binding sites. There are 2 additional actin-binding domains, one in the talin rod and the other in the FERM domain. Both the F2 and F3 FERM subdomains contribute to F-actin binding. Subdomain F3 of the FERM domain contains overlapping binding sites for integrin cytoplasmic domains and for the type 1 gamma isoform of PIP-kinase (phosphatidylinositol 4-phosphate 5-kinase). The FERM domain has a cloverleaf tripart structure . F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. Pssm-ID: 269973 Cd Length: 92 Bit Score: 36.17 E-value: 2.37e-03
|
|||||||
Blast search parameters | ||||
|